
 Open access Proceedings Article DOI:10.1109/SP40001.2021.00008

SoK: Computer-Aided Cryptography — Source link

Manuel Barbosa, Gilles Barthe, Karthikeyan Bhargavan, Bruno Blanchet ...+3 more authors

Institutions: University of Porto, Max Planck Society,
French Institute for Research in Computer Science and Automation, Carnegie Mellon University

Published on: 23 May 2021 - IEEE Symposium on Security and Privacy

Topics: Cryptography and Standardization

Related papers:

 SoK: Computer-Aided Cryptography.

 Reusable knowledge in security requirements engineering: a systematic mapping study

 A comprehensive pattern-oriented approach to engineering security methodologies

 Technical Tools and Designs for Data Protection

 Software and System Security

Share this paper:

View more about this paper here: https://typeset.io/papers/sok-computer-aided-cryptography-
57wpqx0qry

https://typeset.io/
https://www.doi.org/10.1109/SP40001.2021.00008
https://typeset.io/papers/sok-computer-aided-cryptography-57wpqx0qry
https://typeset.io/authors/manuel-barbosa-dfbfbz135y
https://typeset.io/authors/gilles-barthe-tmmby88j1f
https://typeset.io/authors/karthikeyan-bhargavan-5e55k3iqmy
https://typeset.io/authors/bruno-blanchet-4a366vwkza
https://typeset.io/institutions/university-of-porto-1srwikzc
https://typeset.io/institutions/max-planck-society-3o0xx7lg
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/institutions/carnegie-mellon-university-2nn2m0cz
https://typeset.io/conferences/ieee-symposium-on-security-and-privacy-tlo3eqjw
https://typeset.io/topics/cryptography-i1w0hc3v
https://typeset.io/topics/standardization-u64swae7
https://typeset.io/papers/sok-computer-aided-cryptography-3lrdckms54
https://typeset.io/papers/reusable-knowledge-in-security-requirements-engineering-a-101x7i4np9
https://typeset.io/papers/a-comprehensive-pattern-oriented-approach-to-engineering-51jd3rfp82
https://typeset.io/papers/technical-tools-and-designs-for-data-protection-5evgo2pj6k
https://typeset.io/papers/software-and-system-security-2ppionvq8c
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/sok-computer-aided-cryptography-57wpqx0qry
https://twitter.com/intent/tweet?text=SoK:%20Computer-Aided%20Cryptography&url=https://typeset.io/papers/sok-computer-aided-cryptography-57wpqx0qry
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/sok-computer-aided-cryptography-57wpqx0qry
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/sok-computer-aided-cryptography-57wpqx0qry
https://typeset.io/papers/sok-computer-aided-cryptography-57wpqx0qry

HAL Id: hal-03046757
https://hal.inria.fr/hal-03046757

Submitted on 8 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SoK: Computer-Aided Cryptography
Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas

Cremers, Kevin Liao, Bryan Parno

To cite this version:
Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, et al.. SoK:
Computer-Aided Cryptography. SP 2021 - 42nd IEEE Symposium on Security and Privacy, May
2021, Virtual Conference, United States. ฀hal-03046757฀

https://hal.inria.fr/hal-03046757
https://hal.archives-ouvertes.fr

SoK: Computer-Aided Cryptography

Manuel Barbosa∗, Gilles Barthe†‡, Karthik Bhargavan§, Bruno Blanchet§, Cas Cremers¶, Kevin Liao†‖, Bryan Parno∗∗

∗University of Porto (FCUP) and INESC TEC, †Max Planck Institute for Security & Privacy, ‡IMDEA Software Institute,
§INRIA Paris, ¶CISPA Helmholtz Center for Information Security, ‖MIT, ∗∗Carnegie Mellon University

Abstract—Computer-aided cryptography is an active area of
research that develops and applies formal, machine-checkable
approaches to the design, analysis, and implementation of
cryptography. We present a cross-cutting systematization of
the computer-aided cryptography literature, focusing on three
main areas: (i) design-level security (both symbolic security and
computational security), (ii) functional correctness and efficiency,
and (iii) implementation-level security (with a focus on digital
side-channel resistance). In each area, we first clarify the role
of computer-aided cryptography—how it can help and what the
caveats are—in addressing current challenges. We next present
a taxonomy of state-of-the-art tools, comparing their accuracy,
scope, trustworthiness, and usability. Then, we highlight their
main achievements, trade-offs, and research challenges. After
covering the three main areas, we present two case studies.
First, we study efforts in combining tools focused on different
areas to consolidate the guarantees they can provide. Second, we
distill the lessons learned from the computer-aided cryptography
community’s involvement in the TLS 1.3 standardization effort.
Finally, we conclude with recommendations to paper authors,
tool developers, and standardization bodies moving forward.

I. INTRODUCTION

Designing, implementing, and deploying cryptographic

mechanisms is notoriously hard to get right, with high-

profile design flaws, devastating implementation bugs, and

side-channel vulnerabilities being regularly found even in

widely deployed mechanisms. Each step is highly involved

and fraught with pitfalls. At the design level, cryptographic

mechanisms must achieve specific security goals against some

well-defined class of attackers. Typically, this requires com-

posing a series of sophisticated building blocks—abstract con-

structions make up primitives, primitives make up protocols,

and protocols make up systems. At the implementation level,

high-level designs are then fleshed out with concrete functional

details, such as data formats, session state, and programming

interfaces. Moreover, implementations must be optimized for

interoperability and performance. At the deployment level,

implementations must also account for low-level threats that

are absent at the design level, such as side-channel attacks.

Attackers are thus presented with a vast attack surface: They

can break high-level designs, exploit implementation bugs,

recover secret material via side-channels, or any combination

of the above. Preventing such varied attacks on complex

cryptographic mechanisms is a challenging task, and existing

methods are hard-pressed to do so. Pen-and-paper security

proofs often consider pared-down “cores” of cryptographic

mechanisms to simplify analysis, yet remain highly complex

and error-prone; demands for aggressively optimized imple-

mentations greatly increase the risks of introducing bugs,

which are difficult to catch by code testing or auditing; ad-

hoc constant-time coding recipes for mitigating side-channel

attacks are tricky to implement, and yet may not cover the

whole gamut of leakage channels exposed in deployment.

Unfortunately, the current modus operandi—relying on a select

few cryptography experts armed with rudimentary tooling to

vouch for security and correctness—simply cannot keep pace

with the rate of innovation and development in the field.

Computer-aided cryptography, or CAC for short, is an active

area of research that aims to address these challenges. It en-

compasses formal, machine-checkable approaches to design-

ing, analyzing, and implementing cryptography; the variety of

tools available address different parts of the problem space.

At the design level, tools can help manage the complexity of

security proofs, even revealing subtle flaws or as-yet-unknown

attacks in the process. At the implementation level, tools

can guarantee that highly optimized implementations behave

according to their design specifications on all possible inputs.

At the deployment level, tools can check that implementations

correctly protect against classes of side-channel attacks. Al-

though individual tools may only address part of the problem,

when combined, they can provide a high degree of assurance.

Computer-aided cryptography has already fulfilled some of

these promises in focused but impactful settings. For instance,

computer-aided security analyses were influential in the recent

standardization of TLS 1.3 [1]–[4]. Formally verified code

is also being deployed at Internet-scale—components of the

HACL∗ library [5] are being integrated into Mozilla Firefox’s

NSS security engine, elliptic curve code generated using the

Fiat Cryptography framework [6] has populated Google’s

BoringSSL library, and EverCrypt [7] routines are used in

the Zinc crypto library for the Linux kernel. In light of these

successes, there is growing enthusiasm for computer-aided

cryptography. This is reflected in the rapid emergence of

a dynamic community comprised of theoretical and applied

cryptographers, cryptography engineers, and formal methods

practitioners. Together, the community aims to achieve broader

adoption of computer-aided cryptography, blending ideas from

many fields, and more generally, to contribute to the future

development of cryptography.

At the same time, computer-aided cryptography risks be-

coming a victim of its own success. Trust in the field can be

undermined by difficulties in understanding the guarantees and

fine-print caveats of computer-aided cryptography artifacts.

The field is also increasingly broad, complex, and rapidly

evolving, so no one has a complete understanding of every

facet. This can make it difficult for the field to develop and

address pressing challenges, such as the expected transition

to post-quantum cryptography and scaling from lower-level

primitives and protocols to whole cryptographic systems.

Given these concerns, the purpose of this SoK is three-fold:

1) We clarify the current capabilities and limitations of

computer-aided cryptography.

2) We present a taxonomy of computer-aided cryptography

tools, highlighting their main achievements and important

trade-offs between them.

3) We outline promising new directions for computer-aided

cryptography and related areas.

We hope this will help non-experts better understand the field,

point experts to opportunities for improvement, and showcase

to stakeholders (e.g., standardization bodies and open source

projects) the many benefits of computer-aided cryptography.

A. Structure of the Paper

The subsequent three sections expand on the role of

computer-aided cryptography in three main areas: Section II

covers how to establish design-level security guarantees,

using both symbolic and computational approaches; Sec-

tion III covers how to develop functionally correct and ef-

ficient implementations; Section IV covers how to establish

implementation-level security guarantees, with a particular

focus on protecting against digital side-channel attacks.

We begin each section with a critical review of the area,

explaining why the considered guarantees are important, how

current tools and techniques outside CAC may fail to meet

these guarantees, how CAC can help, the fine-print caveats

of using CAC, and necessary technical background. We then

taxonomize state-of-the-art tools based on criteria along four

main categories: accuracy (A), scope (S), trust (T), and usabil-

ity (U). For each criterion, we label them with one or more

categories, explain their importance, and provide some light

discussion about tool support for them. The ensuing discussion

highlights broader points, such as main achievements, impor-

tant takeaways, and research challenges. Finally, we end each

section with references for further reading. Given the amount

of material we cover, we are unable to be exhaustive in each

area, but we still point to other relevant lines of work.

Sections V and VI describe two case studies. Our first case

study (Section V) examines how to combine tools that address

different parts of the problem space and consolidate their guar-

antees. Our second case study (Section VI) distills the lessons

learned from the computer-aided cryptography community’s

involvement in the TLS 1.3 standardization effort.

Finally, in Section VII, we offer recommendations to paper

authors, tool developers, and standardization bodies on how to

best move the field of computer-aided cryptography forward.

II. DESIGN-LEVEL SECURITY

In this section, we focus on the role of computer-aided

cryptography in establishing design-level security guarantees.

Over the years, two flavors of design-level security have been

developed in two largely separate communities: symbolic se-

curity (in the formal methods community) and computational

security (in the cryptography community). This has led to two

complementary strands of work, so we cover them both.

A. Critical Review

Why is design-level security important? Validating cryp-

tographic designs through mathematical arguments is perhaps

the only way to convincingly demonstrate their security against

entire classes of attacks. This has become standard practice in

cryptography, and security proofs are necessary for any new

standard. This holds true at all levels: primitives, protocols,

and systems. When using a lower-level component in a larger

system, it is crucial to understand what security notion and ad-

versarial model the proof is relative to. Similar considerations

apply when evaluating the security of a cryptographic system

relative to its intended deployment environment.

How can design-level security fail? The current modus

operandi for validating the security of cryptographic designs

using pen-and-paper arguments is alarmingly fragile. This is

for two main reasons:

• Erroneous arguments. Writing security arguments is tedious

and error-prone, even for experts. Because they are primarily

done on pen-and-paper, errors are difficult to catch and can

go unnoticed for years.

• Inappropriate modeling. Even when security arguments are

correct, attacks can lie outside the model in which they are

established. This is a known and common pitfall: To make

(pen-and-paper) security analysis tractable, models are often

heavily simplified into a cryptographic core that elides many

details about cryptographic designs and attacker capabilities.

Unfortunately, attacks are often found outside of this core.

How are these failures being addressed outside CAC?

To minimize erroneous arguments, cryptographers have de-

vised a number of methodological frameworks for security

analysis (e.g., the code-based game playing [8] and universal

composability [9] frameworks). The high-level goal of these

frameworks is to decompose security arguments into simpler

arguments that are easier to get right and then smoothly

combine the results. Still, pen-and-paper proofs based on these

methodologies remain complex and error-prone, which has led

to suggestions of using computer-aided tools [10].

To reduce the risks of inappropriate modeling, real-world

provable security [11]–[13] advocates making security ar-

guments in more accurate models of cryptographic designs

and adversarial capabilities. Unfortunately, the added realism

comes with greater complexity, complicating security analysis.

How can computer-aided cryptography help? Computer-

aided cryptography tools are effective for detecting flaws

in cryptographic designs and for managing the complexity

of security proofs. They crystallize the benefits of on-paper

methodologies and of real-world provable security. They also

deliver trustworthy analyses for complex designs that are

beyond reach of pen-and-paper analysis.

What are the fine-print caveats? Computer-aided security

proofs are only as good as the statements being proven.

However, understanding these statements can be challenging.

Most security proofs rely on implicit assumptions; without

proper guidance, reconstructing top-level statements can be

challenging, even for experts. (As an analogy, it is hard even

for a talented mathematician to track all dependencies in a

textbook.) Finally, as with any software, tools may have bugs.

What background do I need to know about symbolic secu-

rity? The symbolic model is an abstract model for representing

and analyzing cryptographic protocols. Messages (e.g., keys,

nonces) are represented symbolically as terms (in the parlance

of formal logic). Typically, terms are atomic data, meaning

that they cannot be split into, say, component bitstrings.

Cryptographic primitives are modeled as black-box functions

over terms related by a set of mathematical identities called

an equational theory. For example, symmetric encryption can

be modeled by the black-box functions Enc and Dec related

by the following equational theory: Dec(Enc(m, k), k) = m.

This says that decrypting the ciphertext Enc(m, k) using the

key k recovers the original plaintext m.

An adversary is restricted to compute (i.e., derive new terms

contributing to its knowledge set) using only the specified

primitives and equational theory. Equational theories are thus

important for broadening the scope of analysis—ignoring

valid equations implicitly weakens the class of adversaries

considered. In the example above, m and k are atomic terms,

and so equipped with only the given identity, an adversary

can decrypt a ciphertext only if it has knowledge of the entire

secret key. Such simplifications enable modeling and verifying

protocols using symbolic logic. Symbolic tools are thus well-

suited to automatically searching for and unveiling logical

flaws in complex cryptographic protocols and systems.

Symbolic security properties come in two main flavors:

trace properties and equivalence properties. Trace properties

state that a bad event never occurs on any execution trace.

For example, a protocol preserves trace-based secrecy if, for

any execution trace, secret data is not in the adversarial

knowledge set. On the other hand, equivalence properties

state that an adversary is unable to distinguish between two

protocols, often with one being the security specification.

