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ABSTRACT

Blockchain is a distributed and decentralized ledger for record-
ing transactions. It is maintained and shared among the
participating nodes by utilizing cryptographic primitives. A
consensus protocol ensures that all nodes agree on a unique
order inwhich records are appended. However, current block-
chain solutions are facing scalability issues. Many methods,
such as Off-chain and Directed Acyclic Graph (DAG) solu-
tions, have been proposed to address the issue. However,
they have inherent drawbacks, e.g., forming parasite chains.
Performance, such as throughput and latency, is also im-
portant to a blockchain system. Sharding has emerged as a
good candidate that can overcome both the scalability and
performance problems in blockchain. To date, there is no
systematic work that analyzes the sharding protocols. To
bridge this gap, this paper provides a systematic and compre-
hensive review on blockchain sharding techniques. We first
present a general design flow of sharding protocols and then
discuss key design challenges. For each challenge, we ana-
lyze and compare the techniques in state-of-the-art solutions.
Finally, we discuss several potential research directions in
blockchain sharding.
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1 INTRODUCTION

The blockchain has become a key technology for imple-
menting distributed ledgers. It allows a group of partici-
pating nodes (or parties) that do not trust each other to
provide trustworthy and immutable services. Distributed
ledgers were initially used as tamper-evident logs to record
data. They are typically maintained by independent parties

without a central authority, for example, in systems like
SUNDR [95], SPORC [66], and Tamper-Evident Logging [53].
The blockchain became popular because of its success in
crypto-currencies, e.g., Bitcoin [107]. Blockchain stands in
the tradition of distributed protocols for both secure mul-
tiparty computation and replicated services for tolerating
Byzantine faults [101]. With blockchain, a group of parties
can act as a dependable and trusted third party for main-
taining a shared state, mediating exchanges, and providing
a secure computing engine [34].

Consensus is one of the most important problems in block-
chain, as in any distributed systems where many nodes must
reach an agreement, even in the presence of faults. Current
consensus algorithms are only applicable to small-scale sys-
tems because of complexity, e.g., the Practical Byzantine
Fault Tolerance protocol (PBFT) [37] with less than 20 partic-
ipating nodes. Scalability is an issue that has to be addressed
before adopting blockchain in large-scale applications. Re-
cently, many solutions have been proposed to achieve the
scale-out throughput by allowing participating nodes only
to acquire a fraction of the entire transaction set, for ex-
ample, an Off-chain solution [114], Directed Acyclic Graph
(DAG) [115] and blockchain sharding [100]. However, the off-
chain solution is more subject to forks and the transactions
in the DAG layout are not organized in a chain structure.
Among all proposed methods, sharding schemes seem to be
the most effective candidate as it can overcome both perfor-
mance and scalability problems. A sharding scheme splits the
processing of transactions among smaller groups of nodes,
called shards. As a result, shards can work in parallel to max-
imize the performance and improve the throughput while
requiring significantly less communication, computation,
and storage overhead, allowing the scheme to work in large
systems [141].
Particularly, sharding technology utilizes the concept of

committees. The term committee is also used to refer to a
subset of participating nodes that collaborate to finish a spe-
cific function. The notion of committees in the context of
consensus protocols was first introduced by Bracha [25] to
reduce the round complexity of Byzantine agreement. Using
committees to reduce the communication and computation
overhead of Byzantine agreement dates back to the work
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of King et al. [88, 89]. However, they provided only theoret-
ical results and the techniques cannot be directly used in
a blockchain setting. Sharding-based blockchain protocols
can increase the transaction throughput when more partic-
ipants join the network because more committees can be
formed to process transactions in parallel. The total num-
ber of transactions processed in each consensus round by
the entire network is multiplied by the number of commit-
tees. For security reasons, a sharding scheme needs to fairly
and randomly divide the network into small shards with the
vanishing probability of any shard having an overwhelming
number of adversaries.
Although sharding is promising, it still faces many spe-

cific design challenges. We need to identify key components
in blockchain sharding, understand the challenges in each
component, and systematically study potential solutions to
each challenge. To date, there has been no systematic and
comprehensive study or review on blockchain sharding. To
fill the gap, this paper presents a comprehensive and system-
atic study of sharding techniques in blockchain. We identify
the key components in sharding schemes and the major chal-
lenges in each component. As a systematization of knowl-
edge on blockchain sharding, we also analyze and compare
the state-of-the-art solutions.
The rest of the paper is organized as follows. Section 2

introduces various models and taxonomies of blockchain
systems. Section 3 gives an overview of sharding. Section 4
discusses consensus protocols. Section 5 presents the ap-
proaches to generating epoch randomness. Section 6 dis-
cusses how to deal with cross-sharding transactions. Sec-
tion 7 discusses the reconfiguration of epochs. Section 8
compares the state-of-the-art sharding protocols. Section 9
concludes this paper.

2 PRELIMINARIES

This section introduces various models and taxonomies for
blockchain protocols, followed by discussion on typical block-
chain settings and scalability issues. In this paper, we con-
sider the terms node, replica, party, entity, and participant

having the same meaning as participating node.

2.1 Models in Blockchain

2.1.1 Communication Models. A consensus protocol for dis-
tributed systems is greatly dependent on the underlying
communication network. Typically, we can categorize com-
munication networks into three types [5]: strongly synchro-
nous, partially synchronous, and asynchronous. A network
is said to be strongly synchronous if there exists a known
fixed bound, δ , such that every message takes at most δ time
units to travel from one node to another in the network. A
network is said to be partially synchronous if there exists a

fixed bound, δ , on the network delay and one of the following
conditions holds: 1) δ always holds, but is unknown; 2) δ is
known, but only starts at some unknown time. A network is
said to be asynchronous if there is no upper bound on the net-
work delay. It is worth mentioning that the communication
network models also vary by the network adversarial models,
e.g., adversarial network scheduling models and oblivious
adversarial models [6].

