
Sojourning with the Homogeneous Poisson Process

Piaomu Liu* and Edsel A. Peña†

*PhD student, Department of Statistics, University of South Carolina, Columbia, SC 29208. 

liu256@email.sc.edu

†Professor, Department of Statistics, University of South Carolina, Columbia, SC 29208. 

pena@stat.sc.edu

Abstract

In this pedagogical article, distributional properties, some surprising, pertaining to the 

homogeneous Poisson process (HPP), when observed over a possibly random window, are 

presented. Properties of the gap-time that covered the termination time and the correlations among 

gap-times of the observed events are obtained. Inference procedures, such as estimation and model 

validation, based on event occurrence data over the observation window, are also presented. We 

envision that through the results in this paper, a better appreciation of the subtleties involved in the 

modeling and analysis of recurrent events data will ensue, since the HPP is arguably one of the 

simplest among recurrent event models. In addition, the use of the theorem of total probability, 

Bayes theorem, the iterated rules of expectation, variance and covariance, and the renewal 

equation could be illustrative when teaching distribution theory, mathematical statistics, and 

stochastic processes at both the undergraduate and graduate levels. This article is targeted towards 

both instructors and students.
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1 Introduction and Motivation

The 2015 blockbuster movie San Andreas (Peyton (2015)) about a catastrophic earthquake 

(including its foreshocks and aftershocks) hitting the State of California has brought fear, 

fascination, and curiosity to many people, since apparently it is not a question of if but rather 

of when a catastrophic earthquake will hit California. The occurrence of earthquakes is one 

of those natural phenomena that we, humans, have no control over at all (cf., Hough (2010)), 

but it instills numerous beliefs, fantasies, and facts as evidenced in the United States 

Geological Survey (USGS) website:

http://earthquake.usgs.gov/learn/topics/megaqk_facts_fantasy.php.
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Among US states, California is usually the main focus when the subject of earthquakes 

arises since beneath its beautiful landscape are some of the major faults (e.g., San Andreas, 

San Jacinto, Elsinore, and Imperial), and it is adjacent to the so-called Ring of Fire or the 

circum-Pacific belt to which the San Andreas fault belongs. Figure 1 is a plot of the 

occurrence times (in number of days since January 9, 1857) of the mainshocks of 

earthquakes with Richter magnitude at least 4.9 in California from January 9, 1857 until 

December 31, 2015. The full data set can be found in the link (Wikipedia Contributors 

(2016)):

https://en.wikipedia.org/wiki/List_of_earthquakes_in_California.

Only earthquakes after January 9, 1857, which is the date of the Fort Tejon earthquake, the 

strongest recorded earthquake in California, were included. Doublets, swarms, and triggered 

occurrences were excluded since mainshocks are of primary interest in our modeling. 

EvTimes, the variable denoting the number of days since January 9, 1857 of occurrences of 

mainshocks, and GapTimes, denoting the number of days between successive occurrences 

of mainshocks, are presented in Table 1. Note that the exact time of occurrence, denoted by 

the Pacific Time Zone ( PTZ) variable in the Wiki page, was not used in determining 

EvTimes and GapTimes in Table 1. However, we ascertained that the impact of 

incorporating the PTZ information in the statistical analysis performed in Section 4 was 

negligible.

The occurrence of earthquake is an example of a recurrent event. Such events occur in many 

settings. Examples of recurrent events with a negative flavor are mass shooting, terrorist 

attack, re-occurrence of a tumor, machine failure, economic recession, non-life insurance 

claim, and Dow Jones Industrial Average Index (DJIA) decreasing by at least 5% on a 

trading day. On the other hand, recurrent events with a positive flavor are publication of a 

paper by a researcher, citing of a journal article, acquiring a new job, and DJIA increasing 

by at least 5% on a trading day. The probabilistic modeling and statistical analysis of 

recurrent events has been a highly active area of scholarly research. There are well-known 

recurrent event data sets that have been used in the literature such as the air-conditioning 

failure data set in Proschan (1963) (see also Follmann and Goldberg (1988) which uses this 

data set), the migratory motor complex (MMC) data set in Aalen and Husebye (1991), and 

the bladder tumor data set used in Wei et al. (1989). See the book by Cook and Lawless 

(2007) for other examples of recurrent events and for other real-life recurrent event data sets.

The earthquake data set presented in Figure 1 is the type of real and interesting data that 

instructors of probability, stochastic process, or mathematical statistics courses could use 

when introducing stochastic processes to undergraduate and graduate students. Specifically, 

such a data set could be used to motivate the first and the most basic stochastic process that 

students are exposed to, namely, the Homogeneous Poisson Process (HPP). See, for 

instance, the review article by Anagnos and Kiremidjian (1988) which discusses the use of 

the HPP model as well as other stochastic models for seismic hazard analysis. We recall the 

axiomatic definition of an HPP in Definition 1 (see Ross (1984); Resnick (1992)).
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Deftnition 1 A homogeneous Poisson process with rate λ, shortened HPP(λ), is a family of 

random variables N = {N(s), s ≥ 0} on some probability space (Ω, , P) satisfying the 

following conditions, where for every s, t ≥ 0, N(s, s + t] = N(s + t) − N(s):

i. P{N(0) = 0} = 1;

ii. For 0 ≤ s1 < s2 ≤ s3 < s4, N(s1, s2] and N(s3, s4] are independent;

iii. For every s and ds > 0, as ds ↓ 0, P{N(s, s + ds] ≥ 1} = λds + o(ds); and

iv. For every s and ds > 0, as ds ↓ 0, P{N(s, s + ds] ≥ 2} = o(ds).