Equivalence properties typically cannot be (naturally or pre-

cisely) expressed as trace properties. For example, a protocol

preserves indistinguishability-based secrecy if the adversary

cannot differentiate between a trace with the real secret and a

trace with the real secret replaced by a random value.

What background do I need to know about computational

security? In the computational model, messages are bitstrings,

cryptographic primitives are probabilistic algorithms on bit-

strings, and adversaries are probabilistic Turing machines.

For example, symmetric encryption can be modeled by a

triple of algorithms (Gen,Enc,Dec). The probabilistic key

generation algorithm Gen outputs a bitstring k. The encryption

(decryption) algorithm Enc (Dec) takes as input a key k and a

plaintext m (ciphertext c), and outputs a ciphertext c (plaintext

m). The basic correctness property that must hold for every

key k output by Gen and every message m in the message

space is Dec(Enc(m, k), k) = m. Because keys are bitstrings

in this model, knowing bits of an encryption key reduces the

computational resources required to decrypt a ciphertext.

Computational security properties are also probabilistic

and can be characterized along two axes: game-based or

simulation-based, and concrete or asymptotic.

Game-based properties specify a probabilistic experiment

called a “game” between a challenger and an adversary, and

an explicit goal condition that the adversary must achieve to

break a scheme. Informally, security statements say: For all

adversaries, the probability of achieving the goal condition

does not exceed some threshold. The specific details, e.g., the

adversary’s computational resources and the threshold, depend

on the choice of concrete or asymptotic security.

A core proof methodology for game-based security is game

hopping. In the originally specified game, the adversary’s

success probability may be unknown. Thus, we proceed by

step-wise transforming the game until reaching one in which

the success probability can be computed. We also bound the

increases in the success probability from the game transforma-

tions, often by reducing to an assumed hard problem (e.g., the

discrete log or RSA problems). We can then deduce a bound

on the adversary’s success probability in the original game.

The interested reader can see the tutorials on game hopping

by Shoup [14] and Bellare and Rogaway [8].

Simulation-based properties specify two probabilistic ex-

periments: The “real” game runs the scheme under analysis.

The “ideal” game runs an idealized scheme that does not

involve any cryptography, but instead runs a trusted third-

party called an ideal functionality, which serves as the se-

curity specification. Informally, security statements say: For

all adversaries in the real game, there exists a simulator in the

ideal game that can translate any attack on the real scheme

into an attack on the ideal functionality. Because the ideal

functionality is secure by definition, the real scheme must also

be secure. In general, simulation-based proofs tend to be more

complicated than game-based proofs, but importantly they

support composition theorems that allow analyzing complex

constructions in a modular way from simpler building blocks.

The interested reader can see the tutorial on simulation-based

proofs by Lindell [15].

Concrete security quantifies the security of a scheme by

bounding the maximum success probability of an adversary

given some upper bound on running time. A scheme is (t, ǫ)-
secure if every adversary running for time at most t succeeds

in breaking the scheme with probability at most ǫ. In contrast,

asymptotic security views the running time of the adversary

and its success probability as functions of some security

parameter (e.g., key length), rather than as concrete numbers.

A scheme is secure if every probabilistic polynomial time

adversary succeeds in breaking the scheme with negligible

probability (i.e., with probability asymptotically less than all

inverse polynomials in the security parameter).

Of these different security properties, we note that

computer-aided security proofs have primarily focused

on game-based, concrete security. Work on mechanizing

simulation-based proofs is relatively nascent; asymptotic secu-

rity is the prevailing paradigm in cryptography, but by proving

concrete security, asymptotic security follows a fortiori.

Tool Unbound Trace Equiv Eq-thy State Link

CPSA⊲ [16]

F7⋄ [17]�

F5⋄ [18]

Maude-NPA⊲ [19] d

ProVerif⋆† [20] d

�

fs2pv⋄† [21]

�

GSVerif⋆† [22]

�

ProVerif-ATP⋆† [23]

�

StatVerif⋆† [24] d

Scyther⊲ [25]

scyther-proof⊲‡§ [26]

Tamarin∗‡ [27] d

�

SAPIC⋆ [28]

CI-AtSe⊲ [29]

OFMC⊲† [30]

SATMC⊲ [31]

AKISS⋆ [32] t

APTE⋆ [33] t

DEEPSEC⋆ [34] t

SAT-Equiv⋆ [35] t

SPEC⋆,§ [36] o

Specification language Miscellaneous symbols

⊲ – security protocol notation

�

– previous tool extension

⋆ – process calculus † – abstractions

∗ – multiset rewriting ‡ – interactive mode

⋄ – general programming language § – independent verifiability

Equational theories (Eq-thy) Equivalence properties (Equiv)

– with AC axioms t – trace equivalence

– without AC axioms o – open bisimilarity

– fixed d – diff equivalence

TABLE I
OVERVIEW OF TOOLS FOR SYMBOLIC SECURITY ANALYSIS. SEE

SECTION II-B FOR MORE DETAILS ON COMPARISON CRITERIA.

B. Symbolic Tools: State of the Art

Table I presents a taxonomy of modern, general-purpose

symbolic tools. Tools are listed in three groups (demarcated

by dashed lines): unbounded trace-based tools, bounded trace-

based tools, and equivalence-based tools; within each group,

top-level tools are listed alphabetically. Tools are categorized

as follows, annotated with the relevant criteria (A,S, T, U)
described in the introduction. Note that the capabilities of

symbolic tools are more nuanced than what is reflected in the

table—the set of examples that tools can handle varies even

if they support the same features according to the table.

Unbounded number of sessions (A). Can the tool analyze

an unbounded number of protocol sessions? There exist proto-

cols that are secure when at most N sessions are considered,

but become insecure with more than N sessions [37]. Bounded

tools () explicitly limit the analyzed number of sessions and

do not consider attacks beyond the cut-off. Unbounded tools

() can prove the absence of attacks within the model, but at

the cost of undecidability [38].

In practice, modern unbounded tools typically substantially

outperform bounded tools even for a small number of sessions,

and therefore enable the analysis of more complex models.

This is because bounded tools are a bit naive in their ex-

ploration of the state space, basically enumerating options

(but exploiting some symmetry). They therefore typically grow

exponentially in the number of sessions. The unbounded tools

inherently need to be “more clever” to even achieve unbounded

analysis. While their algorithms are more complex, when

they work (i.e., terminate), the analysis is independent of the

number of sessions.

Trace properties (S). Does the tool support verification of

trace properties?

Equivalence properties (S). Does the tool support verifi-

cation of equivalence properties? There are several different

equivalence notions used in current tools. Here, we provide

some high-level intuition, but for a more formal treatment,

see the survey by Delaune and Hirschi [39].

Trace equivalence (t) means that, for each trace of one

protocol, there exists a corresponding trace of the other

protocol, such that the messages exchanged in these two

traces are indistinguishable. This is the weakest equivalence

notion, roughly meaning that it can express the most security

properties. (The other stronger notions are often intermediate

steps towards proving trace equivalence.) It is also arguably

the most natural for formalizing privacy properties.

Open bisimilarity (o) is a strictly stronger notion that

captures the knowledge of the adversary by pairs of symbolic

traces, called bi-traces. A bi-trace is consistent when the

messages in the two symbolic traces are indistinguishable by

the adversary. Informally, two protocols are open bisimilar

when each action in one protocol can be simulated in the

other using a consistent bi-trace.

Diff-equivalence (d) is another strictly stronger notion that

is defined for protocols that have the same structure and differ

only by the messages they exchange. It means that, during

execution, all communications and tests, including those that

the adversary can make, either succeed for both protocols

or fail for both protocols. This property implies that both

protocols still have the same structure during execution.

Equational theories (S). What is the support for equational

theories? At a high-level, extra support for certain axioms

enables detecting a larger class of attacks (see, e.g., [40], [41]).

We provide a coarse classification as follows: tools that support

a fixed set of equational theories or no equational theories at

all (); tools that support user-defined equational theories, but

without associative-commutative (AC) axioms (); tools that

support user-defined equational theories with AC axioms ().

Supporting associative and commutative properties enables

detecting a much larger class of attacks, since they allow the

most detailed modeling of, e.g., xor operations, abelian groups,

and Diffie-Hellman constructions. One caveat is that the finer

details between these coarse classifications often make them

incomparable, and even where they overlap, they are not all

equally effective for analyzing concrete protocols.

Global mutable state (S). Does the tool support verification

of protocols with global mutable state? Many real-world

protocols involve shared databases (e.g., key servers) or shared

memory, so reasoning support for analyzing complex, stateful

attacks scenarios extends the reach of such tools [28].

Link to implementation (T). Can the tool extract/generate

executable code from specifications in order to link symbolic

security guarantees to implementations?

† Abstractions (U). Does the tool use abstraction? Algo-

rithms may use abstraction to overestimate attack possibilities,

e.g., by computing a superset of the adversary’s knowledge.

This can yield more efficient and fully automatic analysis

systems and can be a workaround to undecidability, but comes

at the cost of incompleteness, i.e., false attacks may be found

or the tool may terminate with an indefinite answer.

‡ Interactive mode (U). Does the tool support an inter-

active analysis mode? Interactive modes generally trade off

automation for control. While push-button tools are certainly

desirable, they may fail opaquely (perhaps due to undecid-

ability barriers), leaving it unclear or impossible to proceed.

Interactive modes can allow users to analyze failed automated

analysis attempts, inspect partial proofs, and to provide hints

and guide analyses to overcome any barriers.

§ Independent verifiability (T). Are the analysis results

independently machine-checkable? Symbolic tools implement

complex verification algorithms and decision procedures,

which may be buggy and return incorrect results. This places

them in the trusted computing base. Exceptions include

scyther-proof [26], which generates proof scripts that can be

machine-checked in the Isabelle theorem prover [42], and

SPEC [36], which can produce explicit evidence of security

claims that can be checked for correctness.

Specification language (U). How are protocols specified?

The categorizations are domain-specific security protocol lan-

guages (⊲), process calculus (⋆), multiset rewriting (∗), and

general programming language (⋄). General programming

languages are arguably the most familiar to non-experts,

while security protocol languages (i.e., notations for describing

message flows between parties) are commonplace in cryptog-

raphy. Process calculi and multiset rewriting may be familiar

to formal methods practitioners. Process calculi are formal

languages for describing concurrent processes and their inter-

actions (e.g., [43]–[45]). Multiset rewriting is a more general

and lower-level formalism that allows for various encodings of

processes, but has no built-in notion of a process. It provides

a natural formalism for complex state machines.

C. Symbolic Security: Discussion

Achievements: Symbolic proofs for real-world case studies.

Of the considered symbolic tools, ProVerif and Tamarin stand

out as having been used to analyze large, real-world protocols.

They offer unprecedented combinations of scalability and

expressivity, which enables them to deal with complex systems

and properties. Moreover, they provide extensive documenta-

tion, a library of case studies, and practical usability features

(e.g., packaging, a graphical user interface for Tamarin, attack

reconstruction in HTML for Proverif).

Next, we provide a rough sense of their scalability on real-

world case studies; more precise numbers can be found in

the respective papers. It is important to keep in mind that

comparisons between tools are difficult (even on similar case

studies), so these numbers should be taken with a grain of salt.

ProVerif has been used to analyze TLS 1.0 [46] (seconds

to several hours depending on the security property) and

1.3 [3] (around one hour), Signal [47] (a few minutes to more

than a day depending on the security property), and Noise

Tool RF Auto Comp CS Link TCB

AutoG&P⋄ [55] self, SMT

CertiCrypt⊲⋄ [56] Coq

CryptHOL⋄ [57] Isabelle

CryptoVerif⋆⋄ [58] self

EasyCrypt⊲⋄ [59] self, SMT

F7⋄ [17] self, SMT

F∗⋄ [60] self, SMT

FCF⋄ [61] Coq

ZooCrypt⋄ [62] self, SMT

Reasoning Focus (RF) Concrete security (CS) Specification language

– automation focus – security + efficiency ⋆ – process calculus

– expressiveness focus – security only ⊲ – imperative

– no support ⋄ – functional

TABLE II
OVERVIEW OF TOOLS FOR COMPUTATIONAL SECURITY ANALYSIS. SEE

SECTION II-D FOR MORE DETAILS ON COMPARISON CRITERIA.

protocols [48] (seconds to days depending on the protocol). In

general, more Diffie-Hellman key agreements (e.g., in Signal

and Noise) increase analysis times.

Tamarin has been used to analyze the 5G authentication

key exchange protocol [49] (around five hours), TLS 1.3 [2],

[4] (around one week, requiring 100GB RAM), the DNP3

SAv5 power grid protocol [50] (several minutes), and Noise

protocols [51] (seconds to hours depending on the protocol).

Challenge: Verifying equivalence properties. Many se-

curity properties can be modeled accurately by equivalence

properties, but they are inherently more difficult to verify

than trace properties. This is because they involve relations

between traces instead of single traces. As such, tool support

for reasoning about equivalence properties is thus substantially

less mature. For full automation, either one bounds the number

of sessions or one has to use the very strong notion of diff-

equivalence, which cannot handle many desired properties,

e.g., vote privacy in e-voting and unlinkability.

For the bounded setting, recent developments include

support for more equational theories (AKISS [32],

DEEPSEC [34]), for protocols with else branches (APTE [33],

AKISS, DEEPSEC) and for protocols whose actions are

not entirely determined by their inputs (APTE, DEEPSEC).

There have also been performance improvements based

on partial order reduction (APTE, AKISS, DEEPSEC) or

graph planning (SAT-Equiv). For the unbounded setting, diff-

equivalence, first introduced in ProVerif [52] and later adopted

by Maude-NPA [53] and Tamarin [54], remains the only

fully automated approach for proving equivalences. Because

trace equivalence is the most natural for formalizing privacy

properties, verifying more general equivalence properties for

an unbounded number of sessions remains a challenge.

D. Computational Tools: State of the Art

Table II presents a taxonomy of general-purpose computa-

tional tools. Tools are listed alphabetically and are categorized

as follows.

Reasoning focus (U). Is the tool’s reasoning focus on au-

tomation () or on expressivity ()? Automation focus means

being able to produce automatically or with light interaction

a security proof (at the cost of some expressiveness). Dually,

expressivity focus means being able to express arbitrary argu-

ments (at the cost of some automation).

Automated proof-finding (U). Can the tool automatically

find security proofs? A subset of the automation-focused tools

can automatically (non-interactively) find security proofs in

restricted settings (e.g., proofs of pairing-based schemes for

AutoG&P, proofs of key exchange protocols using a catalog

of built-in game transformations for CryptoVerif, proofs of

padding-based public key encryption schemes for ZooCrypt).

Composition (U). Does the tool support compositional

reasoning? Support for decomposing security arguments of

cryptographic systems into security arguments for their core

components is essential for scalable analysis.