A consensus protocol must meet three requirements [103]:
(a) Non-triviality. If a correct entity outputs a value v , then
some entity proposed v ; (b) Safety. If a correct entity outputs
a value v , then all correct entities output the same value
v; (c) Liveness. If all correct entities initiated the protocol,
then, eventually, all correct entities output some value. Note
that Fisher, Lynch and Paterson (FLP) [68] proved that a
deterministic agreement protocol in an asynchronous net-
work cannot guarantee liveness if one entity may crash, even
when links are assumed to be reliable. In an asynchronous
system, one cannot distinguish between a crashed node and
a correct one. Theoretically, deciding the full network’s state
and deducing from it an agreed-upon output is impossible.
However, there exist some extensions to circumvent the FLP
result to achieve an asynchronous consensus, e.g., random-
ization, timing assumptions, failure detectors, and strong
primitives [6].

2.1.2 Fault Models. We distinguish two types of fault con-
sensus: crash fault-tolerant consensus (CFT) and non-crash
(Byzantine) fault-tolerant consensus (BFT) [98]. Different
failure models have been considered in the literature, and
they have distinct behaviors. In general, a crash fault is where
a machine simply stops all computation and communication,
and a non-crash fault is where it acts arbitrarily, but can-
not break the cryptographic primitives, e.g., cryptographic
hashes, MACs, message digests, and digital signatures. For
instance, in a crash fault model, nodes may fail at any time.
When a node fails, it stops processing, sending, or receiv-
ing messages. Typically, failed nodes remain silent forever
although some distributed protocols have considered node
recovery. Tolerating the crash faults (e.g., corrupted par-
ticipating nodes) as well as network faults (e.g., network
partitions or asynchrony) reflects the inability of otherwise
correct machines to communicate among each other in a
timely manner. This reflects how a typical CFT fault affects
the system functionalities. At the heart of these systems
typically lies a CFT-based state-machine replication (SMR)
primitive [39]. However, these systems cannot deal with
non-crash faults, which is also called Byzantine failure. In
Byzantine failure models, failed nodes may take arbitrary
actions, including sending and receiving messages that are
specially crafted to break the consensus process.
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Classic CFT and BFT explicitly model machine faults only.
These are then combined with an orthogonal network fault
model, for either synchronous or asynchronous networks.
Thus, the related work can be classified into four categories:
synchronous CFT [52], asynchronous CFT [109], synchro-
nous BFT [59], and asynchronous BFT [76] [36]. The Byzan-
tine setting is of relevance to security-critical settings and
traditional consensus protocols that tolerate crash failures
only.

2.2 BFT Consensus Scalability

Sharding a blockchain largely relies on BFT consensus pro-
tocols to reach consensus. However, most BFT protocols are
limited in their scalability, either in terms of network size
(e.g., number of nodes) or the overall throughput. The de-
sign space for improving them is vast. We will use Practical
BFT (PBFT) [37] as an example to explain BFT scalability.
The original PBFT protocol requires n = 3f + 1 nodes to
tolerate up to f Byzantine faults. It has been shown not to
scale beyond a dozen nodes due to its quadratic communi-
cation complexity [58]. Typically, scaling protocols for BFT
focuses on either reducing the number of nodes required
to tolerate f Byzantine faults [15, 44], or reducing the pro-
tocol’s communication complexity to allow larger network
sizes [90].

Reducing the number of nodes. To tolerate f Byzantine
nodes that can equivocate in a quorum system like PBFT,
quorums must be intersected by at least f + 1 nodes [102].
Consequently, if a BFT protocol requires n = 3f + 1, its
quorum size is at least 2f + 1. The smaller n means the
lower communication cost incurred in tolerating the same
number of faults; it also means that for the same number of
nodes n, the network can tolerate more faulty nodes. One
way to reduce the number of nodes is to randomly select
a small set of consensus nodes, as a committee, to run a
consensus process. A smaller consensus committee can lead
to better throughput, as a smaller committee attains higher
throughput due to lower communication overhead. Sharding
technology reduces the consensus process within one shard.
However, in this scenario, the security of each shard, e.g.,
the ratio of the number of faulty nodes to the size of a shard,
will be the top concern. It can be mitigated by utilizing some
mechanisms, e.g., the epoch randomness, to guarantee the
łgood majorityž for each shard with a high probability [100].

Another way to reduce the number of nodes is to uti-
lize techniques to get down the n from 3f + 1 to 2f + 1.
Those techniques are mainly based on leveraging external
components (e.g., the trusted hardware) or lessening the sys-
tem models. For example, BFT-TO [48], a hardware-assisted
BFT, with less replicas, shows that it is possible to imple-
ment a Byzantine SMR algorithm with only 2f + 1 replicas

by expending the system with a simple trusted distributed
component. Similarly, there exist a few other algorithms to
achieve the consensus with less replicas, such as A2M-BFT-
EA [44], MinBFT [133], MinZyzzyva [133], EBAWA [132],
CheapBFT [82], and FastBFT [97]. Besides, there also exist
some other work to achieve the same purpose by lessening
the system models. For example, the work in [1] improves
the BFT threshold to 2f + 1 by utilizing a relaxed synchrony
assumption.