The practical interpretation is that N(s) denotes the number of occurrences of a recurrent 

event (e.g., earthquakes) during the period (0, s], so N(s, s + t] is the number of occurrences 

in (s, s + t]. The “little oh” notation means o(ds)/ds → 0 as ds ↓ 0. It is well-known and 

always an instructive exercise for students to show, by setting appropriate differential 

equations using the properties in Definition 1, that N(s, s + t] has a Poisson distribution with 

mean λt, that is,

For the earthquake data, the process was observed from January 9, 1857, our time origin, 

until December 31, 2015. Thus, when monitoring such processes, there will usually be an 

end to the monitoring period, denoted by τ. In the earthquake data, τ was fixed to be τ = 

58064, the number of days from 1/9/1857 to 12/31/2015. More generally, this τ may be 

random and it could represent the time to an event which causes cessation of the monitoring 

of the event. For instance, in order to relate, catch, and spark the interest of our young and 

starry-eyed students, the instructor could mention, tongue-in-cheek, that τ could be the time 

that the First Order’s Starkiller Base superweapon annihilates a planet as in the movie Star 

Wars: The Force Awakens (Abrams (2015)). On the other hand, τ could represent the time to 

a relatively more benign event, such as an imposed deadline for a Statistics doctoral student 

to complete her dissertation research.

Associated with the process {N(s), s ≥ 0}, we also define equivalent random variables. The 

time of the kth event occurrence will be denoted by Sk, so that we have 0 ≡ S0 < S1 < S2 < 

S3 < …. The inter-event times, also called gap-times, are T1, T2, T3, …, so that with S0 = 0 

and for each k = 1, 2, …,

For the earthquake data, the Sk’s and Tk’s are the EvTimes and GapTimes respectively in 

Table 1. The probabilistic properties of the process {N(s), s ≥ 0} can be equivalently 

specified via the distribution of the family of event time random variables {Sk : k = 0, 1, 2, 

…} or the distribution of the family of gap-times {Tk : k = 1, 2, 3, …}. Such distributional 

properties may involve other aspects of the observation process, such as environmental 
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variables that could impact the event occurrences (cf., Peña (2006); Lindqvist (2006); Ross 

(2009)). However, in this paper, we restrict focus to the HPP(λ).

Under the HPP(λ), it is an excellent exercise for the students to show from Definition 1 that 

the gap-times Tk’s are independent and identically distributed (IID) random variables with 

common exponential distribution with mean 1/λ, denoted by Exp(λ). Thus the common 

probability density function (PDF) of the Tk’s is fT(t) = λ exp(−λt) for t ≥ 0. It follows, for k 

≥ 1, that the marginal distribution of  is a gamma distribution with shape 

parameter k and rate parameter λ, so its PDF is

where  for α > 0 is the gamma function, and I{·} is the indicator 

function. However, the Sk’s are not independent random variables.

As has been pointed out for the earthquake data, the process {N(s), s ≥ 0} will only be 

observed over a possibly random period [0, τ]. We assume that the distribution of τ is G, 

possibly degenerate as in the earthquake data, and τ is independent of the Tk’s. During this 

monitoring period [0, τ], the random variable which denotes the number of observed events 

is

(1)

where T = (T1, T2, T3, …) is the sequence of gap-times. The gap-time TK+1 between the 

observed Kth and unobserved (K + 1)th events, which covers or straddles τ, is unobserved 

and is right-censored by τ − SK. For the earthquake data where K = 51, this right-censoring 

value equals τ − S51 = 58064 − 57570 = 494 days, so we only know that the gap-time 

between the 51st and the 52nd earthquakes exceeds 494 days.

In this pedagogical paper, which is targeted to both instructors and students, we demonstrate 

seemingly paradoxical results under the HPP(λ) model. We also address the statistical 

inference questions of how to estimate λ and how to assess if the HPP(λ) model is suitable 

based on the observed occurrence data during the monitoring period [0, τ]. In particular, we 

shall address these questions with respect to the California earthquake occurrences using the 

observed data during the period from 1/9/1857 to 12/31/2015 as presented in Figure 1 and 

Table 1. To whet the appetite of the reader, at this point we pose the following questions: 

assume an HPP(λ) is monitored over [0, τ] and assume that τ, which has an exponential 

distribution, is independent of the gap-times Tj ’s. Let K be as defined in (1).
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• Question 1: If you are informed that K = k with k ≥ 2, what do you think is the 

sign of the conditional correlation coefficient between T1 and T2?

• Question 2: On average, is the length of TK+1, the gap-time straddling τ , equal 

to 1/λ, the mean of T1? If you think not, do you think it is larger or smaller than 

1/λ?