Concrete security (A). Can the tool be used to prove

concrete bounds on the adversary’s success probability and

execution time? We consider tools with no support (), support

for success probability only (), and support for both ().

Link to implementation (T). Can the tool extract/generate

executable code from specifications in order to link computa-

tional security guarantees to implementations?

Trusted computing base (T). What lies in the trusted com-

puting base (TCB)? An established general-purpose theorem

prover such as Coq [63] or Isabelle [64] is usually held as the

minimum TCB for proof checking. Most tools, however, rely

on an implementation of the tool’s logics in a general purpose

language that must be trusted (self). Automation often relies

on SMT solvers [65], such as Z3 [66].

Specification language (U). What kind of specification

language is used? All tools support some functional language

core for expressing the semantics of operations (⋄). Some tools

support an imperative language (⊲) in which to write security

games, while others rely on a process calculus (⋆).

E. Computational Security: Discussion

Achievements: Machine-checked security for real-world

cryptographic designs. Computational tools have been used to

develop machine-checked security proofs for a range of real-

world cryptographic mechanisms. CryptoVerif has been used

for a number of protocols, including TLS 1.3 [3], Signal [47],

and WireGuard [67]. EasyCrypt has been used for the Amazon

Web Service (AWS) key management system [68] and the

SHA-3 standard [69]. F7 was used to build miTLS, a refer-

ence implementation of TLS 1.2 with verified computational

security at the code-level [70], [71]. F∗ was used to implement

and verify the security of the TLS 1.3 record layer [1].

Takeaway: CryptoVerif is good for highly automated

computational analysis of protocols and systems. CryptoVerif

is both a proof-finding and proof-checking tool. It works

particularly well for protocols (e.g., key exchange), as it can

produce automatically or with a light guidance a sequence

of proof steps that establish security. One distinctive strength

of CryptoVerif is its input language based on the applied π-

calculus [45], which is well-suited to describing protocols that

exchange messages in sequence. Another strength of Cryp-

toVerif is a carefully crafted modeling of security assumptions

that help the automated discovery of proof steps. In turn,

automation is instrumental to deal with large cryptographic

games and games that contain many different cases, as is often

the case in proofs of protocols.

Takeaway: F∗ is good for analysis of full protocols and

systems. F∗ is a general-purpose verification-oriented program-

ming language. It works particularly well for analyzing cryp-

tographic protocols and systems beyond their cryptographic

core. Computational proofs in F∗ rely on transforming a

detailed protocol description into a final (ideal) program by

relying on ideal functionalities for cryptographic primitives.

Formal validation of this transformation is carried out man-

ually, with some help from the F∗ verification infrastructure.

Formal verification of the final program is done within F∗. This

approach is driven by the insight that critical security issues,

and therefore also potential attacks, often arise only in detailed

descriptions of full protocols and systems (compared to when

reasoning about cryptographic cores). The depth of this insight

is reflected by the success of F∗-based verification both in

helping discovering new attacks on real-world protocols like

TLS [72], [73] as well as in verifying their concrete design

and implementation [1], [70].

Takeaway: EasyCrypt is the closest to pen-and-paper

cryptographic proofs. EasyCrypt supports a general-purpose

relational program logic (i.e., a formalism for specifying

and verifying properties about two programs or two runs

of the same program) that captures many of the common

game hopping techniques. This is complemented by libraries

that support other common techniques, e.g., the PRF/PRP

switching lemma, hybrid arguments, and lazy sampling [8].

In addition, EasyCrypt features a union bound logic for upper

bounding the probability of some event E in an experiment

(game) G (e.g., bounding the probability of collisions in exper-

iments that involve hash functions). Overall, EasyCrypt proofs

closely follow the structure of pen-and-paper arguments. A

consequence is that EasyCrypt is amenable to proving the

security of primitives, as well as protocols and systems.

Challenge: Scaling security proofs for cryptographic sys-

tems. Analyzing large cryptographic systems is best done

in a modular way by composing simpler building blocks.

However, cryptographers have long recognized the difficulties

of preserving security under composition [74]. Most game-

based security definitions do not provide out-of-the-box com-

position guarantees, so simulation-based definitions are the

preferred choice for analyzing large cryptographic systems,

with universal composability (UC) being the gold-standard—

UC definitions guarantee secure composition in arbitrary con-

texts [9]. Work on developing machine-checked UC proofs is

relatively nascent [75]–[77], but is an important and natural

next step for computational tools.

F. Further Reading

Another class of tools leverages the benefits of automated

verification to support automated synthesis of secure crypto-

graphic designs, mainly in the computational world [62], [78]–

[81]. Cryptographic compilers provide high-level abstractions

(e.g., a domain-specific language) for describing cryptographic

tasks, which are then compiled into custom protocol imple-

mentations. These have been proposed for verifiable compu-

tation [82]–[85], zero-knowledge [86]–[89], and secure mul-

tiparty computation [90] protocols, which are parameterized

by a proof-goal or a functionality to compute. Some are

supported by proofs that guarantee the output protocols are

correct and/or secure for every input specification [91]–[94].

We recommend readers to also consult other related surveys.

Blanchet [95] surveys design-level security until 2012 (with

a focus on ProVerif). Cortier et al. [96] survey computational

soundness results, which transfer security properties from the

symbolic world to the computational world.

III. FUNCTIONAL CORRECTNESS AND EFFICIENCY

In this section, we focus on the role of computer-aided

cryptography in developing functionally correct and efficient

implementations.

A. Critical Review

Why are functional correctness and efficiency important?

To reap the benefits of design-level security guarantees, im-

plementations must be an accurate translation of the design

proven secure. That is, they must be functionally correct (i.e.,

have equivalent input/output behavior) with respect to the de-

sign specification. Moreover, to meet practical deployment re-

quirements, implementations must be efficient. Cryptographic

routines are often on the critical path for security applications

(e.g., for reading and writing TLS packets or files in an

encrypted file system), and so even a few additional clock-

cycles can have a detrimental impact on overall performance.

How can functional correctness and efficiency fail?

If performance is not an important goal, then achieving

functional correctness is relatively easy—just use a refer-

ence implementation that does not deviate too far from the

specification, so that correctness is straightforward to argue.

However, performance demands drive cryptographic code into

extreme contortions that make functional correctness difficult

to achieve, let alone prove. For example, OpenSSL is one of

the fastest open source cryptographic libraries; they achieve

this speed in part through the use of Perl code to generate

strings of text that additional Perl scripts interpret to produce

input to the C preprocessor, which ultimately produces highly

tuned, platform-specific assembly code [103]. Many more

examples of high-speed crypto code written at assembly and

pre-assembly levels can be found in SUPERCOP [107], a

benchmarking framework for cryptography implementations.

More broadly, efficiency considerations typically rule out

exclusively using high-level languages. Instead, C and as-

sembly are the de facto tools of the trade, adding memory

safety to the list of important requirements. Indeed, memory

errors can compromise secrets held in memory, e.g., in the

Heartbleed attack [108]. Fortunately, as we discuss below,

proving memory safety is table stakes for most of the tools we

discuss. Additionally, achieving best-in-class performance de-

mands aggressive, platform-specific optimizations, far beyond

what is achievable by modern optimizing compilers (which are

problematic in their own ways, as we will see in Section IV).

Currently, these painstaking efforts are manually repeated for

each target architecture.

How are these failures being addressed outside CAC?

Given its difficulty, the task of developing high-speed cryp-

tography is currently entrusted to a handful of experts. Even

so, experts make mistakes (e.g., a performance optimization to

OpenSSL’s AES-GCM implementation nearly reached deploy-

ment even though it enabled arbitrary message forgeries [109];

an arithmetic bug in OpenSSL led to a full key recovery

attack [110]). Current solutions for preventing more mistakes

are (1) auditing, which is costly in both time and expertise,

and (2) testing, which cannot be complete for the size of inputs

used in cryptographic algorithms. These solutions are also

clearly inadequate: Despite widespread usage and scrutiny,

OpenSSL’s libcrypto library reported 24 vulnerabilities

between January 1, 2016 and May 1, 2019 [7].

How can computer-aided cryptography help? Crypto-

graphic code is an ideal target for program verification. Such

code is both critically important and difficult to get right. The

use of heavyweight formal methods is perhaps the only way

to attain the high-assurance guarantees expected of them. At

the same time, because the volume of code in cryptographic

libraries is relatively small (compared to, say, an operating

system), verifying complex, optimized code is well within

reach of existing tools and reasonable human effort, without

compromising efficiency.

What are the fine-print caveats? Functional correctness

makes implicit assumptions, e.g., correct modeling of hard-

ware functional behavior. Another source of implicit assump-

tions is the gap between code and verified artifacts, e.g.,

verification may be carried out on a verification-friendly

representation of the source code, rather than on the source

code itself. Moreover, proofs may presuppose correctness of

libraries, e.g., for efficient arithmetic. Finally, as with any

software, verification tools may have bugs.

What background do I need to know? Functional cor-

rectness is the central focus of program verification. An

implementation can be proved functionally correct in two

different ways: equivalence to a reference implementation, or

satisfying a functional specification, typically expressed as pre-

conditions (what the program requires on inputs) and post-

conditions (what the program guarantees on outputs). Both

forms of verification are supported by a broad range of tools.

A unique aspect of cryptographic implementations is that

their correctness proofs often rest on non-trivial mathematics.

Mechanizing them thus requires striking a good balance be-

tween automation and user control. Nevertheless, SMT-based

automation remains instrumental for minimizing verification

effort, and almost all tools offer an SMT-based backend.

Typically, functional correctness proofs are carried out at

source level. A long-standing challenge is how to carry guar-

antees to machine code. This can be addressed using verified

compilers, which are supported by formal correctness proofs.

CompCert [111] is a prime example of moderately optimizing

verified compiler for a large fragment of C. However, the

Tool
Memory

safety
Automation

Parametric

verification
Input language Target(s) TCB

Cryptol + SAW [97] C, Java C, Java SAT, SMT

CryptoLine [98] CryptoLine C Boolector, MathSAT, Singular

Dafny [99] Dafny C#, Java, JavaScript, Go Boogie, Z3

F∗ [60] F∗ OCaml, F#, C, Asm, Wasm Z3, typechecker

Fiat Crypto [6] Gallina C Coq, C compiler

Frama-C [100] C C Coq, Alt-Ergo, Why3

gfverif [101] C C g++, Sage

Jasmin [102] Jasmin Asm Coq, Dafny, Z3

Vale [103], [104] Vale Asm Dafny or F*, Z3

VST [105] Gallina C Coq

Why3 [106] WhyML OCaml SMT, Coq

Automation

– automated – automated + interactive – interactive

TABLE III
OVERVIEW OF TOOLS FOR FUNCTIONAL CORRECTNESS. SEE SECTION III-B FOR MORE DETAILS ON COMPARISON CRITERIA.

trade-off is that verified compilers typically come with fewer

optimizations than mainstream compilers and target fewer

platforms.

B. Program Verification Tools: State of the Art

Table III presents a taxonomy of program verification tools

that have been used for cryptographic implementation. Tools

are listed alphabetically and are categorized as follows.

Memory-safety (S). Can the tool verify that programs are

memory safe? Memory safety ensures that all runs of a

program are free from memory errors (e.g., buffer overflow,

null pointer dereferences, use after free).

Automation (U). Tools provide varying levels of automa-

tion. We give a coarse classification: automatic tools (), tools

that combine automated and interactive theorem proving (),

and tools that allow only interactive theorem proving ().

Parametric verification (U). Can the tool verify parame-

terized implementations? This enables writing and verifying

generic code that can be used to produce different implemen-

tations depending on the supplied parameters. For example,

Fiat Crypto [6] can generate verified elliptic curves implemen-

tations parameterized by a prime modulus, limb representation

of field elements, and hardware platform; Vale [103], [104]

implementations are parameterized by the operating system,

assembler, and hardware platform.

Input language (U). What is the input language? Many

toolchains use custom verification-oriented languages. Dafny

is a high-level imperative language, whereas F∗, Gallina

(used in Coq), and WhyML (used in Why3) are functional

languages. CryptoLine, Jasmin, and Vale are assembly-like

languages; Jasmin and Vale provide high-level control-flow

structures such as procedures, conditionals, and loops. Other

tools take code written in existing languages (e.g., C, Java).

Target(s) (A,S). At what level is the analysis carried out

(e.g., source-level or assembly-level)? Note that tools target-

ing source-level analysis must use verified compilers (e.g.,

CompCert [111]) to carry guarantees to machine-level, which

comes with a performance penalty. Tools targeting assembly-

level analysis sidestep this dilemma, but generally verification

becomes more difficult.

Trusted computing base (T). What lies in the trusted com-

puting base? Many verification frameworks rely on building-

Implementation FC CT Tool(s) Target % faster

evercrypt [7] F∗, Vale 64-bit C, Intel ADX asm 25.92

precomp [112] − Intel ADX asm 25.77

sandy2x [113] − Intel AVX asm 11.15

hacl [7] F∗ 64-bit C 8.69

jasmin [102] Jasmin Intel x86 64 asm 7.88

amd64 [114] Coq, SMT Intel x86 64 asm 6.11

fiat [6] Fiat Crypto 64-bit C 5.39

donna64 [115] − 64-bit C 0.00

Functional correctness (FC), Constant-time (CT)

– verified – partially verified – not verified

TABLE IV
COMPARISON OF CURVE25519 IMPLEMENTATIONS. % FASTER

CALCULATED USING DONNA64 AS THE BASELINE.

block verification tools, such as SMT solvers (e.g., Z3) and

interactive theorem provers (e.g., Coq). While these are ac-

knowledged to be important trust assumptions of verification

tools, verified artifacts tend to rely on additional trust assump-

tions, e.g., unverified interoperability between tools or only

verifying small routines in a larger primitive.

C. Discussion

Achievements: Verified primitives are being deployed at

Internet-scale. A recent milestone achievement of computer-

aided cryptography is that verified primitives are being de-

ployed at scale. Verified primitives in the HACL∗ [5] library

are used in Mozilla Firefox’s NSS security engine, and ver-

ified elliptic curve implementations in the Fiat Cryptography

library [6] are used in Google’s BoringSSL library.

There are several common insights to these successes. First,

verified code needs to be as fast or faster than the code being

replaced. Second, verified code needs to fit the APIs that are

actually in use. Third, it helps if team members work with or

take internships with the companies that use the code. In the

case of HACL∗, it additionally helped that they replaced an

entire ciphersuite, and that they were willing to undertake a

significant amount of non-research work, such as packaging

and testing, that many academic projects stop short of.