Reducing communication complexity. PBFT protocol has
been perceived to be a communication-heavy protocol. There
is a long-standing myth that BFT is not scalable to the num-
ber of participants n, since most existing solutions incur the
message transmission of O(n2), even under favorable net-
work conditions. As a result, existing BFT chains involve very
few nodes (e.g., 21 in [75]). Even with a reduced network size,
PBFT still has a communication complexity of O(n2). Byz-
coin [90] proposed an optimization wherein the leader uses
a collective signing protocol (CoSi) [128] to aggregate other
node’s messages into a single authenticated message. By do-
ing so, each node only needs to forward its messages to the
leader and verify the aggregate message from the latter. In
this way, by avoiding broadcasting, the communication com-
plexity is reduced to O(n). Besides, there is some work [56]
on utilizing trusted execution environments (TEEs) (e.g., In-
tel SGX [50]) to scale distributed consensus. TEEs provide a
protected memory and isolated execution so that the regular
operating systems or applications can neither control nor
observe the data being stored or processed inside them [64].
Generally, a trusted hardware can only crash but not be
Byzantine. However, introducing trusted hardware into con-
sensus nodes is expensive, and specific knowledge is needed
to implement the protocol. Similarly, the security in this cate-
gory can be mitigated by using cryptograhic primitives, such
as threshold signatures [23] [125].

By splitting a network into multiple committees, sharding
technology reduces the number of consensus nodes within
committees and further reduces the communication com-
plexity.

2.3 Scalability in Sharding Blockchain

The blockchain scalability can be evaluated by two metrics:
transaction throughput (e.g., the maximum rate at which the
blockchain can process transactions) and latency (e.g., the
time to confirm that a transaction has been included in the
blockchain). Blockchain with message communication com-
plexityO(n) per node, where n is the number of participating
nodes, is typically referred to as a łscalable" blockchain since
its throughput will not decrease with the number of par-
ticipating nodes and the communication capacities in the
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network. Sharding is one such solution that fairly and ran-
domly divides the network into small shards with vanishing
probability of any shard having an overwhelming number
of adversaries.
In general, when considering scalability in sharding, it

is restricted to approaches targeting the blockchain’s core
design, e.g., on-chain solutions, rather than techniques that
delegate to parallel off-path blockchain instances such as
sidechains (one of the off-chain solutions) [12]. Sharding
based blockchain systems typically operate in epochs (e.g.,
one epoch specifies the maximum time to form one block):
the assignment of nodes to committees is valid only for the
duration of that epoch. The number of committees scales
linearly to the amount of computational power available in
the system, and the number of nodes within a committee can
be flexible. Thus, as more nodes join the network, the trans-
action throughput increases without adding to the latency,
since messages needed for consensus are decoupled from
computation and broadcast of the final block to be added to
the blockchain. However, sharding a blockchain is difficult
because it must ensure some properties, e.g., a transaction
(i.e., spending some cryptocurrencies) is only executed once
on the entire network. If a transaction that should happen
only once executes more than once, it goes into a situation
of double spending [116]. Thus, we need to understand the
essential components on sharding-based blockchain system.

3 SHARDING OVERVIEW

Originally, sharding is a type of database partitioning tech-
nique that separates a very large database into much smaller,
faster, more easily managed parts called data shards [99]. The
term shard represents a small part of the whole set. Tech-
nically, sharding is a synonym for horizontal partitioning,
which makes a large database more manageable. The key
idea of sharding in blockchain is to partition the network
into smaller committees, each of which processes a disjoint
set of transactions (or a łshard"). Specifically, the number of
committees grows linearly in the total computational power
of the network. And each committee has a reasonably small
number of members so they can run a classic Byzantine con-
sensus protocol to decide their agreed set of transactions in
parallel.

3.1 Problem Definition

Assume that there exist n participating nodes having the
same computational power, a fraction f of which is con-
trolled by a Byzantine adversary. The network accepts trans-
actions per block, e.g., a transaction i in block j is repre-

sented by an integer x
j
i ∈ ZN , where ZN [38] is the ring of

integers modulo N . All nodes have access to an externally-
specified constraint function C : ZN → {0, 1} to determine

the validity of each transaction. The sharding protocol is
to seek a protocol Π running between nodes which out-
puts a set X which contains k separate łshards" or subsets

Xi = {x
j
i }(1 ≤ j ≤ |Xi |) such that the following conditions

hold:
• Agreement. Honest nodes agree on X with a probability

of at least 1 − 2−λ , for a given security parameter λ.
• Validity. The agreed shard X satisfies the specified con-

straint function C , e.g., ∀i ∈ {1...k},∀x
j
i ∈ Xi ,C(x

j
i ) = 1.

• Scalability. The value of k grows almost linearly with
the size of the network.

The goal of sharding is to split the network into multiple
committees, each processing a separate set of transactions
(e.g., Xi ) called a shard, and the number of shards k grows
near linearly on the size of a network. Each shard needs to
get an agreement localized within a small committee, which
makes the consensus procedure more efficient. Typically, the
computation and bandwidth used per node stay constant
regardless of n and k . For instance, in blockchain, once the
network agrees on the set X , it can create a cryptographic
digest of X and form a hash-chain with previously agreed
sets in the previous runs of Π, which serve as a distributed
ledger of transactions.

3.2 Sharding Overview

Typically, the sharding protocol proceeds in epochs, each

of which decides on a set of values X =
⋃2s

i=1Xi where 2
s

is the number of subsets Xi . The key idea is to automati-
cally parallelize the available computation power, dividing it
into several smaller committees, each processing a disjoint
set of transactions or shards. We take Elastico [100] as an
example. The number of committees grows proportionally
to the total computation power in the network. All com-
mittees, each of which has a small constant number c of
members, run a classical BFT consensus protocol internally
to agree on one block. For a decentralized system, it needs
first to define the membership, and there exist several ways
to resolve a membership, e.g., proof-of-work (PoW) [62],
proof-of-stake (PoS) [87], proof-of-storage [142], and proof-
of-personhood [24]. A permissionless sharding protocol typ-
ically consists of five critical components in each consensus
round.
1). Identity establishment and committee formation. To

join in the protocol, each node needs to establish an identi-
tye.g., an identity consisting of a public key, an IP address and
a proof-of-work (PoW) solution. Each node then is assigned
to a committee corresponding to its established identity. In
this process, the system needs to prevent the Sybil iden-
tity [60]. However, for a permissioned blockchain, it does
not require this process.
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2). Overlay setup for committees. Once the committees are
formed, each node communicates to discover the identities
of other nodes in its committee. For a blockchain, an overlay
of a committee is a fully connected subgraph containing all
the committee members. Typically, this process can be done
with a gossip protocol [70].