These are just two of the questions addressed in this paper. We reveal some surprising 

distributional results and demonstrate how well-known results such as the theorem of total 

probability, Bayes theorem, iterated expectation, variance, and covariance rules, together 

with renewal equation arguments can be utilized to answer such questions. We expect this 

paper to further establish the pedagogical utility of HPP-based models. The technical level 

of this paper is accessible to advanced undergraduate and beginning graduate students who 

are taking or have taken distribution theory, mathematical statistics, or stochastic process 

courses. Some of the results will demonstrate that some seemingly-intuitive statements are 

in fact mathematically false. This will further help enhance the allure and excitement of the 

study of probability and statistics among undergraduate and graduate students.

We outline the contents of this paper. Section 2 reviews some well-known properties of the 

HPP. Section 3 deals with an HPP that is observed over a random monitoring period. The 

impact of the sum-quota accrual scheme, equivalently of size-biased sampling, is 

demonstrated in this section. In particular, we examine the distributional properties of TK+1. 

Section 4 discusses the estimation of λ and the assessment of the validity of the HPP model 

using data over the monitoring period. Section 5 provides some concluding remarks.

2 Some Properties of the HPP

In this section we recall some well-known properties of the HPP(λ), which are needed in 

later sections. For the proofs of these results, we refer the reader to Ross (1984), Resnick 

(1992), Ross (2009), or other probability and stochastic process books. Better still is for the 

curious and challenged reader to establish these results!

Theorem 1 For an HPP(λ), (S1, S2, …, Sk), given that N(s) = k with k ≥ 1 and s fixed, has 

the joint distribution of the order statistics of a random sample of size k from a uniform 

distribution over [0, s]. As a consequence , given N(s) = 

k with k ≥ 1, has joint density given by

Corollary 1 For an HPP(λ), , given that N(s) = k 

with k ≥ 1 and s fixed, has a Dirichlet distribution with parameter 1k+1, a 1 × (k + 1) vector 

of 1’s, so that its joint density function is
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Thus, for i, j ∈ {1, 2, …, k} with i ≠ j, Wi|(N(s) = k) has a beta (Dirichlet) distribution with 

parameter (1, k), while (Wi, Wj)|(N(s) = k) has a Dirichlet distribution with parameter (1, 1, 

k − 1).

These results possess the intuitive content that under an HPP model, the occurrences of a 

known number of events over a fixed finite interval in the time axis are according to a 

uniform law. Using well-known results about the moments of the Dirichlet distribution (see, 

for instance, Kotz et al. (2000)), we have:

Corollary 2 For a HPP(λ), when s is fixed, we have for i, j ∈ {1, 2, …, k} with i ≠ j and k ≥ 

1, (i)  ; (ii)  ; (iii) 

 ;and (iv) .

3 HPP over a Random Window

We now consider the situation when an HPP(λ) is monitored over a possibly random 

window [0, τ ]. Results will be obtained for the case where τ is fixed, and for the case where 

τ is independent of the process and has an exponential distribution with mean 1/η. The latter 

setting will be referred to as a HPP with a random window, abbreviated HPPRW(λ, η). This 

is a special case of the model considered in Peña et al. (2001). We point out that it is not 

actually necessary to have the exponential distribution assumption on τ; however, imposing 

this condition leads to tractable expressions which help in the pedagogical aims of this 

paper. The random number of event occurrences observed over [0, τ] is K = K(τ, T) as 

defined in (1). We emphasize that K is both a function of T = (T1, T2, T3, …) and τ. From 

its definition we also obtain the inequality, called the sum-quota constraint, given by

(2)

The random observable over the monitoring period [0, τ] is therefore

(3)

where  for j = 1, 2, 3, …. At this point we call attention to a change in 

notation compared to earlier works (e.g., Peña et al. (2001)) dealing with recurrent events 

where we now use a superscript asterisk on the  to indicate that the observable random 

variables  are dependent on the τ and the sequence T through the random variable K. 

This will make the situation more notationally appropriate and avoid some misconceptions.
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Our first result relates to the notion of size-biased sampling. For any fixed k ∈ {0, 1, 2, …}, 

we know that TK+1, given τ, has an Exp(λ) distribution, so in particular, E(TK+1|τ) = 1/λ. 

How about TK+1, given τ, where TK+1 is the gap-time that covers or straddles τ? 

Examination of this random variable, which is always right-censored by τ − SK, is of 

importance both from a distributional viewpoint and statistical inference perspective as will 

be demonstrated in subsection 4.1 dealing with estimation. This innocent-looking random 

variable TK+1 is actually a complicated one since it depends on both τ and T through K. To 

see this, observe that

(4)

with the convention that an empty summation equals zero. In the sequel, at the cost of 

sacrificing some mathematical rigor, we do not mention measurability issues so as not to 

detract from the more elementary and pedagogical foci of this paper. When dealing with 

HPP’s, a very important notion is that of regeneration (see, for instance, subsection 3.7.1 of 

Resnick (1992)). For an infinite sequence t = (t1, t2, t3, …), let t[−1] = (t2, t3, t4, …). For our 

notation, recall that two random vectors V1 and V2 are said to be stochastically equal or are 

equal-in-distribution if, for every v, FV1 (v) = FV2 (v). In such a case we write  or 

. Now, for an HPP(λ), its associated gap-times T = (T1, T2, T3, …), which are IID 

Exp(λ), possess the regenerative property

(5)

so that for any mapping  where ℒ is some space, it follows that

(6)

Lemma 1 For an HPP(λ) with gap-times T = (T1, T2, T2, …), we have that:

i. if T1 = v with v > τ, then TK(τ,T)+1 = T1; while

ii.
if T1 = v with 0 ≤ v ≤ τ , then .