Takeaway: Verified implementations are now as fast or

faster than their unverified counterparts. Through decades

of research in formal verification, it was commonly accepted

that the proof burden in verifying complex, optimized code

was exorbitant; verified code would be hard-pressed to com-

pete with unverified code in terms of performance. However,

various projects in the cryptography domain have challenged

this position. We are seeing verified implementations that meet

the performance of the fastest unverified implementations. We

conclude that there is currently no conceptual or technological

barrier that prevents verifying the fastest implementations

available, although more effort is expected.

As a small case study, we look at Curve25519 [116],

a widely used elliptic curve that has received considerable

interest from the applied cryptography community (in setting

new speed records) and the formal methods community (in

verifying that high-speed implementations are correct and se-

cure). We compare a number of Curve25519 implementations

in Table IV. These comprise some of the fastest available

verified and unverified implementations; they are written in

C, assembly, or a combination of both.

To compare their performance, we measure the number of

CPU cycles (median over 5K executions) it takes to perform

scalar multiplication. We report the performance increase (%

faster) over donna64 [115], one of the fastest known (unver-

ified) C implementations. All measurements are collected on

a 1.8 GHz Intel i7-8565U CPU with 16 GB of RAM; hyper-

threading and dynamic-processor scaling (e.g., Turbo Boost)

are disabled. Implementations written in C are compiled using

GCC 9.2 with optimization flag -O3. To summarize, several

verified C implementations (hacl and fiat) beat donna64; the

fastest verified assembly implementation (evercrypt) meets the

fastest unverified assembly implementation (precomp).

Takeaway: Higher performance entails larger verifica-

tion effort. Verifying generic, high-level code is typically

easier, but comes with a performance cost. Hand-written

assembly can achieve best in class performance by taking

advantage of hardware-specific optimizations, but verifying

such implementations is quite difficult due to complex side-

effects, unstructured control-flow, and flat structure. Moreover,

this effort must be repeated for each platform. C code is

less efficient, as hardware-specific features are not a part of

standard portable C, but implementations need only be verified

once and can then be run on any platform. Code written in

higher-level languages is even less efficient, but verification

becomes much easier (e.g., memory safety can be obtained

for free). These aspects are discussed further in the Vale and

Jasmin papers [102], [103], [117].

Challenge: Automating equivalence proofs. Significant

progress could be made if functional correctness proofs could

be solved by providing a sequence of simple transformations

that connect specifications to targets and relying on an auto-

matic tool to check these simple transformations. Promising

recent work in this direction [118] demonstrates the feasibility

of the approach. However, the current approaches are not

automatic: neither in finding the transformations nor in proving

them. The latter seems achievable for many useful control-

flow-preserving transformations, whereas the former could be

feasible at least for common control-flow transformations.

Challenge: Functional correctness of common arithmetic

routines. Verifying cryptographic code often involves tricky

mathematical reasoning that SMT-based tools can struggle

with. Examples range from proving the correctness of the

Montgomery representations [119] used to accelerate big-

integer computations, to the nuts-and-bolts of converting be-

tween, say, 64-bit words and the underlying bytes. At present,

most verification efforts build this infrastructure from scratch

and customize it for their own particular needs, which leads

to significant duplication of effort across projects. Hence, an

open challenge is to devise a common core of such routines

(e.g., a verified version of the GMP library [120]) that can be

shared across all (or most) verification projects, despite their

reliance on different tools and methodologies.

D. Further Reading

While our principal focus is on cryptographic code, verify-

ing systems code is an important and active area of research.

For example, there has been significant work in verifying op-

erating systems code [121]–[127], distributed systems [128]–

[130], and even entire software stacks [131]. We expect that

these two strands of work will cross paths in the future.

IV. IMPLEMENTATION-LEVEL SECURITY

In this section, we focus on the role of computer-aided

cryptography in establishing implementation-level security

guarantees, with a particular focus on software protections

against digital side-channel attacks. Hardware protections are

beyond the scope of this paper and are left as further reading.

By digital side-channel attacks, we mean those that can be

launched by observing intentionally exposed interfaces by the

computing platform, including all execution time variations

and observable side-effects in shared resources such as the

cache. This excludes physical side channels such as power

consumption, electromagnetic radiation, etc.

A. Critical Review

Why is implementation-level security important? Although

design-level security can rule out large classes of attacks,

guarantees are proven in a model that idealizes an attacker’s

interface with the underlying algorithms: They can choose

inputs and observe outputs. However, in practice, attackers

can observe much more than just the functional behavior of

cryptographic algorithms. For example, side-channels are in-

terfaces available at the implementation-level (but unaccounted

for at the design-level) from which information can leak as

side-effects of the computation process (e.g., timing behavior,

memory access patterns). And indeed, these sources of leakage

are devastating—key-recovery attacks have been demonstrated

on real implementations, e.g., on RSA [142] and AES [143].

How can implementation-level security fail? The prevailing

technique for protecting against digital side-channel attacks is

to follow constant-time coding guidelines [144]. We stress that

the term is a bit of a misnomer: The idea of constant-time is

that an implementation’s logical execution time (not wall-clock

execution time) should be independent of the values of secret

data; it may, however, depend on public data, such as input

length. To achieve this, constant-time implementations must

Tool Target Method Synthesis Sound Complete
Public

inputs

Public

outputs

Control

flow

Memory

access

Variable-

time op.

ABPV13 [132] C DV

CacheAudit [133] Binary Q

ct-verif [134] LLVM DV

CT-Wasm [135] Wasm TC

FaCT [136] LLVM TC

FlowTracker [137] LLVM DF

Jasmin [102] asm DV

KMO12 [138] Binary Q

Low∗ [139] C TC

SC Eliminator [140] LLVM DF

Vale [103] asm DF

VirtualCert [141] x86 DF

Method

TC – type-checking DF – data-flow analysis DV – deductive verification Q – Quantitative

TABLE V
OVERVIEW OF TOOLS FOR SIDE-CHANNEL RESISTANCE. SEE SECTION IV-B FOR MORE DETAILS ON TOOL FEATURES.

follow a number of strict guidelines, e.g., they must avoid

variable-time operations, control flow, and memory access

patterns that depend on secret data. Unfortunately, complying

with constant-time coding guidelines forces implementors to

avoid natural but potentially insecure programming patterns,

making enforcement error-prone.

Even worse, the observable properties of a program’s exe-

cution are generally not evident from source code alone. Thus,

software-invisible optimizations, e.g., compiler optimizations

or data-dependent instruction set architecture (ISA) optimiza-

tions, can remove source-level countermeasures. Programmers

also assume that the computing machine provides memory

isolation, which is a strong and often unrealistic assumption

in general-purpose hardware (e.g., due to isolation breaches

allowed by speculative execution mechanisms).

How are these failures being addressed outside CAC?

To check that implementations correctly adhere to constant-

time coding guidelines, current solutions are (1) auditing,

which is costly in both time and expertise, and (2) testing,

which commits the fallacy of interpreting constant-time to be

constant wall-clock time. These solutions are inadequate: A

botched patch for a timing vulnerability in TLS [145] led to the

Lucky 13 timing vulnerability in OpenSSL [146]; in turn, the

Lucky 13 patch led to yet another timing vulnerability [147]!

To prevent compiler optimizations from interfering with

constant-time recipes applied at the source-code level, imple-

mentors simply avoid using compilers at all, instead choosing

to implement cryptographic routines and constant-time recipes

directly in assembly. Again, checking that countermeasures are

implemented correctly is done through auditing and testing,

but in a much more difficult, low-level setting.

Dealing with micro-architectural attacks that breach mem-

ory isolation, such as Spectre and Meltdown [148], [149], is

still an open problem and seems to be out of reach of purely

software-based countermeasures if there is to be any hope of

achieving decent performance.

How can computer-aided cryptography help? Program

analysis and verification tools can automatically (or semi-

automatically) check whether a given implementation meets

constant-time coding guidelines, thereby providing a formal

foundation supporting heretofore informal best practices. Even

further, some tools can automatically repair code that violates

constant-time into compliant code. These approaches neces-

sarily abstract the leakage interface available to real-world

attackers, but being precisely defined, they help clarify the

gap between formal leakage models and real-world leakage.

What are the fine-print caveats? Implementation-level

proofs are only as good as their models, e.g., of physically

observable effects of hardware. Furthermore, new attacks may

challenge these models. Implicit assumptions arise from gaps

between code and verified artifacts.

What background do I need to know? Formal reasoning

about side-channels is based on a leakage model. This model

is defined over the semantics of the target language, abstractly

representing what an attacker can observe during the computa-

tion process. For example, the leakage model for a branching

operation may leak all program values associated with the

branching condition. After having defined the appropriate

leakage models, proving that an implementation is secure

(with respect to the leakage models) amounts to showing

that the leakage accumulated over the course of execution

is independent of the values of secret data. This property is

an instance of observational non-interference, an information

flow property requiring that variations in secret data cause no

differences in observable outputs [150].

The simplest leakage model is the program counter pol-

icy, where the program control-flow is leaked during ex-

ecution [151]. The most common leakage model, namely

the constant-time policy, additionally assumes that memory

accesses are leaked during execution. This leakage model is

usually taken as the best practice to remove exploitable exe-

cution time variations and a best-effort against cache-attacks

launched by co-located processes. A more precise leakage

model called the size-respecting policy also assumes that

operand sizes are leaked for specific variable-time operations.

For more information on leakage models, see the paper by

Barthe et al. [150, Section IV.D].

B. Digital Side-Channel Tools: State of the Art

Table V presents a taxonomy of tools for verifying digital

side-channel resistance. Tools are listed alphabetically and are

categorized as follows.

Target (A,S). At what level is the analysis performed

(e.g., source, assembly, binary)? To achieve the most reliable

guarantees, analysis should be performed as close as possible

to the executed machine code.

Method (A). The tools we consider all provide a means

to verify absence of timing leaks in a well-defined leakage

model, but using different techniques:

• Static analysis techniques use type systems or data-flow

analysis to keep track of data dependencies from secret

inputs to problematic operations.

• Quantitative analysis techniques construct a rich model of a

hardware feature, e.g, the cache, and derive an upper-bound

on the leaked information.

• Deductive verification techniques prove that the leakage

traces of two executions of the program coincide if the pub-

lic parts of the inputs match. These techniques are closely

related to the techniques used for functional correctness.

Type-checking and data-flow analysis are more amenable to

automation, and they guarantee non-interference by excluding

all programs that could pass secret information to an operation

that appears in the trace. The emphasis on automation, how-

ever, limits the precision of the techniques, which means that

secure programs may be rejected by the tools (i.e., they are not

complete). Tools based on deductive verification are usually

complete, but require more user interaction. In some cases,

users interact with the tool by annotating code, and in others

the users use an interactive proof assistant to complete the

proof. It is hard to conciliate a quantitative bound on leakage

with standard cryptographic security notions, but such tools

can also be used to prove a zero-leakage upper bound, which

implies non-interference in the corresponding leakage model.

Synthesis (U). Can the tool take an insecure program and

automatically generate a secure program? Tools that support

synthesis (e.g., FaCT [136] and SC Eliminator [140]) can

automatically generate secure implementations from insecure

implementations. This allows developers to write code natu-

rally with constant-time coding recipes applied automatically.

Soundness (A, T). Is the analysis sound, i.e., it only deems

secure programs as secure? Note that this is our baseline

filter for consideration, but we make this explicit in the table.

Still, it bears mentioning that some unsound tools are used

in practice. One example is ctgrind [152], an extension of

Valgrind that takes in a binary with taint annotations and

checks for constant-address security via dynamic analysis. It

supports public inputs but not public outputs, and is neither

sound nor complete.

Completeness (A, S). Is the analysis complete, i.e., it only

deems insecure programs as insecure?

Public input (S). Does the tool support public inputs? Sup-

port for public inputs allows differentiating between public and

secret inputs. Implementations can benignly violate constant-

time policies without introducing side-channel vulnerabilities

by leaking no more information than public inputs of compu-

tations. Unfortunately, tools without such support would reject

these implementations as insecure; forcing execution behaviors

to be fully input independent may lead to large performance

overheads.

Public output (S). Does the tool support public outputs?

Similarly, support for public outputs allows differentiating be-

tween public and secret outputs. The advantages to supporting

public outputs is the same as those for supporting public

inputs: for example, branching on a bit that is revealed to

the attacker explicitly is fine.

Control flow leakage (S). Does the tool consider control-

flow leakage? The leakage model includes values associated

with conditional branching (e.g., if, switch, while, for state-

ments) during program execution.

Memory access leakage (S). Does the tool consider memory

access pattern leakage? The leakage model includes memory

addresses accessed during program execution.

Variable-time operation leakage (S). Does the tool consider

variable-time operation leakage? The leakage model includes

inputs to variable-time operations (e.g., floating point opera-

tions [153]–[155], division and modulus operations on some

architectures) classified according to timing-equivalent ranges.

C. Discussion

Achievements: Automatic verification of constant-time

real-world code. There are several tools that can perform

verification of constant-time code automatically, both for high-

level code and low-level code. These tools have been applied

to real-world libraries. For example, portions of the assembly

code in OpenSSL have been verified using Vale [103], high-

speed implementations of SHA-3 and TLS 1.3 ciphersuites

have been verified using Jasmin [102], and various off-the-

shelf libraries have been analyzed with FlowTracker [137].

Takeaway: Lowering the target provides better guarantees.

Of the surveyed tools, several operate at the level of C code;

others operate at the level of LLVM assembly; still others

operate at the level of assembly or binary. The choice of target

is important. To obtain a faithful correspondence with the ex-

ecutable program under an attacker’s scrutiny, analysis should

be performed as close as possible to the executed machine

code. Given that mainstream compilers (e.g., GCC and Clang)

are known to optimize away defensive code and even introduce

new side-channels [156], compiler optimizations can interfere

with countermeasures deployed and verified at source-level.

Challenge: Secure, constant-time preserving compilation.

Given that mainstream compilers can interfere with side-

channel countermeasures, many cryptography engineers avoid

using compilers at all, instead choosing to implement crypto-

graphic routines directly in assembly, which means giving up

the benefits of high-level languages.

An alternative solution is to use secure compilers that carry

source-level countermeasures along the compilation chain

down to machine code. This way, side-channel resistant code

can be written using portable C, and the secure compiler takes

care of preserving side-channel resistance to specific architec-

tures. Barthe et al. [150] laid the theoretical foundations of

constant-time preserving compilation. These ideas were sub-

sequently realized in the verified CompCert C compiler [157].

Unfortunately, CompCert-generated assembly code is not as

efficient as that generated by GCC and Clang, which in turn

lags the performance of hand-optimized assembly.

Challenge: Protecting against micro-architectural attacks.