3). Intra-committee consensus. Each node within a com-
mittee runs a standard consensus protocol to agree on a
single set of transactions. In this process, all honest members
must agree on the proposed block within its committee.
4). Cross-shard transaction processing. The transaction

should be atomically committed in the whole system. For
cross-shard transactions, the related shards need to get con-
sistency. Typically, this process requires a kind of łrelay"
transaction to synchronize among related shards.
5). Epoch reconfiguration. To guarantee the security of

the shards, the shards need to be reconfigured, requiring
a randomness. This randomness will be used for the next
epoch.
The above five points are the most critical components

for a permissionless blockchain sharding.
To design a sharding protocol, it needs to deal with several

key challenges. The first challenge is how to uniformly split
all nodes into several committees so that each committee has
the majority honest with high probability. Good randomness
is a critical component to partially address this challenge,
which provides high-entropy output [49]. However, achiev-
ing good randomness in a distributed network is a known
hard problem. Section 5 will provide a detailed discussion
on epoch randomness. The state-of-the-art solution can only
tolerate a small fraction of maliciousness (e.g., 1/6), with
excessive message complexity [7]. Typically, the adversary
is not static and can adaptively observe all the protocol runs.
The second challenge is how to guarantee that the adversary
does not gain a significant advantage in biasing its opera-
tions or creating Sybil identities (if in public blockchain).
Thus, due to the Byzantine faults and network delays in real
networks, the sharding protocol must tolerate a varied rate
of nodes creation and inconsistency in views of committee
members. For a permissionless blockchain, the protocol also
needs to deal with one more challenge since the nodes have
no inherent identities or external PKI to trust. A malicious
node can simulate many virtual nodes, thereby creating a
large set of sybils [108]. Thus, the protocol must provide an
effective mechanism to establish their identities to limit the
number of Sybil identities created by malicious nodes.

4 CONSENSUS PROTOCOLS

Sharding on blockchain requires consensus protocols to
agree on the proposed blocks. However, capturing a rep-
resentative and longitudinal view of a topic in blockchain

consensus is challenging [13]. Different consensus protocols
function differently in the overall sharding procedure. This
section presents the state-of-the-art consensus protocols for
blockchain sharding in a general way.

4.1 Consensus Classification

In general, protocols can be put in two categories when
being used in the blockchain sharding: PoX and BFT. We
know Proof-of-Work (PoW) mechanism on Bitcoin [107] and
Proof-of-Stake (PoS) on Ethereum [85]. Technically speaking,
PoW and PoS are not the decent łconsensus protocol", whose
mechanisms are used for determining the membership or
the stake in a Sybil-attack-resistant fashion. Due to historical
reasons, e.g., Bitcoin used PoW as a łconsensus" protocol
to build a bitcoin blockchain, we literally categorize them
into consensus protocols. For example, in a hybrid consensus
(e.g., ByzCoin [90] and Hybrid Consensus [110]), the decent
consensus protocol (the algorithm for agreement on a shared
history) is separable from and orthogonal to the membership
Sybil-resistance scheme (e.g., PoW). Here we use Proof-of-X
(PoX) to represent all alternatives of proof-of-something (in-
cluding PoW and PoS), and use BFT to represent Byzantine-
based consensus protocols. In a sharding scheme, both PoX
and BFT work together to achieve the consensus process.
Roughly speaking, both protocols have different tasks in
an overall sharding scheme, which is a dynamic committee
based scheme. PoX is typically used for committee formation
(e.g., PoW in Elastico [100]) to establish the committee mem-
bers and these corresponding identifies, while BFT is used for
the intra-committee consensus, which is used within a com-
mittee to form the blocks. Thus, it is necessary to introduce
both PoX and BFT separately.

4.1.1 PoX. Most PoX-based consensus protocols require
that the participating node has some kinds of efforts or re-
sources to prove its validity as a miner. We take PoW and
PoS as examples to illustrate the PoX mechanisms.

PoW is also calledNakamoto consensus in blockchain after
its originator [62], proposed in 1992, for spam Email protec-
tion. In PoW, the nodes that generate hashes are calledminers

and the process is referred to asmining. When applying PoW
as a general consensus in blockchain, it is subject to vari-
ous kinds of attacks [107], such as forks, double-spending
attacks, and 51% attacks. These are the general problems in
PoW consensus. However, when implementing PoW into
blockchain sharding protocols, due to running PoW locally,
special care is required, e.g., selfish mining [65]. Selfish min-
ing allows colluding miners to generate more valid blocks
than their computing power would normally allow if they
were following the standard protocol. These valid blocks
are typically generated ahead of time, so that the colluding
miners withhold blocks that they have found, and then select
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a favorite one to maximize these advantages, e.g., controlling
one shard. Thus, applying PoW into blockchain sharding
requires an agreed epoch randomness for each epoch. Still,
most of the state-of-the-art sharding protocols use PoW to
establish the membership for a shard.
Compared to PoW, PoS protocols replace wasteful com-

putations with useful łwork" derived from the alternative
commonly accessible resources. For example, participants
of PoS vote on new blocks weighted by their in-band invest-
ment such as the amount of currency held in the PPCoin
blockchain [87]. In general, PoS has a candidate pool which
contains all qualified participants called stakeholders (e.g.,
the amount of stake is larger than a threshold value) [17] [57].
A common approach is to randomly elect a leader from the
stakeholders, which then appends a block to the blockchain.
However, in blockchain sharding, PoS may be subject to the
grinding attacks [45], in which a miner re-creates a block
multiple times until it is likely that the miner can create a
second block shortly afterward. We should mention that
PoS is not just one but instead a collection of protocols.
There exist many PoS alternatives, such as Algorand [72],
Ouroboros [85], Ouroboros Praos [57], Ethereum [139], etc.