Proof: Result (i) is obvious since if T1 = v > τ then K(τ, T) = 0 so TK(τ,T)+1 = T1. To prove 

(ii) where T1 = v ≤ τ, we have by using the representation in (4) the following relations, 

where we also use the notation :
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with the last equality arising from the regeneration properties (5) and (6).

Another important mathematical notion is that of convolution of two functions. Let F1 and 

F2 be two nonnegative and nondecreasing functions on ℜ+. The convolution of F1 and F2 is 

the function F1 * F2 on ℜ+ defined according to

If Fi is the distribution function of the positive-valued random variable Vi for i = 1, 2, and if 

the Vi’s are independent, then F1 * F2 is the distribution function of the sum V = V1 + V2 

since, for t ≥ 0,

where we use the independence between V1 and V2 to get the second-to-last equality. If F1 = 

F2 = F, we write F*2 = F * F. It is a nice and simple exercise for the student to verify the 

associative property of the convolution operator, that is, for F1, F2, F3 we have the identity 

[(F1 * F2) * F3] = [F1 * (F2 * F3)]. As such, if F1 = F2 = … = Fn = F, it is appropriate to 

write F*n = F * F * ⋯ * F. We have mentioned earlier that for an HPP(λ), the distribution of 

 is a gamma distribution with shape parameter n and rate parameter λ, which is 

the nth convolution of the exponential distribution with parameter λ. By convention, F*0(t) = 

I{t ≥ 0}, the degenerate distribution at zero. Finally, for a distribution function F, its 

associated renewal function is defined to be

(7)

It will be a simple, but instructive, exercise for the student to verify that for the HPP(λ), for 

which the gap-time distribution F is exponential with parameter λ, the renewal function is

(8)

A practical interpretation of U(t; λ) − 1 is that it is the mean number of events that occur in 

(0, t]. See also Cox (1962) for a treatment of renewal theory.
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We are now in a position to present and prove Theorem 2, which contains a general result 

concerning the mean of a function of TK+1, conditional on τ. We opted for this more general 

result since it will enable us to obtain other results by simply specializing the function h. 

Furthermore, this will illustrate the power and utility of renewal or regenerative arguments.

Theorem 2 For an HPP(λ) monitored over [0, τ] with τ fixed, let h : ℜ+ → ℜ be a function 

with E[|h(T1)|] < ∞ and define the mapping τ ↦ A(τ) ≡ Ah(τ) ≡ E[h(TK(τ,T)+1)|τ]. Then

(9)

Proof: We first establish that when E[|h(T1)|] < ∞, then E[|h(TK(τ,T)+1)||τ] < ∞. To prove 

this, we have by using (4), the iterated expectation rule, and, with g(·; j, λ) being the gamma 

density function with parameters (j, λ), that

Our next step is to establish a renewal equation for A(τ). By conditioning on T1, we obtain 

using the theorem of total probability or the iterated expectation rule that

where F (·) = F (·; λ) = Exp(λ) is the distribution function of T1 so that F(dv; λ) = λ 
exp(−λv)dv. Using Lemma 1 and since T1 is independent of T[−1], we obtain from the 

preceding equation

with z(τ) = exp{−λτ}E[h(T1 + τ)|τ]. Thus, we get the renewal equation A = z + F * A. At 

this point we may simply invoke a theorem pertaining to renewal equations such as that in 

Resnick (1992) to obtain the solution for A(τ). However, to fulfill the pedagogical nature of 

this paper, we provide a brief, though not fully rigorous, derivation. First, note that by 

successive convolution with F and using the associative property of the convolution operator, 

we get the sequence of equations
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From this sequence, we obtain for each n ≥ 1 that . 

Letting n → ∞, and noting that, for τ < ∞, F*(n+1)(τ) = P{Sn+1 ≤ τ} → 0 since 

 by the weak law of large numbers, then we get the solution 

, where U is the renewal function of F given in (8). 

Thus, it follows that .