The constant-time policy is designed to capture logical timing

side channels in a simple model of hardware. Unfortunately,

this simple model is inappropriate for modern hardware, as

microarchitectural features, e.g., speculative or out-of-order

execution, can be used for launching devastating side-channel

attacks. Over the last year, the security world has been

shaken by a series of attacks, including Spectre [148] and

Meltdown [149]. A pressing challenge is to develop notions

of constant-time security and associated verification methods

that account for microarchitectural features.

Challenge: Rethinking the hardware-software contract

from secure, formal foundations. An ISA describes (usually

informally) what one needs to know to write a functionally

correct program [158], [159]. However, current ISAs are an

insufficient specification of the hardware-software contract

when it comes to writing secure programs [160]. They do not

capture hardware features that affect the temporal behavior

of programs, which makes carrying side-channel countermea-

sures at the software-level to the hardware-level difficult.

To rectify this, researchers have called on new ISA designs

that expose, for example, the temporal behaviors of hardware,

which can lend to reasoning about them in software [160].

This, of course, poses challenging and competing requirements

for hardware architects, but we believe developing formal

foundations for verification and reasoning about security at

the hardware-software interface can help. This line of work

seems also to be the only path that can lead to a sound, formal

treatment of micro-architectural attacks.

D. Further Reading

For lack of space, we had to omit several threads of

relevant work, e.g., on verifying side-channel resistance in

hardware [161]–[165], and on verifying masked implemen-

tations aimed at protecting against differential power analysis

attacks [166]–[171].

V. CASE STUDY I: CONSOLIDATING GUARANTEES

Previous sections focus on specific guarantees: design-level

security, functional correctness, efficiency, and side-channel

resistance. This case study focuses on unifying approaches that

can combine these guarantees. This is a natural and important

step towards the Holy Grail of computer-aided cryptography:

to deliver guarantees on executable code that match the

strength and elegance of guarantees on cryptographic designs.

Table VI collects implementations that verifiably meet more

than one guarantee. Implementations are grouped by year

(demarcated by dashed lines), starting from 2014 and ending

in 2019; within each year, implementations are listed alpha-

betically by author. We report on the primitives included, the

languages targeted, the tools used, and the guarantees met.

Computational security. We categorize computational se-

curity guarantees as follows: verified (), partially veri-

fied (), not verified (), and not applicable (−). The

HACL∗-related implementations are partially verified, as only

AEAD primitives have computational proofs, which are semi-

mechanized [1]. Security guarantees do not apply to, e.g.,

elliptic curve implementations or bignum code.

Functional correctness. We categorize functional correct-

ness guarantees as follows: target-level (), source-level (),

and not verified (). Target-level guarantees can be achieved

in two ways: Either guarantees are established directly on

assembly code, or guarantees are established at source level

and a verified compiler is used.

Efficiency. We categorize efficiency as follows: comparable

to assembly reference implementations (), comparable to

portable C reference implementations (), and slower than

portable C reference implementations ().

Side-channel resistance. We categorize side-channel resis-

tance guarantees as follows: target-level (), source-level (),

and not verified ().

Takeaway: Existing tools can be used to achieve the

“grand slam” of guarantees for complex cryptographic

primitives. Ideally, we would like computational security

guarantees, (target-level) functional correctness, efficiency, and

(target-level) side-channel guarantees to be connected in a

formal, machine-checkable way (the “grand slam” of guar-

antees). Many implementations come close, but so far, only

one meets all four. Almeida et al. [69] formally verify an

efficient implementation of the sponge construction from the

SHA-3 standard. It connects proofs of random oracle (RO)

indifferentiability for a pseudo-code description of the sponge

construction, and proofs of functional correctness and side-

channel resistance for an efficient, vectorized, implementation.

The proofs are constructed using EasyCrypt and Jasmin.

Other works focus on either provable security or efficiency,

plus functional correctness and side-channel resistance. This

disconnect is somewhat expected. Provable security guarantees

are established for pseudo-code descriptions of constructions,

whereas efficiency considerations demand non-trivial opti-

mizations at the level of C or assembly.

Takeaway: Integration can deliver strong and intuitive

guarantees. Interpreting verification results that cover multiple

requirements can be very challenging, especially because they

may involve (all at once) designs, reference implementations,

and optimized assembly implementations. To simplify their in-

terpretation, Almeida et al. [174] provide a modular methodol-

ogy to connect the different verification efforts, in the form of

an informal meta-theorem, which concludes that an optimized

assembly implementation is secure against implementation-

level adversaries with side-channel capabilities. The meta-

theorem states four conditions: (i) the design must be prov-

ably black-box secure in the (standard) computational model;

(ii) the design is correctly implemented by a reference imple-

mentation; (iii) the reference implementation is functionally

equivalent to the optimized implementation; (iv) the optimized

implementation is protected against side-channels. These con-

ditions yield a clear separation of concerns, which reflects the

division of the previous sections.

Takeaway: Achieving broad scope and efficiency. Many

Implementation(s) Target(s) Tool(s) used
Computational

security

Functional

correctness
Efficiency

Side-channel

resistance

RSA-OEAP [172] C EasyCrypt, Frama-C, CompCert

Curve25519 scalar mult. loop [114] asm Coq, SMT −

SHA-1, SHA-2, HMAC, RSA [131] asm Dafny, BoogieX86 −

HMAC-SHA-2 [173] C FCF, VST, CompCert

MEE-CBC [174] C EasyCrypt, Frama-C, CompCert

Salsa20, AES, ZUC, FFS, ECDSA, SHA-3 [175] Java, C Cryptol, SAW

Curve25519 [176] OCaml F∗, Sage −

Salsa20, Curve25519, Ed25519 [102] asm Jasmin

SHA-2, Poly1305, AES-CBC [103] asm Vale

HMAC-DRBG [177] C FCF, VST, CompCert

HACL∗1 [5] C F∗

HACL∗1 [5] C F∗, CompCert

HMAC-DRBG [178] C Cryptol, SAW

SHA-3 [69] asm EasyCrypt, Jasmin

ChaCha20, Poly1305 [117] asm EasyCrypt, Jasmin

BGW multi-party computation protocol [179] OCaml EasyCrypt, Why3

Curve25519, P-256 [6] C Fiat Crypto −

Poly1305, AES-GCM [104] asm F∗, Vale

Bignum code4 [98] C CryptoLine −

WHACL∗1, LibSignal∗ [180] Wasm F∗

EverCrypt2 [7] C F∗

EverCrypt3 [7] asm F∗, Vale

Computational security Functional correctness Efficiency Side-channel resistance

– verified – target-level – comparable to asm ref – target-level

– partially verified – source-level – comparable to C ref – source-level

– not verified – not verified – slower than C ref – not verified

− – not applicable

1(ChaCha20, Salsa20, Poly1305, SHA-2, HMAC, Curve25519, Ed25519) 2(MD5, SHA-1, SHA-2, HMAC, Poly1305, HKDF, Curve25519, ChaCha20)
3(AES-GCM, ChaCha20, Poly1305, SHA-2, HMAC, HKDF, Curve25519, Ed25519, P-256) 4(In NaCl, wolfSSL, OpenSSL, BoringSSL, Bitcoin)

TABLE VI
VERIFIED CRYPTOGRAPHIC IMPLEMENTATIONS AND THEIR FORMAL GUARANTEES.

implementations target either C or assembly. This involves

trade-offs between the portability and lighter verification-effort

of C code, and the efficiency that can be gained via hand-

tuned assembly. EverCrypt [7] is one of the first systems

to target both. This garners the advantages of both, and it

helps explain, in part, the broad scope of algorithms EverCrypt

covers. Generic functionality and outer loops can be efficiently

written and verified in C, whereas performance-critical cores

can be verified in assembly. Soundly mixing C and assembly

requires careful modeling of interoperation between the two,

including platform and compiler-specific calling conventions,

and differences in the “natural” memory and leakage models

used to verify C versus assembly [7], [104].

VI. CASE STUDY II: LESSONS LEARNED FROM TLS

The Transport Layer Security (TLS) protocol is widely used

to establish secure channels on the Internet, and is arguably

the most important real-world deployment of cryptography to

date. Before TLS version 1.3, the protocol’s design phases did

not involve substantial academic analysis, and the process was

highly reactive: When an attack was found, interim patches

would be released for the mainstream TLS libraries or a

longer-term fix would be incorporated in the next version

of the standard. This resulted in an endless cycle of attacks

and patches. Given the complexity of the protocol, early

academic analyses considered only highly simplified crypto-

graphic cores. However, once the academic community started

considering more detailed aspects of the protocol, many new

attacks were discovered, e.g., [181], [182].

The situation changed substantially during the proactive

design process of TLS version 1.3: The academic community

was actively consulted and encouraged to provide analysis

during the process of developing multiple drafts. (See [183]

for a more detailed account of TLS’s standardization history.)

On the computer-aided cryptography side of things, there

were substantial efforts in verifying implementations of TLS

1.3 [1], [3] and using tools to analyze symbolic [2]–[4] and

computational [3] models of TLS. Below we collect the most

important lessons learned from TLS throughout the years.

Lesson: The process of formally specifying and verifying

a protocol can reveal flaws. The work surrounding TLS has

shown that the process of formally verifying TLS, and perhaps

even just formally specifying it, can reveal flaws. The imple-

mentation of TLS 1.2 with verified cryptographic security by

Bhargavan et al. [70] discovered new alert fragmentation and

fingerprinting attacks and led to the discovery of the Triple

Handshake attacks [72]. The symbolic analysis of TLS 1.3

draft 10 using Tamarin by Cremers et al. [2] uncovered a

potential attack allowing an adversary to impersonate a client

during a PSK-resumption handshake, which was fixed in

draft 11. The symbolic analysis of TLS 1.3 using ProVerif

by Bhargavan et al. [3] uncovered a new attack on 0-RTT

client authentication that was fixed in draft 13. The symbolic

analysis of draft 21 using Tamarin by Cremers et al. [4]

revealed unexpected behavior that inhibited certain strong

authentication guarantees. In nearly all cases, these discoveries

led to improvements to the protocol, and otherwise clarified

documentation of security guarantees.

Lesson: Cryptographic protocol designs are moving tar-

gets; machine-checked proofs can be more easily updated.

The TLS 1.3 specification was a rapidly moving target, with

significant changes being effected on a fairly regular basis.

As changes were made between a total of 28 drafts, previous

analyses were often rendered stale within the space of a few

months, requiring new analyses and proofs. An important ben-

efit of machine-checked analyses and proofs over their manual

counterparts is that they can be more easily and reliably

updated from draft to draft as the protocol evolves [2]–[4].

Moreover, machine-checked analyses and proofs can ensure

that new flaws are not introduced as components are changed.

Lesson: Standardization processes can facilitate analysis

by embracing minor changes that simplify security argu-

ments and help modular reasoning. In contrast to other

protocol standards, the TLS 1.3 design incorporates many

suggestions from the academic community. In addition to secu-

rity fixes, these include changes purposed to simplify security

proofs and automated analysis. For example, this includes

changes to the key schedule that help with key separation,

thus simplifying modular proofs; a consistent tagging scheme;

and including more transcript information in exchanges, which

simplifies consistency proofs. These changes have negligible

impact on the performance of the protocol, and have helped

make analyzing such a complex protocol feasible.

VII. CONCLUDING REMARKS

A. Recommendations to Authors

Our first recommendation concerns the clarity of trust

assumptions. We observe that, in some papers, the distinction

between what parts of an artifact are trusted/untrusted is

not always clear, which runs the risk of hazy/exaggerated

claims. On one hand, crisply delineating between what is

trusted/untrusted may be difficult, especially when multiple

tools are used, and authors may be reluctant to spell out an

artifact’s weaknesses. On the other hand, transparency and

clarity of trust assumptions are vital for progress. We point

to the paper by Beringer et al. [173] as an exemplar for how

to clearly delineate between what is trusted/untrusted. At the

same time, critics should understand that trust assumptions are

often necessary to make progress at all.

Our second recommendation concerns the use of metrics.

Metrics are useful for tracking progress over time when used

appropriately. The HACL∗ [5] study uses metrics effectively:

To quantify verification effort, the authors report proof-to-code

ratios and person efforts for various primitives. While these are

crude proxies, because the comparison is vertical (same tool,

same developers), the numbers sensibly demonstrate that, e.g.,

code involving bignums requires more work to verify in F∗.

Despite their limitations, we argue that even crude metrics

(when used appropriately) are better than none for advancing

the field. When used inappropriately, however, metrics become

dangerous and misleading. Horizontal comparisons across

disparate tools tend to be problematic and must be done with

care if they are to be used. For example, lines of proof or

analysis times across disparate tools are often incomparable,

since modeling a problem in the exact same way is non-trivial.

B. Recommendations to Tool Developers

Although we are still in the early days of seeing verified

cryptography deployed in the wild, one major pending chal-

lenge is how to make computer-aided cryptography artifacts

maintainable. Because computer-aided cryptography tools sit

at the bleeding-edge of how cryptography is done, they are

constantly evolving, often in non-backwards-compatible ways.

When this happens, we must either allow the artifacts (e.g.,

machine-checked proofs) to become stale, or else muster

significant human effort to keep them up to date. Moreover,

because cryptography is a moving target, we should expect that

even verified implementations (and their proofs) will require

updates. This could be to add functionality, or in the worst

case, to swiftly patch new vulnerabilities beyond what was

verifiably accounted for. To this end, we hope to see more

interplay between proof engineering research [184], [185] and

computer-aided cryptography research in the coming years.

C. Recommendations to Standardization Bodies

Given its benefits in the TLS 1.3 standardization effort, we

believe computer-aided cryptography should play an important

role in standardization processes [186]. Traditionally, cryp-

tographic standards are written in a combination of prose,

formulas, and pseudocode, and can change drastically be-

tween drafts. On top of getting the cryptography right in

the first place, standards must also focus on clarity, ease of

implementation, and interoperability. Unsurprisingly, standard-

ization processes can be long and arduous. And even when

they are successful, the substantial gap between standards and

implementations leaves plenty of room for error.

Security proofs can also become a double-edged sword

in standardization processes. Proposals supported by hand-

written security arguments often cannot be reasonably audited.

A plausible claim with a proof that cannot be audited should

not be taken as higher assurance than simply stating the

claim—we believe the latter is a lesser evil, as it does not

create a false sense of security. For example, Hales [187]

discusses ill-intentioned security arguments in the context of

the Dual EC pseudo-random generator [188]. Another example

is the recent discovery of attacks against the AES-OCB2 ISO

standard, which was previously believed to be secure [189].