Besides the main PoS protocol, there exist other PoX-based
alternatives, which require miners to hold or prove the own-
ership of assets. We list three alternatives: proof-of-deposit
(PoD) [93], proof-of-burn (PoB) [111] and proof-of-coin-age

(PoCA) [86]. Readers are referred to the corresponding papers
for their details.

4.1.2 BFT. Most shard-based systems use classic BFT con-
sensus protocols, e.g., PBFT, as its intra-shard consensus
protocol. In this section, we focus on discussing the poten-
tial BFT consensus protocols, or their novel compositions
which can be tailored for use as the consensus protocols, in
blockchains. Roughly speaking, BFT protocols can be clas-
sified into two categories: leader-based BFT and leaderless
BFT. Most BFT protocols are leader-based, e.g., PBFT or BFT-
SMaRt [18]; and leaderless protocols include SINTRA [32]
and HoneyBadger [106].
Actual systems that implement PBFT or its variants are

much harder to find than systemswhich implement Paxos/VSR
[131]. BFT-SMaRt [126], launched around 2015, is a widely
tested implementation of BFT consensus protocols. Similar
to Paxos/VSR, Byzantine consensus, such as PBFT and BFT-
SMaRt, expects an eventually synchronous network to make
progress. Without this assumption, only randomized pro-
tocols for Byzantine consensus are possible, e.g., SINTRA
(relying on distributed cryptography) [32] and HoneyBad-
ger [106], which can achieve ennventual consensus on an
asynchronous network.

Still, many well-known blockchain projects use PBFT and
BFT-SMaRt protocols. For example, Hyperledger Fabric [3]

and Tendermint Core [26] implement PBFT as these consen-
sus protocols; Symbiont [129] and R3 Corda [80] use BFT-
SMaRt as their consensus protocols. We briefly discuss these
two leader-based BFT consensus protocols, which can be
used as intra-shard consensus process.

PBFT. PBFT can tolerate up to 1/3 Byzantine faults. We
briefly describe its consensus procedures. One replica, the
primary/leader replica, decides the order for clients’ requests,
and forwards them to other replicas, the secondary replicas.
All replicas together then run a three-phase (pre-prepare/
prepare/commit) agreement protocol to agree on the order
of requests. Each replica processes every request and sends
a response to the corresponding client. The PBFT protocol
has the important guarantee that safety is maintained even
during periods of timing violations, progress only depends
on the leader. On detecting that the leader replica is faulty
through the consensus procedure, the other replicas trigger
a view-change protocol to select a new leader. The leader-
based protocol works very well in practice and is suitable in
blockchain, however, it is subject to scalability issues.

BFT-SMaRt. BFT-SMaRt implements a BFT total-ordermul-
ticast protocol for the replication layer of coordination ser-
vice [18]. It assumes a similar system model as BFT SMR [36]
[46]: n ≥ 3f + 1 replicas to tolerate f Byzantine faults, and
unbounded number of faulty-prone clients and eventual syn-
chrony to ensure liveness. Typically, the BFT-SMaRt consists
three key components: Total Order Multicast [123], State
Transfer [19], and Reconfiguration [29]. We refer interested
readers to [19, 29, 123] for the details.

Besides the above legacy leader-based BFT protocols and
the mentioned BFT protocols in Section 2.2, there exist sev-
eral variants or newly invented algorithms, e.g., Hotstuff [140],
Tendermint [26], and Ouroboros-BFT [84]. Due to the page
limit, we refer interested readers to the corresponding refer-
ences for the details.

We now briefly discuss the leaderless BFT protocols. This
type of BFT protocols mainly target on the asynchronous set-
tings, which are based on the randomized atomic broadcast
protocols. Unlike existing weakly/partially synchronous pro-
tocols, in an asynchronous network, messages are eventually
delivered but no other timing assumption is made, as defined
in Section 2.1. We take SINTRA [32] and HoneyBadger [106]
as examples to describe the leaderless BFT protocols.

SINTRA [32]. SINTRA is a Secure INtrusion-Tolerant Repli-
cation Architecture for coordination in asynchronous net-
works subject to Byzantine faults. It is a system implemen-
tation based on the asynchronous atomic broadcast proto-
col [30], which consists of a reduction from atomic broadcast
(ABC) to common subset agreement (ACS), as well as a reduc-
tion from ACS to multi-value validated agreement (MVBA).
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Security is achieved through the use of threshold public-key
cryptography, in particular through a cryptographic com-
mon coin based on the Diffie-Hellman problem that undelies
the randomized protocols in SINTRA.

HoneyBadger [106]. HoneyBadgerBFT essentially follows
asynchronous secure computing with optimal resilience [16],
which uses reliable broadcast (RBC) and asynchronous bi-
nary Byzantine agreement (ABA) to achieve ACS. HoneyBad-
ger cherry-picks a bandwidth-efficient, erasure-code RBC
(AVID broadcast) [33] and the most efficient ABC to realize.
Specifically, HoneyBadger uses threshold signature to pro-
vide common coins for randomized ABA protocol, which
achieves a higher throughput by aggressively batching client
transactions.