Theorem 3 Under the conditions of Theorem 2, the conditional distribution of TK+1, given 

τ, is

Its conditional mean and variance are, respectively,

As a consequence, for each τ > 0 and w > 0, P{TK+1 ≤ w|τ} < P{T1 ≤ w}, E[TK+1|τ] > 

E[T1], and Var[TK+1|τ] > Var[T1]. In addition,

Proof: The first result follows from Theorem 2 by taking h(t) = I{t > w} to get P{TK+1 > w|

τ}. To obtain the conditional mean, take h(t) = t to get E[TK+1|τ], while to obtain the 

conditional variance first take h(t) = t2 to obtain . Straightforward simplifications 

lead to the expressions in the theorem. Clearly, for w > 0, P{TK+1 ≤ w|τ} < 1 − exp(−λw) = 

P{T1 ≤ w}. Also, since E[T1] = 1/λ, then it is clear that E[TK+1|τ] > E[T1|τ] = E[T1]. In 

addition, we have that Var[T1] = 1/λ2, so that since the mapping t ↦ g(t) = 1 − exp(−2t) 

− 2t exp(−t) for t ≥ 0 is increasing in t with g(0) = 0, then it follows that Var[TK+1|τ] > 

Var[T1|τ] = Var[T1]. The limiting results are immediate.

The next theorem pertains to results which are not conditional on τ, but under the 

HPPRW(λ, η) model wherein τ ~ Exp(η).

Theorem 4 Under a HPPRW(λ, η) model, the unconditional distribution of TK+1 is
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and its unconditional mean and variance are, respectively,

In addition, for w > 0, P{TK+1 ≤ w} < P{T1 ≤ w}, E[TK+1] > E[T1], and Var[TK+1] > 

Var[T1].

Proof: The results follow from Theorem 3, the iterated expectation and variance rules, and 

straightforward simplifications. The stated inequalities are immediate.

Recall that for random variables X and Y, we say that X is stochastically larger than Y , 

denoted by , if for each x ∈ ℜ, P{X ≤ x} ≤ P{Y ≤ x}. Thus, variables X and Y are 

stochastically equal, that is , if  and . From Theorem 3 we therefore see 

that, conditionally on ; while from Theorem 4 we see that this stochastic 

dominance of TK+1 over T1 still holds unconditionally on τ. In layman’s terms, this means 

that even though each of the gap-times TK+1’s for k ≥ 0 in an HPP(λ) are exponentially 

distributed with parameter λ, when we focus on the gap-time TK+1 that straddles or covers 

τ, with τ viewed as the fixed or random time of an inspection of the HPP, this gap-time tends 

to be longer than each of the TK+1’s! This answers the second motivating question and 

appears to be a paradoxical and counter-intuitive result. This phenomenon arises because of 

the sum-quota constraint which makes TK+1 to become a function of τ and T. This could 

also be explained by the so-called size-biased sampling phenomenon [also called the 

inspection paradox (cf., Ross (2009))] through the representation in (4). Imagine generating 

the infinite, but countable, event times from an HPP(λ), so that 0 ≡ s0 < s1 < s2 < s3 < … are 

the realized event times. View these times as fixed, but transform each of them to wi = 1 − 

exp(−ηsi), i = 0, 1, 2, 3, …. Thus, 0 ≡ w0 < w1 < w2 < w3 < … is a sequence in [0, 1]. 

Generate τ according to an Exp(η) distribution, and convert this to V = 1 − exp(−ητ), so that 

V has a uniform distribution on [0, 1]. Then the probability that V is contained in the 

interval [wi−1, wi) is wi − wi−1, so that longer intervals will have higher probabilities of 

catching V. This is equivalent to the longer intervals [si−1, si)’s having higher probabilities of 

covering τ, implying that the length of the gap-time that covers τ tends to be longer. This is 

one explanation of the size-biased sampling in this context. Another way to see why TK+1 

tends to be longer than an Exp(λ) random variable is by examining the backward and 

forward recurrence times. Given τ, the backward and forward recurrence times are given, 

respectively, by B(τ) = τ − SK and R(τ) = SK+1 − τ. See, for instance, section 3.5 of Resnick 

(1992). TK+1 can be expressed as TK+1 = B(τ) + R(τ). The results in Theorem 3 could then 

be alternatively obtained by utilizing the interesting distributional properties of (B(τ), R(τ)) 

contained in Theorem 5 below.
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Theorem 5 Under the conditions of Theorem 2, (i) B(τ) and R(τ) are stochastically 

independent; (ii) R(τ) is stochastically equal to T1, so it has an exponential distribution with 

rate λ; and (ii) B(τ) is stochastically equal to min(T1, τ), so its distribution function is

Proof: Fix τ > 0, w > 0, and v > 0. Conditionally on τ, we have, with g(·; k, λ) being the 

gamma density function with shape parameter k and rate parameter λ,

Note that the independence between TK+1 and Sk, given τ, is used to obtain the fifth 

equality. Also, observe that B(τ) is a mixed random variable with jump point at τ. All three 

results in the statement of the theorem now follow from the end-result that P{B(τ) > w, R(τ) 

> v|τ} = I{w < τ} exp(−λw) exp(−λv). We remark that a renewal argument-based proof is 

also available for establishing the results (cf., Resnick (1992)).