To address these challenges, we advocate the use of

computer-aided cryptography, not only to formally certify

compliance to standards, but also to facilitate the role of

auditors and evaluators in standardization processes, allowing

the discussion to focus on the security claims, rather than on

whether the supporting security arguments are convincing. We

see the current NIST post-quantum standardization effort [190]

as an excellent opportunity to put our recommendations into

practice, and we encourage the computer-aided cryptography

community to engage in the process.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their useful sugges-

tions; Jason Gross, Boris Köpf, Stever Kremer, Peter Schwabe,

and Alwen Tiu for feedback on earlier drafts of the paper; and

Tiago Oliveira for help setting up Jasmin and benchmarks.

Work by Manuel Barbosa was supported by National Funds

through the Portuguese Foundation for Science and Technol-

ogy (FCT) under project PTDC/CCI-INF/31698/2017. Work

by Gilles Barthe was supported by the Office of Naval

Research (ONR) under project N00014-15-1-2750. Work by

Karthik Bhargavan was supported by the European Research

Council (ERC) under the European Unions Horizon 2020

research and innovation programme (grant agreement no.

683032 - CIRCUS). Work by Bruno Blanchet was sup-

ported by the French National Research Agency (ANR) under

project TECAP (decision no. ANR-17-CE39-0004-03). Work

by Kevin Liao was supported by the National Science Founda-

tion (NSF) through a Graduate Research Fellowship. Work by

Bryan Parno was supported by a gift from Bosch, a fellowship

from the Alfred P. Sloan Foundation, the NSF under Grant No.

1801369, and the Department of the Navy, Office of Naval

Research under Grant No. N00014-18-1-2892.

REFERENCES

[1] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Ras-
togi, N. Swamy, S. Z. Béguelin, K. Bhargavan, J. Pan, and J. K.
Zinzindohoue, “Implementing and proving the TLS 1.3 record layer,”
in IEEE Symposium on Security and Privacy (S&P). IEEE Computer
Society, 2017, pp. 463–482.

[2] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe, “Automated
analysis and verification of TLS 1.3: 0-rtt, resumption and delayed
authentication,” in IEEE Symposium on Security and Privacy (S&P).
IEEE Computer Society, 2016, pp. 470–485.

[3] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the TLS 1.3 standard candidate,” in IEEE

Symposium on Security and Privacy (S&P). IEEE Computer Society,
2017, pp. 483–502.

[4] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe,
“A comprehensive symbolic analysis of TLS 1.3,” in ACM Conference

on Computer and Communications Security (CCS). ACM, 2017, pp.
1773–1788.

[5] J. K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“HACL*: A verified modern cryptographic library,” in ACM Confer-

ence on Computer and Communications Security (CCS). ACM, 2017,
pp. 1789–1806.

[6] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala, “Simple
high-level code for cryptographic arithmetic - with proofs, without
compromises,” in IEEE Symposium on Security and Privacy (S&P).
IEEE, 2019, pp. 1202–1219.

[7] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova,
K. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-Lavaud, C. Fournet,
N. Kulatova, T. Ramananandro, A. Rastogi, N. Swamy, C. Winter-
steiger, and S. Zanella-Beguelin, “EverCrypt: A fast, verified, cross-
platform cryptographic provider,” in IEEE Symposium on Security and

Privacy (S&P). IEEE, 2020.
[8] M. Bellare and P. Rogaway, “The security of triple encryption and a

framework for code-based game-playing proofs,” in Annual Interna-

tional Conference on the Theory and Applications of Cryptographic

Techniques (EUROCRYPT), ser. LNCS, vol. 4004. Springer, 2006,
pp. 409–426.

[9] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in IEEE Annual Symposium on Foundations

of Computer Science (FOCS). IEEE Computer Society, 2001, pp.
136–145.

[10] S. Halevi, “A plausible approach to computer-aided cryptographic
proofs,” IACR Cryptology ePrint Archive, vol. 2005, p. 181, 2005.

[11] K. G. Paterson and G. J. Watson, “Plaintext-dependent decryption: A
formal security treatment of SSH-CTR,” in Annual International Con-

ference on the Theory and Applications of Cryptographic Techniques

(EUROCRYPT), ser. LNCS, vol. 6110. Springer, 2010, pp. 345–361.

[12] A. Boldyreva, J. P. Degabriele, K. G. Paterson, and M. Stam, “Security
of symmetric encryption in the presence of ciphertext fragmentation,”
in Annual International Conference on the Theory and Applications

of Cryptographic Techniques (EUROCRYPT), ser. LNCS, vol. 7237.
Springer, 2012, pp. 682–699.

[13] J. P. Degabriele, K. G. Paterson, and G. J. Watson, “Provable security
in the real world,” IEEE Security & Privacy, vol. 9, no. 3, pp. 33–41,
2011.

[14] V. Shoup, “Sequences of games: a tool for taming complexity in
security proofs,” IACR Cryptology ePrint Archive, vol. 2004, p. 332,
2004. [Online]. Available: http://eprint.iacr.org/2004/332

[15] Y. Lindell, “How to simulate it - A tutorial on the simulation proof
technique,” in Tutorials on the Foundations of Cryptography. Springer
International Publishing, 2017, pp. 277–346.

[16] S. F. Doghmi, J. D. Guttman, and F. J. Thayer, “Searching for shapes
in cryptographic protocols,” in International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), ser.
LNCS, vol. 4424. Springer, 2007, pp. 523–537.

[17] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis,
“Refinement types for secure implementations,” ACM Trans. Program.

Lang. Syst., vol. 33, no. 2, pp. 8:1–8:45, 2011.

[18] M. Backes, C. Hriţcu, and M. Maffei, “Union, intersection and refine-
ment types and reasoning about type disjointness for secure protocol
implementations,” J. Comput. Secur., vol. 22, no. 2, pp. 301–353, Mar.
2014.

[19] S. Escobar, C. A. Meadows, and J. Meseguer, “Maude-npa: Crypto-
graphic protocol analysis modulo equational properties,” in Founda-

tions of Security Analysis and Design (FOSAD), ser. LNCS, vol. 5705.
Springer, 2007, pp. 1–50.

[20] B. Blanchet, “Modeling and verifying security protocols with the
applied pi calculus and ProVerif,” Foundations and Trends in Privacy

and Security, vol. 1, no. 1–2, pp. 1–135, Oct. 2016.

[21] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse, “Verified inter-
operable implementations of security protocols,” ACM Transactions on

Programming Languages and Systems, vol. 31, no. 1, 2008.

[22] V. Cheval, V. Cortier, and M. Turuani, “A little more conversation,
a little less action, a lot more satisfaction: Global states in proverif,”
in IEEE Computer Security Foundations Symposium (CSF). IEEE
Computer Society, 2018, pp. 344–358.

[23] D. L. Li and A. Tiu, “Combining proverif and automated theorem
provers for security protocol verification,” in International Conference

on Automated Deduction (CADE), ser. LNCS, vol. 11716. Springer,
2019, pp. 354–365.

[24] M. Arapinis, E. Ritter, and M. D. Ryan, “Statverif: Verification of
stateful processes,” in IEEE Computer Security Foundations Sympo-

sium (CSF). IEEE Computer Society, 2011, pp. 33–47.

[25] C. J. F. Cremers, “The scyther tool: Verification, falsification, and anal-
ysis of security protocols,” in International Conference on Computer-

Aided Verification (CAV), ser. LNCS, vol. 5123. Springer, 2008, pp.
414–418.

[26] S. Meier, C. J. F. Cremers, and D. A. Basin, “Strong invariants for
the efficient construction of machine-checked protocol security proofs,”
in IEEE Computer Security Foundations Symposium (CSF). IEEE
Computer Society, 2010, pp. 231–245.

[27] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The TAMARIN
prover for the symbolic analysis of security protocols,” in International

Conference on Computer-Aided Verification (CAV), ser. LNCS, vol.
8044. Springer, 2013, pp. 696–701.

[28] S. Kremer and R. Künnemann, “Automated analysis of security proto-
cols with global state,” in IEEE Symposium on Security and Privacy

(S&P). IEEE Computer Society, 2014, pp. 163–178.

[29] M. Turuani, “The cl-atse protocol analyser,” in International Confer-

ence on Term Rewriting and Applications (RTA), ser. LNCS, vol. 4098.
Springer, 2006, pp. 277–286.

[30] D. A. Basin, S. Mödersheim, and L. Viganò, “OFMC: A symbolic
model checker for security protocols,” Int. J. Inf. Sec., vol. 4, no. 3,
pp. 181–208, 2005.

[31] A. Armando and L. Compagna, “SATMC: A sat-based model checker
for security protocols,” in European Conference on Logics in Artificial

http://eprint.iacr.org/2004/332

Intelligence (JELIA), ser. LNCS, vol. 3229. Springer, 2004, pp. 730–
733.

[32] R. Chadha, V. Cheval, Ştefan Ciobâcă, and S. Kremer, “Automated
verification of equivalence properties of cryptographic protocols,” ACM

Trans. Comput. Log., vol. 17, no. 4, pp. 23:1–23:32, 2016.

[33] V. Cheval, “APTE: an algorithm for proving trace equivalence,” in
International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS), ser. LNCS, vol. 8413. Springer,
2014, pp. 587–592.

[34] V. Cheval, S. Kremer, and I. Rakotonirina, “DEEPSEC: deciding
equivalence properties in security protocols theory and practice,” in
IEEE Symposium on Security and Privacy (S&P). IEEE Computer
Society, 2018, pp. 529–546.

[35] V. Cortier, A. Dallon, and S. Delaune, “Sat-equiv: An efficient tool
for equivalence properties,” in IEEE Computer Security Foundations

Symposium (CSF). IEEE Computer Society, 2017, pp. 481–494.

[36] A. Tiu and J. E. Dawson, “Automating open bisimulation checking for
the spi calculus,” in IEEE Computer Security Foundations Symposium

(CSF). IEEE Computer Society, 2010, pp. 307–321.

[37] J. K. Millen, “A necessarily parallel attack,” in In Workshop on Formal

Methods and Security Protocols, 1999.

[38] N. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov, “Multiset
rewriting and the complexity of bounded security protocols,” Journal

of Computer Security, vol. 12, no. 2, pp. 247–311, 2004.

[39] S. Delaune and L. Hirschi, “A survey of symbolic methods for
establishing equivalence-based properties in cryptographic protocols,”
J. Log. Algebr. Meth. Program., vol. 87, pp. 127–144, 2017.

[40] J. Dreier, C. Duménil, S. Kremer, and R. Sasse, “Beyond subterm-
convergent equational theories in automated verification of stateful
protocols,” in International Conference on Principles of Security and

Trust (POST). Springer-Verlag, 2017.

[41] C. Cremers and D. Jackson, “Prime, order please! revisiting small
subgroup and invalid curve attacks on protocols using Diffie-Hellman,”
in IEEE Computer Security Foundations Symposium (CSF). IEEE,
2019, pp. 78–93.

[42] L. C. Paulson, Isabelle - A Generic Theorem Prover (with a contribu-

tion by T. Nipkow), ser. LNCS. Springer, 1994, vol. 828.

[43] R. Milner, Communicating and mobile systems - the Pi-calculus.
Cambridge University Press, 1999.

[44] M. Abadi and A. D. Gordon, “A calculus for cryptographic protocols:
The spi calculus,” in ACM Conference on Computer and Communica-

tions Security (CCS). ACM, 1997, pp. 36–47.

[45] M. Abadi and C. Fournet, “Mobile values, new names, and secure com-
munication,” in Symposium on Principles of Programming Languages

(POPL). ACM, 2001, pp. 104–115.

[46] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu, “Verified
cryptographic implementations for TLS,” ACM Trans. Inf. Syst. Secur.,
vol. 15, no. 1, pp. 3:1–3:32, 2012.

[47] N. Kobeissi, K. Bhargavan, and B. Blanchet, “Automated verification
for secure messaging protocols and their implementations: A symbolic
and computational approach,” in IEEE European Symposium on Secu-

rity and Privacy (EuroS&P). IEEE, 2017, pp. 435–450.

[48] N. Kobeissi, G. Nicolas, and K. Bhargavan, “Noise explorer: Fully
automated modeling and verification for arbitrary noise protocols,”
in IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 356–370.

[49] D. A. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and
V. Stettler, “A formal analysis of 5g authentication,” in ACM Con-

ference on Computer and Communications Security (CCS). ACM,
2018, pp. 1383–1396.

[50] C. Cremers, M. Dehnel-Wild, and K. Milner, “Secure authentication
in the grid: A formal analysis of DNP3 SAv5,” Journal of Computer

Security, vol. 27, no. 2, pp. 203–232, 2019.

[51] G. Girol, L. Hirschi, R. Sasse, D. Jackson, C. Cremers, and D. Basin,
“A Spectral Analysis of Noise: A Comprehensive, Automated, Formal
Analysis of Diffie-Hellman Protocols,” in Proc. of USENIX Security,
2020.

[52] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of
selected equivalences for security protocols,” Journal of Logic and

Algebraic Programming, vol. 75, no. 1, pp. 3–51, Feb.–Mar. 2008.

[53] S. Santiago, S. Escobar, C. Meadows, and J. Meseguer, “A formal
definition of protocol indistinguishability and its verification using
Maude-NPA,” in Security and Trust Management (STM), ser. LNCS,
vol. 8743. Berlin, Heidelberg: Springer, Sep. 2014, pp. 162–177.

[54] D. Basin, J. Dreier, and R. Casse, “Automated symbolic proofs of
observational equivalence,” in ACM Conference on Computer and

Communications Security (CCS). New York, NY: ACM Press, Oct.
2015, pp. 1144–1155.

[55] G. Barthe, B. Grégoire, and B. Schmidt, “Automated proofs of pairing-
based cryptography,” in ACM Conference on Computer and Commu-

nications Security (CCS). ACM, 2015, pp. 1156–1168.

[56] G. Barthe, B. Grégoire, and S. Z. Béguelin, “Formal certification
of code-based cryptographic proofs,” in Symposium on Principles of

Programming Languages (POPL). ACM, 2009, pp. 90–101.

[57] D. A. Basin, A. Lochbihler, and S. R. Sefidgar, “CryptHOL: Game-
based proofs in higher-order logic,” IACR Cryptology ePrint Archive,
vol. 2017, p. 753, 2017.

[58] B. Blanchet, “A computationally sound mechanized prover for security
protocols,” IEEE Transactions on Dependable and Secure Computing,
vol. 5, no. 4, pp. 193–207, Oct.–Dec. 2008.

[59] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin, “Computer-
aided security proofs for the working cryptographer,” in International

Cryptology Conference (CRYPTO), ser. LNCS, vol. 6841. Springer,
2011, pp. 71–90.

[60] N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P. Strub, M. Kohlweiss, J. K.
Zinzindohoue, and S. Z. Béguelin, “Dependent types and multi-
monadic effects in F,” in Symposium on Principles of Programming

Languages (POPL). ACM, 2016, pp. 256–270.