Besides the above two leaderless BFT protocols, there exist
some other peer-reviewed and non-peer-reviewed works,
such as BEAT [61], and DBFT [51].

4.2 Committee Configuration

In the sharding protocol, the membership of a shard is dy-
namically changed in each epoch to guarantee safety and
security. A reconfigurable committee needs some mecha-
nisms to track committee membership. This is related to
how to configure the committees. Typically, there are four
ways to configure a committee within the consensus process:
static, rolling (single), full, and rolling (multiple).

Static: In a static setting, the committee members are not
periodically changed, which is a typical configuration in
permissioned systems. For example, Hyperledger [3] and
RSCoin [55] are based on this setting, where committee mem-
bers have known and trusted identities and its threat model
does not include Sybil attacks.

Rolling (Single): The committee is updated in a sliding
window fashion, where new nodes are added to the current
committee and the oldest members are ejected. ByzCoin [90]
adopts this scheme, in which each node has a voting power
proportional to the number of mining blocks it has in the
current window.

Full: This scheme is a lottery-based mechanism, such as
Algorand [72] and SnowWhite [54], to select the committee
members for each epoch using randomness generated based
on previous blocks.

Rolling (Multiple): The committee swaps outmultiplemem-
bers each time. For example, Omniledger [91] uses cryp-
tographic sortition to select a subset of committees to be
swapped out and replaced with new members. This is done
in a way that the ratio between honest and Byzantine mem-
bers in a committee is maintained.

We should mention that many blockchain mechanisms for
committee configuration are not orthogonal and potentially
complementary, instead of mutually exclusive. For example,
a large HyperLedger-like permissioned system could serve
as a big łdirectory" from which an OmniLedger-like random
committee selection could take place. Similarly, a ByzCoin-
like rolling committee selection mechanism based on PoX
(e.g., PoW or PoS) could be used to drive the selection of mul-
tiple independent committees for OmniLedger-like sharded
consensus, not just a signle committee as in ByzCoin.

In a sharding-based protocol, to maintain the committee’s
safety and security, it typically adopts either full or rolling
(multiple) committee configuration schemes. To configure
or reconfigure the committees, a good epoch randomness is
required.

5 EPOCH RANDOMNESS

In blockchain sharding protocols, when multiple nodes are
involved in a consensus protocol, an important issue is how
the participating nodes are assigned to which committee so
that the generated committee is łfair". For example, each
generated committee requires that it has a majority of hon-
est nodes, and the ratio of faulty nodes should not exceed a
threshold that the consensus protocol specified for that shard.
One approach to assigning nodes to committees is done stat-
ically according to a specified policy, in which it assumes the
existence of a random source or a trusted third party, e.g.,
RSCoin [55]. However, such approach can be problematic
in a permissionless setting, which requires a shared random
coin [47] [73]. Another approach is to dynamically allocate
nodes to committees. This dynamic allocation should be a
randomized process, aiming to stop an adversary from con-
centrating its presence in one committee, and exceeding the
Byzantine tolerance threshold. However, generating good
randomness in a distributed manner is a known hard prob-
lem. For example, the distributed random number generator
in [7] can only tolerate up to 1/6 fraction of Byzantine nodes,
while still incurring a high message complexity. There exist
other randomness generation schemes with different goals
or sychrony [83] settings, such as AVSS [30] and APSS [143]
for asynchronous communication model, RandHound and
RandHerd [127] for scalability in synchronous communica-
tion model. In this section, we discuss the potential epoch
randomness for sharding-based protocols, and summarize
the start-of-the-art epoch randomness generation for block-
chain.

5.1 Properties of Epoch Randomness

To generate a seed for sharding securely without requiring a
trusted randomness beacon [55] or binding the protocol to
PoX, a good distributed randomness generation is required to
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meet with several features: public-verifiability, unbiasability,
unpredictability, and availability.

1). Public-Verifiability: A third party, e.g., not directly par-
taking processes, should also be able to verify generated
value. As soon as a new random beacon value becomes avail-
able, all parties can verify the correctness of the new value
using public information only.
2). Bias-Resistance: This is the assurance that any single

participant or a colluding adversary cannot influence the
future randomness beacon values to its own advantage.
3). Unpredictability: Participants (either correct or adver-

sarial) should not be able to predict or precompute future
random beacon values in advance.

4). Availability: This property shows that any single partic-
ipant or a colluding adversary should not be able to prevent
the progress.

5.2 Randomness Generation Methods

Roughly speaking, there exist several ways to generate ran-
domness, which can be considered as the baseline of bias-
resistance randomness generation. This section introduces
these baselines, including Verifiable Random Function (VRF)
[105], Verifiable Secret Sharing (VSS) [67], Public Verifiable
Secret Sharing (PVSS) [124], and Verifiable Delay Functions
(VDF) [21] [113].

5.2.1 VRF. Intuitively, the idea behind a VRF is that Alice
asks Bob to compute a function fs on some input x . Only
Bob is able to compute fs as its result is dependent on some
secret value s , which only Bob knows. The result v = fs (x)

has the property of being unique and computationally indis-
tinguishable from a truly random string v ′ of equal length.
Alice wants to be sure that Bob indeed provided the unique
correct result of the computations [14]. Formally, VRFs ad-
dress the issue of unverifiability of Pseudo-Random Func-
tions (PRFs). Consider the case where a party computing
fs (x1), fs (x2), ..., fs (xn) claims the corresponding outputs are
o1,o2, ...,on . Without knowledge of s , an observer cannot ver-
ify that applying fs to xi indeed yields the corresponding
output oi . As soon as s gets published, future output values
are not indistinguishable from truly random strings anymore.
They get fully predictable and can be efficiently computed
by any party.
To obtain verifiability without compromising the unpre-

dictability property of future outputs, a party knowing the
seed s publishes v = fs (x) together with a proof proo fx .
This proof allows verification of the fact that v = fx (x)

indeed holds without revealing s . It is crucial that a party
knowing s can only construct a valid proof for a unique v
for every x [105]. However, for the proof itself, there is no
uniqueness requirement. Some proposed solution is based

on interactive zero-knowledge proofs [105]. However, in-
teractive zero-knowledge proofs incur high communication
complexity.