We examine the impact of τ on the conditional distribution of TK+1 and the impact of η on 

the unconditional distribution function of TK+1. From Theorem 3, it is clear that P{TK+1 ≤ 

w|τ} is decreasing in τ, indicating that TK+1, given τ, is stochastically increasing in τ. Note 

that this stochastic ordering of the conditional distribution of TK+1, given τ, as τ changes 

could also be deduced immediately from the results of Theorem 5. On the other hand, from 

Theorem 4, P{TK+1 ≤ w} is an increasing function (proof is left as an exercise for the 

student or the instructor) of η, indicating that TK+1 is stochastically decreasing in η, 

equivalently, stochastically increasing in 1/η. These results are pictorially illustrated in 

Figure 2. Panel 1 in Figure 2 contains overlaid plots of P{TK+1 ≤ w|τ} for λ = 1 and τ ∈ [0, 

10] where we see that the distribution functions are decreasing in τ. The case with τ = 0 

corresponds to the distribution of T1, which is exponential with parameter λ. Panel 2 in 

Figure 2 contains the distribution functions of TK+1 unconditionally on τ for different values 

of η ∈ [.2, 10]. Here we observe that as η increases, which shortens the monitoring period, 

the distribution functions increase. We also call attention to a subtle result that 

undergraduate students will usually not encounter. In the representation TK+1 = B(τ) + R(τ), 

for fixed τ, B(τ) is a mixed random variable with a jump point at τ with jump probability 

exp(−λτ), whereas R(τ) is a continuous random variable. The sum of these mixed and 
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continuous random variables, which is TK+1, is now a purely continuous random variable, a 

manifestation of the notion of smoothing.

To help students visualize the aforementioned theoretical results, we could exploit the 

computing resources in our classrooms such as the ubiquitous R Statistical Computing 

platform (R Core Team (2013)). In this context it is enlightening and exciting to demonstrate 

to the students the agreement between theory and the results of computer experiments in 

real-time. To accomplish such a demonstration for the TK+1 variable, we may suppose that 

we have an HPP(λ = 1) and a τ having an exponential distribution with η = .2. Denoting by 

ξq the qth quantile of the distribution of τ, we have that ξq = −log(1 − q)/η, so we get ξ.25 = 

1.438, ξ.5 = 3.466, and ξ.75 = 6.931. For the demonstration, we can then do the following 

computer simulations, each with M = 5000 replications.

i. Generate M Exp(λ) random variates, representing the times to the first event in 

the HPP(λ).

ii. For fixed τ = ξ.25, generate M realizations of an HPP(λ) and determine the 

associated TK+1. These M values represent sample realizations from the 

conditional distribution of TK+1, given τ = ξ.25. Repeat the same experiment for 

τ = ξ.50 and τ = ξ.75.

iii. For each of M replications, generate a τ according to Exp(η) and then an HPP(λ) 

realization to determine TK+1. These M values represent sample realizations 

from the unconditional distribution of TK+1.

For the five sets of sample realizations, each with M values, construct the comparative 

boxplots to show the empirical realizations. For instance, we performed these simulations 

using simple R programs and the results are presented in Figure 3. Through such simulations 

the instructor is then able to empirically illustrate differences in distributional properties of 

T1, TK+1 given τ, for different values of τ, and TK+1, thereby demonstrating in a concrete 

manner the theoretical results. In particular, from our simulation runs, we note that the 

sample realizations from the conditional distributions of TK+1, given τ, and from its 

unconditional distribution are consistent with the stochastic ordering obtained theoretically. 

Also note the increasing stochastic ordering of the conditional distributions of TK+1, given τ, 

as τ increases, but that the unconditional distribution of TK+1 is not necessarily 

stochastically larger than the conditional ones. The R codes we used in our simulations are 

available upon request from the authors, though we strongly encourage students to create 

their own R simulation codes since it will improve their programming skills.

Next, we investigate properties of K and  under the HPPRW. Immediately, 

conditionally on τ, K has a Poisson distribution with rate λτ. Unconditionally on τ, it is also 

easy to show that K has a geometric distribution with success probability η/(λ + η), hence 

 and .

Theorem 6 Under the HPPRW(λ, η) model, , given K = k with k ≥ 1, are 

IID from Exp(λ + η).
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Proof: From Corollary 1, the conditional density of , given (K = k, τ), is

The conditional density function of τ, given K = k, satisfies, via Bayes Theorem,

Consequently, τ|(K = k) has a gamma distribution with shape parameter k + 1 and rate 

parameter λ + η. Invoking the theorem of total probability, the conditional joint density of 

, given K = k, is

This completes the proof that, given  are IID Exp(λ + η).

Corollary 3 Under a HPPRW(λ, η) model, given K = k with k ≥ 1, then for i ∈ {1, 2, …, 

k},  has an Exp(λ + η) distribution, so that  and 

; and for i, j ∈ {1, 2, …, k} with k ≥ 2 and i ≠ j, 

.

In Corollary 3, the conditional moments and correlation of the  are immediate from the 

joint conditional distribution of  given K = k. For pedagogical purposes, we may 

also derive them via the iterated expectation, variance, and covariance rules. We demonstrate 

this approach using the conditional covariance in Corollary 2. For a fixed k ≥ 2, using the 

iterated expectation rule, we have for i, j ∈ {1, 2, …, k} with i ≠ j,

It should be noted that the distributional result regarding , given K = k, 

contained in Theorem 6 is more general than just obtaining the moments via the iterated 

rules. Nevertheless, it is instructive to see the use of the iterated rules. An important advice 

to students who want to utilize the iterated rules when there is conditioning is not to forget 

the conditioning event in the outside expectation, variance, or covariance operations. In the 
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above derivations, every operation is conditioned on the event K = k. Note that the last result 

of Corollary 3 answers the first motivating question.