[61] A. Petcher and G. Morrisett, “The foundational cryptography frame-
work,” in International Conference on Principles of Security and Trust

(POST), ser. LNCS, vol. 9036. Springer, 2015, pp. 53–72.

[62] G. Barthe, J. M. Crespo, B. Grégoire, C. Kunz, Y. Lakhnech,
B. Schmidt, and S. Z. Béguelin, “Fully automated analysis of padding-
based encryption in the computational model,” in ACM Conference

on Computer and Communications Security (CCS). ACM, 2013, pp.
1247–1260.

[63] “The coq proof assistant.” [Online]. Available: https://coq.inria.fr/

[64] “Isabelle.” [Online]. Available: https://isabelle.in.tum.de/

[65] C. W. Barrett and C. Tinelli, “Satisfiability modulo theories,” in
Handbook of Model Checking. Springer, 2018, pp. 305–343.

[66] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS), ser. LNCS, vol. 4963. Springer,
2008, pp. 337–340.

[67] B. Lipp, B. Blanchet, and K. Bhargavan, “A mechanised cryptographic
proof of the wireguard virtual private network protocol,” in IEEE

European Symposium on Security and Privacy (EuroS&P). IEEE,
2019, pp. 231–246.

[68] J. B. Almeida, M. Barbosa, G. Barthe, M. Campagna, E. Cohen,
B. Grégoire, V. Pereira, B. Portela, P. Strub, and S. Tasiran, “A
machine-checked proof of security for AWS key management service,”
in ACM Conference on Computer and Communications Security (CCS).
ACM, 2019, pp. 63–78.

[69] J. B. Almeida, C. Baritel-Ruet, M. Barbosa, G. Barthe, F. Dupressoir,
B. Grégoire, V. Laporte, T. Oliveira, A. Stoughton, and P. Strub,
“Machine-checked proofs for cryptographic standards: Indifferentiabil-
ity of sponge and secure high-assurance implementations of SHA-3,” in
ACM Conference on Computer and Communications Security (CCS).
ACM, 2019, pp. 1607–1622.

[70] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub,
“Implementing TLS with verified cryptographic security,” in IEEE

Symposium on Security and Privacy (S&P). IEEE Computer Society,
2013, pp. 445–459.

[71] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and
S. Zanella-Béguelin, “Proving the TLS handshake secure (as it is),” in
International Cryptology Conference (CRYPTO), 2014.

[72] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and P. Strub,
“Triple handshakes and cookie cutters: Breaking and fixing authenti-
cation over TLS,” in IEEE Symposium on Security and Privacy (S&P).
IEEE Computer Society, 2014, pp. 98–113.

[73] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P. Strub, and J. K. Zinzindohoue, “A messy
state of the union: Taming the composite state machines of TLS,” in
IEEE Symposium on Security and Privacy (S&P). IEEE Computer
Society, 2015, pp. 535–552.

[74] C. E. Landwehr, D. Boneh, J. C. Mitchell, S. M. Bellovin, S. Landau,

https://coq.inria.fr/
https://isabelle.in.tum.de/

and M. E. Lesk, “Privacy and cybersecurity: The next 100 years,” Proc.

of the IEEE, vol. 100, no. Centennial-Issue, pp. 1659–1673, 2012.

[75] K. Liao, M. A. Hammer, and A. Miller, “ILC: a calculus for compos-
able, computational cryptography,” in ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI). ACM,
2019, pp. 640–654.

[76] R. Canetti, A. Stoughton, and M. Varia, “EasyUC: Using EasyCrypt
to mechanize proofs of universally composable security,” in IEEE

Computer Security Foundations Symposium (CSF). IEEE, 2019, pp.
167–183.

[77] A. Lochbihler, S. R. Sefidgar, D. A. Basin, and U. Maurer, “Formal-
izing constructive cryptography using CryptHOL,” in IEEE Computer

Security Foundations Symposium (CSF). IEEE, 2019, pp. 152–166.

[78] J. A. Akinyele, M. Green, and S. Hohenberger, “Using SMT solvers to
automate design tasks for encryption and signature schemes,” in 2013

ACM SIGSAC Conference on Computer and Communications Security,

CCS’13, Berlin, Germany, November 4-8, 2013. ACM, 2013, pp. 399–
410.

[79] A. J. Malozemoff, J. Katz, and M. D. Green, “Automated analysis
and synthesis of block-cipher modes of operation,” in IEEE Computer

Security Foundations Symposium (CSF). IEEE Computer Society,
2014, pp. 140–152.

[80] V. T. Hoang, J. Katz, and A. J. Malozemoff, “Automated analysis and
synthesis of authenticated encryption schemes,” in ACM Conference

on Computer and Communications Security (CCS). ACM, 2015, pp.
84–95.

[81] G. Barthe, E. Fagerholm, D. Fiore, A. Scedrov, B. Schmidt, and
M. Tibouchi, “Strongly-optimal structure preserving signatures from
type II pairings: synthesis and lower bounds,” IET Information Security,
vol. 10, no. 6, pp. 358–371, 2016.

[82] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: nearly
practical verifiable computation,” Commun. ACM, vol. 59, no. 2, pp.
103–112, 2016.

[83] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,
M. Naehrig, B. Parno, and S. Zahur, “Geppetto: Versatile verifiable
computation,” in IEEE Symposium on Security and Privacy (S&P),
2015, pp. 253–270.

[84] S. T. V. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish, “Taking proof-based verified computation a few steps
closer to practicality,” in USENIX Security Symposium (USENIX).
USENIX Association, 2012, pp. 253–268.

[85] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza,
“SNARKs for C: verifying program executions succinctly and in zero
knowledge,” in International Cryptology Conference (CRYPTO), ser.
LNCS, vol. 8043. Springer, 2013, pp. 90–108.

[86] J. B. Almeida, E. Bangerter, M. Barbosa, S. Krenn, A. Sadeghi, and
T. Schneider, “A certifying compiler for zero-knowledge proofs of
knowledge based on sigma-protocols,” in European Symposium on

Research in Computer Security (ESORICS), 2010, pp. 151–167.

[87] M. Fredrikson and B. Livshits, “Zø: An optimizing distributing zero-
knowledge compiler,” in USENIX Security Symposium (USENIX),
2014, pp. 909–924.

[88] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and A. Lysyan-
skaya, “ZKPDL: A language-based system for efficient zero-knowledge
proofs and electronic cash,” in USENIX Security Symposium (USENIX).
USENIX Association, 2010, pp. 193–206.

[89] M. Backes, M. Maffei, and K. Pecina, “Automated synthesis of secure
distributed applications,” in Symposium on Network and Distributed

System Security (NDSS). The Internet Society, 2012.

[90] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “Sok:
General purpose compilers for secure multi-party computation,” in
IEEE Symposium on Security and Privacy (S&P), 2019, pp. 1220–
1237.

[91] J. B. Almeida, M. Barbosa, E. Bangerter, G. Barthe, S. Krenn, and
S. Z. Béguelin, “Full proof cryptography: verifiable compilation of
efficient zero-knowledge protocols,” in ACM Conference on Computer

and Communications Security (CCS). ACM, 2012, pp. 488–500.

[92] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, B. Grégoire,
V. Laporte, and V. Pereira, “A fast and verified software stack for
secure function evaluation,” in ACM Conference on Computer and

Communications Security (CCS). ACM, 2017, pp. 1989–2006.

[93] C. Fournet, C. Keller, and V. Laporte, “A certified compiler for verifi-
able computing,” in IEEE Computer Security Foundations Symposium

(CSF), 2016, pp. 268–280.

[94] A. Rastogi, N. Swamy, and M. Hicks, “Wys*: A DSL for verified secure
multi-party computations,” in International Conference on Principles

of Security and Trust (POST), 2019, pp. 99–122.

[95] B. Blanchet, “Security protocol verification: Symbolic and computa-
tional models,” in International Conference on Principles of Security

and Trust (POST), ser. LNCS, vol. 7215. Springer, 2012, pp. 3–29.

[96] V. Cortier, S. Kremer, and B. Warinschi, “A survey of symbolic
methods in computational analysis of cryptographic systems,” J. Autom.

Reasoning, vol. 46, no. 3-4, pp. 225–259, 2011.

[97] R. Dockins, A. Foltzer, J. Hendrix, B. Huffman, D. McNamee, and
A. Tomb, “Constructing semantic models of programs with the software
analysis workbench,” in International Conference on Verified Software.

Theories, Tools, and Experiments (VSTTE), ser. LNCS, vol. 9971, 2016,
pp. 56–72.

[98] Y. Fu, J. Liu, X. Shi, M. Tsai, B. Wang, and B. Yang, “Signed
cryptographic program verification with typed cryptoline,” in ACM

Conference on Computer and Communications Security (CCS). ACM,
2019, pp. 1591–1606.

[99] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in International Conference on Logic for Programming,

Artificial Intelligence, and Reasoning (LPAR), ser. LNCS, vol. 6355.
Springer, 2010, pp. 348–370.

[100] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, “Frama-c - A software analysis perspective,” in In-

ternational Conference on Software Engineering and Formal Methods

(SEFM), ser. LNCS, vol. 7504. Springer, 2012, pp. 233–247.

[101] D. J. Bernstein and P. Schwabe, “gfverif: Fast and easy verification
of finite-field arithmetic,” 2016. [Online]. Available: http://gfverif.
cryptojedi.org

[102] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. La-
porte, T. Oliveira, H. Pacheco, B. Schmidt, and P. Strub, “Jasmin:
High-assurance and high-speed cryptography,” in ACM Conference on

Computer and Communications Security (CCS). ACM, 2017, pp.
1807–1823.

[103] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. T. V. Setty, and L. Thompson, “Vale: Verifying
high-performance cryptographic assembly code,” in USENIX Security

Symposium (USENIX). USENIX Association, 2017, pp. 917–934.

[104] A. Fromherz, N. Giannarakis, C. Hawblitzel, B. Parno, A. Rastogi, and
N. Swamy, “A verified, efficient embedding of a verifiable assembly
language,” PACMPL, vol. 3, no. POPL, pp. 63:1–63:30, 2019.

[105] A. W. Appel, “Verified software toolchain - (invited talk),” in European

Symposium on Programming (ESOP), ser. LNCS, vol. 6602. Springer,
2011, pp. 1–17.

[106] J. Filliâtre and A. Paskevich, “Why3 - where programs meet provers,”
in European Symposium on Programming (ESOP), ser. LNCS, vol.
7792. Springer, 2013, pp. 125–128.

[107] D. J. Bernstein and T. Lange, “ebacs: Ecrypt benchmarking of
cryptographic systems,” 2009. [Online]. Available: https://bench.cr.yp.
to

[108] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey,
F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson,
“The matter of heartbleed,” in Internet Measurement Conference (IMC).
ACM, 2014, pp. 475–488.

[109] S. Gueron and V. Krasnov, “The fragility of AES-GCM authentication
algorithm,” in Proc. of the Conference on Information Technology: New

Generations, Apr. 2014.

[110] B. B. Brumley, M. Barbosa, D. Page, and F. Vercauteren, “Practical
realisation and elimination of an ecc-related software bug attack,” in
Cryptographers’ Track at the RSA Conference (CT-RSA), ser. LNCS,
vol. 7178. Springer, 2012, pp. 171–186.

[111] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM,
vol. 52, no. 7, pp. 107–115, 2009.

[112] T. Oliveira, J. L. Hernandez, H. Hisil, A. Faz-Hernández, and
F. Rodrı́guez-Henrı́quez, “How to (pre-)compute a ladder - improving
the performance of X25519 and X448,” in International Conference

on Selected Areas in Cryptography (SAC), ser. LNCS, vol. 10719.
Springer, 2017, pp. 172–191.

[113] T. Chou, “Sandy2x: New curve25519 speed records,” in International

Conference on Selected Areas in Cryptography (SAC), ser. LNCS, vol.
9566. Springer, 2015, pp. 145–160.

[114] Y. Chen, C. Hsu, H. Lin, P. Schwabe, M. Tsai, B. Wang, B. Yang,
and S. Yang, “Verifying curve25519 software,” in ACM Conference

http://gfverif. cryptojedi. org
http://gfverif. cryptojedi. org
https://bench.cr.yp.to
https://bench.cr.yp.to

on Computer and Communications Security (CCS). ACM, 2014, pp.
299–309.

[115] “curve25519-donna: Implementations of a fast elliptic-curve Diffie-
Hellman primitive,” https://github.com/agl/curve25519-donna.

[116] D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,” in
IACR International Conference on Practice and Theory of Public-Key

Cryptography (PKC), ser. LNCS, vol. 3958. Springer, 2006, pp. 207–
228.

[117] J. B. Almeida, M. Barbosa, G. Barthe, B. Grégoire, A. Kout-
sos, V. Laporte, T. Oliveira, and P. Strub, “The last mile: High-
assurance and high-speed cryptographic implementations,” CoRR, vol.
abs/1904.04606, 2019.

[118] J. P. Lim and S. Nagarakatte, “Automatic equivalence checking for
assembly implementations of cryptography libraries,” in Proc. of the

IEEE/ACM International Symposium on Code Generation and Opti-

mization, (CGO). IEEE, 2019, pp. 37–49.

[119] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[120] “The GNU Multiple Precision Arithmetic Library.” [Online]. Available:
https://gmplib.org/

[121] G. Klein, J. Andronick, K. Elphinstone, T. C. Murray, T. Sewell,
R. Kolanski, and G. Heiser, “Comprehensive formal verification of
an OS microkernel,” ACM Trans. Comput. Syst., vol. 32, no. 1, pp.
2:1–2:70, 2014.

[122] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu, S. Weng,
H. Zhang, and Y. Guo, “Deep specifications and certified abstrac-
tion layers,” in Symposium on Principles of Programming Languages

(POPL). ACM, 2015, pp. 595–608.

[123] H. Mai, E. Pek, H. Xue, S. T. King, and P. Madhusudan, “Verifying
security invariants in ExpressOS,” in International Conference on

Architectural Support for Programming Languages and Operating

Systems (ASPLOS). ACM, 2013, pp. 293–304.

[124] G. Morrisett, G. Tan, J. Tassarotti, J. Tristan, and E. Gan, “Rocksalt:
better, faster, stronger SFI for the x86,” in ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation (PLDI).
ACM, 2012, pp. 395–404.

[125] X. Wang, D. Lazar, N. Zeldovich, A. Chlipala, and Z. Tatlock, “Jitk: A
trustworthy in-kernel interpreter infrastructure,” in USENIX Conference

on Operating Systems Design and Implementation (OSDI). USENIX
Association, 2014, pp. 33–47.

[126] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and
N. Zeldovich, “Using crash hoare logic for certifying the FSCQ file
system,” in ACM Symposium on Operating Systems Principles (SOSP).
ACM, 2015, pp. 18–37.