5.2.2 VSS. Secret sharing is a scheme to distribute a se-
cret S among a certain number of participants, each one
receiving a part of the secret, called a share. Shares can be
combined by collaborating participants to reconstruct the
original secret. A (t,n)-secret sharing scheme is that any
group of t (or more) out of n participants can recover S from
their shares. Shamir’s secret sharing protocol [120] is based
on polynomial interpolation. The key idea behind it is the fact
that given t points (x1,y1), (x2,y2), ..., (xt ,yt ) with different
x-coordinates, there is a unique polynomial p(x) of degree
(t − 1) going through all of the points. However, Shamir’s
secret sharing protocol is based on an important assumption:
the participants assume that they are given correct shares.
And this limits the ability to apply this scheme in, e.g., fault-
tolerant or even trust-less distributed systems. For example,
this assumption does not hold in Byzantine fault tolerance
systems. Thus, a verifiable secret sharing (VSS) is required
to protect against malicious dealers/participants.

5.2.3 PVSS. A PVSS scheme [124] [118] makes it possible
for any party to verify secret-shares without revealing any
information about the secrets or the shares. During the share
distribution phase, for each trustee i , the dealer produces
an encrypted share Ei (si ) along with a non-interactive zero-
knowledge proof (NIZK) [41] to prove that Ei (si ) correctly en-
crypts a valid share si of s . During the reconstruction phase,
trustees recover s by pooling t properly-decrypted shares.
They then publish s along with all shares and NIZK proofs
showing that the shares were properly decrypted. There also
exist some optimized PVSS schemes, such as SCRAPE [35].
Typically, PVSS runs in three steps:

1). The dealer chooses a degree t − 1 secret sharing poly-
nomial s(x) =

∑t−1
j=0 ajx j and creates, for each trustee i ∈

{1, ...,n}, an encrypted share Ŝi = X
s(i)
i of the shared secret

S0 = Gs(0). The dealer also creates commitments Aj = Haj ,
where H , G is a generator of д, and for each share a NIZK

encryption consistency proof P̂i , Afterwards, the dealer pub-

lishes Ŝi , P̂i and Aj .

2). Each trustee i verifies his share Ŝi using P̂i and Aj , and

if valid, publishes the decrypted share Si = (Ŝi )
x−1i together

with z NIZK decryption consistency proof Pi .
3). The dealer checks the validity of Si against Pi , discards

invalid shares and, if there are at least t out of n decrypted
shares left, recovers the shared secret S0 through Lagrange
interpolation.

We should notice that VRFs play a different role from VSS
and PVSS: VRFs allow individual parties to produce verifi-
able randomness, while both VSS and PVSS allow groups



SoK: Sharding on Blockchain AFT ’19, October 21–23, 2019, Zurich, Switzerland

of parties to produce collective randomness, a.k.a łcommon
coins".
As a brief comparison between VSS and PVSS, VSS aims

to resist malicious share holders, in which there is a verifica-
tion mechanism for each share holder to verify validity of its
share, while in PVSS, not just the participants can verify their
own shares, but anybody can verfiy that the participants re-
ceived correct shares. However, most existing PVSS schemes
are complex and inefficient, especially in computation. PVSS
schemes are typically łsingle-use", while VSS schemes and
the distributed key generation (DKG) algorithms built from
them can produce multi-use distributed threshold key pairs.

5.2.4 VDF. Essentially, a verifiable delay function (VDF) re-
quires a specified number of sequential steps to evaluate, yet
produce a unique output that can be efficiently and publicly
verified. VDFs have many applications in decentralized sys-
tems, including public randomness beacons, leader election
in consensus protocols, and proofs of replications. A VDF is a
function f : X → Y that takes a prescribed time to compute,
even on a parallel computer. However, once computed, the
output can be quickly verified by anyone. Moreover, every
input x ∈ X must have a unique valid output y ∈ Y. Spe-
cially, a VDF that implements a function X → Y is a tuple
of three algorithms:
• Setup(λ,T ) → pp is a randomized algorithm that takes a

security parameter λ and a time boundT , and outputs public
parameters pp.
• Eval(pp, x) → (y, π ) takes an input x ∈ X and outputs

a y ∈ Y and a proof π .
• Veri f y(pp, x,y, π ) → {accept, reject} outputs accept if

y is the correct evaluation of the VDF on input x .
If (y, π ) ← Eval(pp, x) then Veri f y(pp, x,y, π ) = accept ,

for all x ∈ X and pp output by Setup(π ,T ). Besides, a VDF
must satisfy three properties: ϵ-evaluation time, sequentiality
and uniqueness. We refer interested readers to [21, 22, 113]
for the details.

Besides the above randomness generation baselines, there
exist other works, such as random zoo [94], determinis-
tic threshold signatures [20] and distributed key genera-
tion [83].

5.3 Comparison

Epoch randomness generation in sharding protocols can
be treated as a separate module to provide randomness, so
that the node can be fairly assigned to the shards according
to the public randomness. Thus, any efficient randomness
generation algorithm can be implemented as a separated
module.