4 Some Inference Issues

4.1 Estimating the Rate Parameter of the HPP

Assume that we have an HPP(λ) process. If we fix a k ∈ {1, 2, 3, …} and observe the gap-

times T1, T2, …, Tk, then since these are IID from Exp(λ), the likelihood function for λ is

As a consequence, the maximum likelihood estimator (MLE) of λ is

On the other hand, when the HPP(λ) process is observed over the window [0, τ] with τ 
fixed, the number of events observed, K = N(τ), is a random variable which depends on λ. 

Specifically, K has a Poisson distribution with mean λτ. If we only know K and not the 

event times Si’s or the gap-times Ti’s, then we could estimate λ via

which could be viewed as an occurrence-exposure rate. Could we improve on this estimator 

if we had observed the vector , such as in the California 

earthquake data? Or, should we simply use the estimator

analogously to the case where k was fixed? Let us determine the likelihood function for λ 
given , where τ is fixed. Using the event equivalence that, 

for  with , we have

then, since T1, T2, … , Tk, Tk+1, … are IID Exp(λ), we obtain the likelihood function
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From this likelihood, it follows that the MLE of λ based on D is, also, λ̂ = K/τ, which 

coincides with the estimator obtained when we only observe K. At this point, it would be an 

opportune time to ask students who had already taken mathematical statistics courses to 

immediately surmise why the MLE of λ based on data D only involved K. The instructor 

could then reveal (or confirm) that this is because of the Sufficiency Principle (cf., Wackerly 

et al. (2008)), and to leave it as an exercise for the students to show that when the observable 

is D, with τ fixed, the sufficient statistic for λ is in fact just K, hence it contains all the 

information about λ. Regarding the properties of the estimators, λ ̂= K/τ is the easier one to 

deal with since, for fixed τ, K ~ POI(λτ), hence we immediately see that E[λ̂] = λτ/τ = λ 
(it is unbiased) and Var[λ̂] = λ/τ. The estimator λ ̃is harder to deal with since we require 

the joint distribution of (K, SK). But alas, via the iterated rule of expectation, it can be shown 

that E[λ̃] = ∞. This is a very surprising result, and it is an instructive exercise for the 

student to demonstrate that this in fact is the case. As such, the variance of λ ͌does not exist. 

Furthermore, the superiority of λ̂ over λ ͌illustrates the danger of ignoring TK+1, specifically 

its observed component τ − SK. This also highlights the peculiar behavior of TK+1 from the 

other observed gap-times, as we have demonstrated in Section 3.

We now go back to the California earthquake data. Suppose that an HPP(λ) model applies 

for the earthquake occurrences (but see subsection 4.2 which demonstrates that this is not 

actually the case), we would have obtained two estimates of λ from the above formulas 

given by

The difference between these two estimates appears minuscule, but when we convert them to 

the mean of the gap-times between successive earthquakes, they become, respectively, 

1128.824 days and 1138.51 days. In the context of earthquake occurrences, the difference 

between these mean estimates could be impactful to people as it could lead to heightened 

anxiety and anticipation of an earthquake.

In the preceding analysis we only dealt with estimation based on one observed process or 

unit. For more materials and discussions pertaining to statistical inference in these recurrent 

event models with many units, we refer students and instructors to Wang and Chang (1999), 

Peña et al. (2001), Peña (2006), Lindqvist (2006), Cook and Lawless (2007), Aalen et al. 

(2008), and Rahman et al. (2014).

4.2 Assessing Adequacy of the HPP Model

There is also the important question of assessing if an HPP model is appropriate in light of 

observed data over a window of observation. We are able to use the uniformity properties in 

Section 2 to develop a procedure for addressing this issue. We then use the procedure to see 
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if an HPP model is suitable for California earthquake occurrences based on the data in 

Figure 1 and Table 1. Our procedure is based on the following result.

Theorem 7 Let {N(s), s ≥ 0} be an HPP(λ) and assume that it has been observed over [0, τ] 

with τ known. Suppose K = k events were observed and let S0 = 0 < S1 < S2 < … < Sk ≤ τ 
be the event times. Then, conditional on(τ, K) = (τ, k), the random variable 

 has a chi-squared distribution with 2k degrees-of-freedom.

Proof: All probability statements below are conditional on (τ, K) = (τ, k) and under an 

HPP(λ) model. From Theorem 1, , where (U(1), 

U(2), … , U(k)) are the order statistics of size k from a standard uniform U [0, 1]. Since U ~ 

U [0, 1] if and only if W = −log(1 − U ) ~ Exp(1), then

(10)

where (W(1), W(2), …, W(k)) are the order statistics of size k from a unit exponential 

distribution Exp(1). The associated normalized spacings statistics of the right-hand-side 

vector in (10) are

with W(0) = 0. It is well-known (cf., Barlow and Proschan (1975)), and is instructive for 

students to show, that (D1, D2, …, Dk) are IID from Exp(1). It then follows that 

has a chi-squared distribution with 2k degrees-of-freedom, abbreviated , hence applying 

on the left-hand-side vector in (10) we get

Simplifying the expression for V, we obtain , thus completing 

the proof.