[127] A. Vasudevan, S. Chaki, L. Jia, J. M. McCune, J. Newsome, and
A. Datta, “Design, implementation and verification of an extensible
and modular hypervisor framework,” in IEEE Symposium on Security

and Privacy (S&P). IEEE Computer Society, 2013, pp. 430–444.

[128] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,
and T. E. Anderson, “Verdi: a framework for implementing and for-
mally verifying distributed systems,” in ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI). ACM,
2015, pp. 357–368.

[129] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham, “Ivy:
safety verification by interactive generalization,” in ACM SIGPLAN

Conference on Programming Language Design and Implementation

(PLDI). ACM, 2016, pp. 614–630.

[130] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. T. V. Setty, and B. Zill, “Ironfleet: proving practical
distributed systems correct,” in ACM Symposium on Operating Systems

Principles (SOSP). ACM, 2015, pp. 1–17.

[131] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill, “Ironclad apps: End-to-end security via automated full-
system verification,” in USENIX Conference on Operating Systems

Design and Implementation (OSDI). USENIX Association, 2014, pp.
165–181.

[132] J. B. Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal
verification of side-channel countermeasures using self-composition,”
Sci. Comput. Program., vol. 78, no. 7, pp. 796–812, 2013.

[133] G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and J. Reineke,
“Cacheaudit: A tool for the static analysis of cache side channels,”
in USENIX Security Symposium (USENIX). USENIX Association,
2013, pp. 431–446.

[134] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in USENIX Security Sym-

posium (USENIX). USENIX Association, 2016, pp. 53–70.

[135] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan, “Ct-wasm:
type-driven secure cryptography for the web ecosystem,” PACMPL,
vol. 3, no. POPL, pp. 77:1–77:29, 2019.

[136] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. Grégoire, G. Barthe, R. Jhala, and D. Stefan, “Fact: a DSL
for timing-sensitive computation,” in ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI). ACM,
2019, pp. 174–189.

[137] B. Rodrigues, F. M. Q. Pereira, and D. F. Aranha, “Sparse represen-
tation of implicit flows with applications to side-channel detection,”
in International Conference on Compiler Construction (CC). ACM,
2016, pp. 110–120.

[138] B. Köpf, L. Mauborgne, and M. Ochoa, “Automatic quantification of
cache side-channels,” in International Conference on Computer-Aided

Verification (CAV), ser. LNCS, vol. 7358. Springer, 2012, pp. 564–580.

[139] J. Protzenko, J. K. Zinzindohoué, A. Rastogi, T. Ramananandro,
P. Wang, S. Z. Béguelin, A. Delignat-Lavaud, C. Hritcu, K. Bhargavan,
C. Fournet, and N. Swamy, “Verified low-level programming embedded
in F,” PACMPL, vol. 1, no. ICFP, pp. 17:1–17:29, 2017.

[140] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-
channel leaks using program repair,” in International Symposium on

Software Testing and Analysis (ISSTA). ACM, 2018, pp. 15–26.

[141] G. Barthe, G. Betarte, J. D. Campo, C. D. Luna, and D. Pichardie,
“System-level non-interference for constant-time cryptography,” in
ACM Conference on Computer and Communications Security (CCS).
ACM, 2014, pp. 1267–1279.

[142] D. Brumley and D. Boneh, “Remote timing attacks are practical,” in
USENIX Security Symposium (USENIX). USENIX Association, 2003.

[143] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.

[144] J.-P. Aumasson, “Guidelines for Low-Level Cryptography Software,”
https://github.com/veorq/cryptocoding.

[145] B. Moller, “Security of CBC ciphersuites in SSL/TLS: Problems and
countermeasures,” 2004. [Online]. Available: http://www.openssl.org/
∼bodo/tls-cbc.txt

[146] N. J. AlFardan and K. G. Paterson, “Lucky thirteen: Breaking the
TLS and DTLS record protocols,” in IEEE Symposium on Security

and Privacy (S&P). IEEE Computer Society, 2013, pp. 526–540.

[147] J. Somorovsky, “Curious padding oracle in OpenSSL (cve-2016-
2107),” 2016. [Online]. Available: https://web-in-security.blogspot.
com/2016/05/curious-padding-oracle-in-openssl-cve.html

[148] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in IEEE Sympo-

sium on Security and Privacy (S&P). IEEE, 2019, pp. 1–19.

[149] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX

Security Symposium (USENIX). USENIX Association, 2018, pp. 973–
990.

[150] G. Barthe, B. Grégoire, and V. Laporte, “Secure compilation of side-
channel countermeasures: The case of cryptographic ”constant-time”,”
in IEEE Computer Security Foundations Symposium (CSF). IEEE
Computer Society, 2018, pp. 328–343.

[151] D. Molnar, M. Piotrowski, D. Schultz, and D. A. Wagner, “The program
counter security model: Automatic detection and removal of control-
flow side channel attacks,” in International Conference on Information

Security and Cryptology (ICISC), ser. LNCS, vol. 3935. Springer,
2005, pp. 156–168.

[152] A. Langley, “ctgrind,” 2010. [Online]. Available: https://github.com/
agl/ctgrind/

[153] M. Andrysco, A. Nötzli, F. Brown, R. Jhala, and D. Stefan, “Towards
verified, constant-time floating point operations,” in ACM Conference

on Computer and Communications Security (CCS). ACM, 2018, pp.
1369–1382.

[154] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,” in
IEEE Symposium on Security and Privacy (S&P). IEEE Computer
Society, 2015, pp. 623–639.

[155] D. Kohlbrenner and H. Shacham, “On the effectiveness of mitigations
against floating-point timing channels,” in USENIX Security Symposium

(USENIX). USENIX Association, 2017, pp. 69–81.

https://github.com/agl/curve25519-donna
https://gmplib.org/
https://github.com/veorq/cryptocoding
http://www.openssl.org/~bodo/tls-cbc.txt
http://www.openssl.org/~bodo/tls-cbc.txt
https://web-in-security.blogspot.com/2016/05/curious-padding-oracle-in-openssl-cve.html
https://web-in-security.blogspot.com/2016/05/curious-padding-oracle-in-openssl-cve.html
https://github.com/agl/ctgrind/
https://github.com/agl/ctgrind/

[156] T. Kaufmann, H. Pelletier, S. Vaudenay, and K. Villegas, “When
constant-time source yields variable-time binary: Exploiting
curve25519-donna built with MSVC 2015,” in International

Conference on Cryptology and Network Security (CANS), ser.
LNCS, vol. 10052, 2016, pp. 573–582.

[157] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie,
and A. Trieu, “Formal verification of a constant-time preserving C
compiler,” Proc. ACM Program. Lang., vol. 4, no. POPL, pp. 7:1–7:30,
2020.

[158] A. Reid, “Trustworthy specifications of arm R© v8-a and v8-m system
level architecture,” in 2016 Formal Methods in Computer-Aided De-

sign, FMCAD 2016, Mountain View, CA, USA, October 3-6, 2016.
IEEE, 2016, pp. 161–168.

[159] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M.
Norton, P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark,
N. Krishnaswami, and P. Sewell, “ISA semantics for armv8-a, risc-v,
and CHERI-MIPS,” PACMPL, vol. 3, no. POPL, pp. 71:1–71:31, 2019.

[160] G. Heiser, “For safety’s sake: We need a new hardware-software
contract!” IEEE Design & Test, vol. 35, no. 2, pp. 27–30, 2018.

[161] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware
design language for timing-sensitive information-flow security,” in
International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS). ACM, 2015, pp. 503–
516.

[162] M. Tiwari, H. M. G. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, “Complete information flow tracking from the gates up,”
in International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS). ACM, 2009, pp. 109–
120.

[163] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam,
R. Kastner, T. Sherwood, B. Hardekopf, and F. T. Chong, “Sap-
per: a language for hardware-level security policy enforcement,” in
International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS). ACM, 2014, pp. 97–
112.

[164] X. Li, M. Tiwari, J. Oberg, V. Kashyap, F. T. Chong, T. Sherwood, and
B. Hardekopf, “Caisson: a hardware description language for secure
information flow,” in ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI). ACM, 2011, pp. 109–
120.

[165] K. von Gleissenthall, R. G. Kici, D. Stefan, and R. Jhala, “IODINE:
verifying constant-time execution of hardware,” in USENIX Security

Symposium (USENIX). USENIX Association, 2019, pp. 1411–1428.

[166] H. Eldib, C. Wang, and P. Schaumont, “Smt-based verification of soft-
ware countermeasures against side-channel attacks,” in International

Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS), ser. LNCS, vol. 8413. Springer, 2014, pp. 62–77.

[167] A. G. Bayrak, F. Regazzoni, D. Novo, and P. Ienne, “Sleuth: Automated
verification of software power analysis countermeasures,” in Confer-

ence on Cryptographic Hardware and Embedded Systems (CHES), ser.
LNCS, vol. 8086. Springer, 2013, pp. 293–310.

[168] A. Moss, E. Oswald, D. Page, and M. Tunstall, “Compiler assisted
masking,” in Conference on Cryptographic Hardware and Embedded

Systems (CHES), ser. LNCS, vol. 7428. Springer, 2012, pp. 58–75.

[169] H. Eldib and C. Wang, “Synthesis of masking countermeasures against
side channel attacks,” in International Conference on Computer-Aided

Verification (CAV), ser. LNCS, vol. 8559. Springer, 2014, pp. 114–130.

[170] G. Barthe, S. Belaı̈d, F. Dupressoir, P. Fouque, B. Grégoire, and
P. Strub, “Verified proofs of higher-order masking,” in Annual Inter-

national Conference on the Theory and Applications of Cryptographic

Techniques (EUROCRYPT), ser. LNCS, vol. 9056. Springer, 2015,
pp. 457–485.

[171] G. Barthe, S. Belaı̈d, G. Cassiers, P. Fouque, B. Grégoire, and F. Stan-
daert, “maskverif: Automated verification of higher-order masking in
presence of physical defaults,” in European Symposium on Research

in Computer Security (ESORICS), ser. LNCS, vol. 11735. Springer,
2019, pp. 300–318.

[172] J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir, “Certified
computer-aided cryptography: efficient provably secure machine code
from high-level implementations,” in ACM Conference on Computer

and Communications Security (CCS). ACM, 2013, pp. 1217–1230.

[173] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel, “Verified correct-
ness and security of openssl HMAC,” in USENIX Security Symposium

(USENIX). USENIX Association, 2015, pp. 207–221.

[174] J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir, “Verifiable
side-channel security of cryptographic implementations: Constant-time
MEE-CBC,” in International Conference on Fast Software Encryption

(FSE), ser. LNCS, vol. 9783. Springer, 2016, pp. 163–184.
[175] A. Tomb, “Automated verification of real-world cryptographic imple-

mentations,” IEEE Security & Privacy, vol. 14, no. 6, pp. 26–33, 2016.
[176] J. K. Zinzindohoue, E. Bartzia, and K. Bhargavan, “A verified extensi-

ble library of elliptic curves,” in IEEE Computer Security Foundations

Symposium (CSF). IEEE Computer Society, 2016, pp. 296–309.
[177] K. Q. Ye, M. Green, N. Sanguansin, L. Beringer, A. Petcher, and A. W.

Appel, “Verified correctness and security of mbedTLS HMAC-DRBG,”
in ACM Conference on Computer and Communications Security (CCS).
ACM, 2017, pp. 2007–2020.

[178] A. Chudnov, N. Collins, B. Cook, J. Dodds, B. Huffman,
C. MacCárthaigh, S. Magill, E. Mertens, E. Mullen, S. Tasiran,
A. Tomb, and E. Westbrook, “Continuous formal verification of amazon
s2n,” in International Conference on Computer-Aided Verification

(CAV), ser. LNCS, vol. 10982. Springer, 2018, pp. 430–446.
[179] K. Eldefrawy and V. Pereira, “A high-assurance evaluator for machine-

checked secure multiparty computation,” in ACM Conference on Com-

puter and Communications Security (CCS). ACM, 2019, pp. 851–868.
[180] J. Protzenko, B. Beurdouche, D. Merigoux, and K. Bhargavan, “For-

mally verified cryptographic web applications in webassembly,” in
IEEE Symposium on Security and Privacy (S&P). IEEE, 2019, pp.
1256–1274.

[181] C. Meyer and J. Schwenk, “Sok: Lessons learned from SSL/TLS
attacks,” in Proc. of the International Workshop on Information Security

Applications (WISA), ser. LNCS, vol. 8267. Springer, 2013, pp. 189–
209.

[182] J. Clark and P. C. van Oorschot, “Sok: SSL and HTTPS: revisiting
past challenges and evaluating certificate trust model enhancements,”
in IEEE Symposium on Security and Privacy (S&P). IEEE Computer
Society, 2013, pp. 511–525.

[183] K. G. Paterson and T. van der Merwe, “Reactive and proactive
standardisation of TLS,” in International Conference on Security Stan-

dardisation Research (SSR), ser. LNCS, vol. 10074. Springer, 2016,
pp. 160–186.

[184] T. Ringer, K. Palmskog, I. Sergey, M. Gligoric, and Z. Tatlock, “QED
at large: A survey of engineering of formally verified software,”
Foundations and Trends in Programming Languages, vol. 5, no. 2-3,
pp. 102–281, 2019.

[185] D. R. Jeffery, M. Staples, J. Andronick, G. Klein, and T. C. Murray,
“An empirical research agenda for understanding formal methods
productivity,” Information & Software Technology, vol. 60, pp. 102–
112, 2015.

[186] K. Bhargavan, F. Kiefer, and P. Strub, “hacspec: Towards verifiable
crypto standards,” in International Conference on Security Standardi-

sation Research (SSR), ser. LNCS, vol. 11322. Springer, 2018, pp.
1–20.

[187] T. C. Hales, “The nsa back door to nist,” Notices of the AMS, vol. 61,
no. 2, pp. 190–192, 2014.

[188] S. Checkoway, J. Maskiewicz, C. Garman, J. Fried, S. Cohney,
M. Green, N. Heninger, R. Weinmann, E. Rescorla, and H. Shacham,
“A systematic analysis of the juniper dual EC incident,” in ACM

Conference on Computer and Communications Security (CCS). ACM,
2016, pp. 468–479.

[189] A. Inoue, T. Iwata, K. Minematsu, and B. Poettering, “Cryptanalysis
of OCB2: attacks on authenticity and confidentiality,” in International

Cryptology Conference (CRYPTO), 2019, pp. 3–31.
[190] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta,

R. Perlner, and D. Smith-Tone, Report on post-quantum cryptography.
US Department of Commerce, National Institute of Standards and
Technology, 2016.