Given the observed event occurrence data over [0, τ], we could test the null hypothesis (H0) 

that the process is an HPP versus the alternative hypothesis (H1) that the process is not an 

HPP, at level of significance α, using the decision rule which rejects H0 whenever

where  is the 100(1 − α)th quantile of , that is, . Observe, in 

particular, that when the gap-times are stochastically becoming shorter, which could be due 
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to an increasing rate of event occurrences over time, the statistic V will tend to be large. So 

the test procedure will have good power towards such a departure from an HPP(λ).

For the California earthquake data, we have k = 51, τ = 58064, and V = 143.3053. At 5% 

significance level, the critical values from a  are  and 

, so that we reject the null hypothesis that the occurrences of earthquakes 

(of magnitude at least 4.9) follows an HPP! This result is informally indicated in Figure 1 

where the gap-times in later years appear to be getting shorter. The formal test procedure 

performed provides an unequivocal test showing that the HPP model is not appropriate for 

modeling California earthquake occurrences of magnitude at least 4.9 in light of the 

observed data from 1/9/1857 to 12/31/2015. It would be of interest for geologists and 

seismologists to provide plausible explanations for this apparent departure, possibly with an 

increasing rate of earthquake occurrences over time, from an HPP model (see Anagnos and 

Kiremidjian (1988) for alternative models and chapter 18 of Hough (2010) for discussions of 

possible explanations).

5 Concluding Remarks

In this pedagogically-oriented paper, we examine the HPP as a model for the occurrences of 

a recurrent event over a possibly random monitoring window. Properties of the number of 

observed events in the monitoring period, the gap-time that covers the random termination 

time, and the observed gap-times were obtained. Some surprising properties, consequences 

of the sum-quota accrual scheme and size-biased sampling phenomenon, are highlighted and 

discussed. Procedures for estimating the HPP rate and for assessing the viability of the HPP 

model, based on the observed data, are also provided. The discussions and illustrations are 

aided by using data of California earthquake occurrences of Richter magnitude at least 4.9 

during the period from January 9, 1857 (the day of the Fort Tejon earthquake) until 

December 31, 2015. The results and proofs in this paper could serve as excellent additions to 

topics covered in advanced undergraduate-level and beginning graduate-level distribution 

theory, mathematical statistics, and stochastic processes courses. In particular, the use of the 

theorem of total probability, the iterated expectation, variance, and covariance rules, Bayes 

theorem, and the renewal equation will be quite instructive in such courses.
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Figure 1. 

Plot of the times (in number of days since January 9, 1857) of occurrences of the 

mainshocks of earthquakes of Richter magnitude at least 4.9 in the State of California from 

January 9, 1857 to December 31, 2015. Excluded are doublets, swarms, and triggered 

occurrences. The red cross is the end of monitoring period which is December 31, 2015, and 

no earthquake occurred during that day.
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Figure 2. 

Overlaid plots of the cumulative distribution functions of TK+1, given τ, for λ = 1 and 

different values of τ [panel 1] and unconditional on τ for different values of η [panel 2] 

under the HPPRW(λ, η) model.
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Figure 3. 

Comparative boxplots arising from 5000 sample realizations of five random variables arising 

from the HPPRW(λ = 1, η = .2). [LEGEND: , so has unit exponential distribution; 

; and .]
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Table 1

The occurrence times ( EvTimes) of 51 earthquakes (mainshocks) of Richter magnitude at least 4.9 and the 

gap-times ( GapTimes) in California during 1/9/1857 to 12/31/2015. Event times are in number of days from 

1/9/1857. There were 58064 days during the monitoring period and the number of days from the last one, 

which occurred on 8/24/2014, until 12/31/2015 was 494.

EvTimes: 3194, 4303, 5555, 12828, 12884, 15690, 17995, 21347, 22381, 23173, 24118, 25007, 25865, 27541, 27818, 30444, 33566, 34891, 
34923, 35774, 36596, 40631, 41172, 41668, 44410, 44768, 44838, 44939, 45061, 45228, 46133, 46491, 47296, 47309, 47746, 47799, 48423, 
48493, 49112, 49411, 49414, 49478, 50046, 52144, 52467, 53672, 55080, 55353, 55882, 55967, 57570.

GapTimes: 3194, 1109, 1252, 7273, 56, 2806, 2305, 3352, 1034, 792, 945, 889, 858, 1676, 277, 2626, 3122, 1325, 32, 851, 822, 4035, 541, 
496, 2742, 358, 70, 101, 122, 167, 905, 358, 805, 13, 437, 53, 624, 70, 619, 299, 3, 64, 568, 2098, 323, 1205, 1408, 273, 529, 85, 1603.
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