We provide a comparison of the state-of-the-art epoch ran-
domness generation schemes, and discuss these approaches.
In our comparison, we do not only consider the protocols

specifically targeted at implementing random beacons, but
also by including approaches that can readily provide ran-
dom beacon functionality as a product of their intended ap-
plications, such as a provision of a distributed public ledger.
Our comparison mainly focuses on the network models, its
achieved properties, complexity evaluation metrics, and the
baseline technology. However, we must mention that some
characteristics were not specified or not available, so we
left them blank. Table 1 shows a comparison for generating
public-verifiable randomness for blockchain. About the com-
plexity evaluation, n refers to the number of the participants
in the overall network, and if the protocols are based on
clusters/subsets, c denotes the size of some subset of nodes.
And then the value c is protocol dependent, and is typically
a constant and negligible factor for the resulting complexity
in practice.

6 CROSS-SHARD TRANSACTIONS

To scale blockchain, transactions need to be distributed among
multiple committees (or shards), and each shard processes a
subset of transactions in parallel. Typically, a transaction
may have multiple inputs and outputs. However, due to
sharding technology, the inputs and outputs of a transac-
tion might be in different shards, and these transactions
are called cross-shard (or inter-shard) transactions. Due to
random distribution of the transactions in sharding proto-
cols, a cross-shard transaction can be considered as a global
transaction, which should be executed by different shards.
To achieve a global consistency among different shards, we
need to carefully handle the cross-shard transactions. Taking
Unspent Transaction-Output (UTXO) model as an example,
it is expected that the majority of transactions (e.g., more
than 90% in [91]) are cross-sharded in a traditional model,
where UTXOs are randomly assigned to shards for process-
ing [100] [55]. For the Account/Balance transaction model,
the cross-shard transactions also can reach up to 90% when
the number of shards is more than 64 [137].

To enable value transfer between different shards thereby
achieving shard interoperability, supporting for cross-shard
transactions is crucial in any sharded-ledger system. In this
section, we first describe a general transaction model, Un-
spent Transaction-Output (UTXO), and present its poten-
tial issues in blockchain sharding protocols. Then we dis-
cuss potential techniques (e.g., atomic commit) to deal with
cross-shard transactions. Finally, we present the state-of-the-
art approaches to cope with the cross-shard transactions in
sharding.
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Table 1: A comparison for generating public-verifiable randomness for blockchain
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Cachin et al. [31]
Async

yes uniq. thr. sig. ✓ ✓ ✓ O(n2) O(n) O(1)

RandShare [127] no PVSS ✗† ✓ ✓ O(n3) O(n3) O(n3)

Algorand [72]
Semi-Syn

no VRF 10−12 ↗ ✗ O(cn)∗ O(c)∗ O(1)∗

Ouroboros Praos [57] no VRF ✓ ↗ ✗ O(n)∗ O(1)∗ O(1)∗

Ouroboros [85]

Syn

no PVSS ✓ ✓ ✓ O(n3) O(n3) O(n3)

Proof-of-Work [107] no hash func. ✓ ↗ ✗ O(n) very high≀ O(1)
Proof-of-Delay [27] no hash func. ✓ ✓ ✓ O(n) very high≀ O(loд∆)◦

Caucus [10] no hash func. ✓ ↗ ✗ O(n) O(1) O(1)
Dfinity [79] yes⊕ BLS sig. 10−12 ✓ ✓ O(cn) O(c) O(1)
Scrape [35] no PVSS ✓ ✓ ✓ O(n3) O(n2) O(n2)

RandHound [127] no PVSS 0.08% ✓ ✓ O(c2n) O(c2n) O(c2n)

RandHerd [127] yes⊕ PVSS/Cosi 0.08% ✓ ✓ O(c2loдn)‡ O(c2loдn) O(1)

HydRand [117] no PVSS ✓ ✓↗ ✓ O(n2) O(n) O(n)

▽ provides an upper bound of failure probability for the parameterized protocol.
∗ represents that the randomness generation approach is not in a standalone way, it requires additional communication and

verification steps for underlying consensus protocols or implementation of e.g., bulletin board. In this table, these steps are not

counted into the complexity.
↗ provides the probabilistic guarantees for unpredictability, which quickly, e.g., exponentially in the waiting time, get stronger

as the longer a client waits after it commits to using a future protocol output. However, in HydRand, the unpredictability can be

reached with certainty only after f rounds.
⊕ In Dfinity and RandHerd, nodes are split into smaller groups, and within each of these groups, a distributed key generation

protocol is required.
† means that the protocol only provides liveness with additional synchrony assumption.
‡ depends on the relation between n and c . For example, assume that each node only sends a single message during the process

of generating a round’s randomness, already yields a complexity of O(n), which is higher than the stated O(c2loдn) for a constant

group size c and large n.
◦ means the verification process is executed within a smart contract via an interactive challenge/response protocol. The logarithmic

complexity O(∆) depends on security parameter ∆.
≀ shows the complexity is not dependent on the number of nodes n.

6.1 Transaction Model

UTXO model is adopted by most blockchain protocols and
distributed applications. It represents each step in the evalu-
ation of a data object as a separate atomic state of the ledger.
Such a state is created by a transaction and destroyed (or łcon-
sumed") by another unique transaction occurring later [3].
More specifically, in a typical UTXO model, an input repre-
sents the value that is to be spent and output represents the
new value that is created in response to the input values’
consumption. We can think of inputs and outputs represent-
ing different phases of the state of the same asset (e.g., in
asset management), where state includes its ownership (or
shares). Clearly, an input can be used only once, and stops
being considered in the system.

In a UTXO model, input fields implicitly or explicitly refer
output fields of other transactions that have not yet been
spent. At the validation time, verifiers need to ensure that the
outputs referenced by the inputs of the transactions have not
been spent and upon transaction-commitment we see them
as spent. However, in a multi-shard system, some transac-
tions might involve a coordination between multiple shards.
Such transactions might require to access or manipulate the
state that is handled by different shards. The inter-shard
consensus ensures that this takes place consistently and
atomically across all involved shards.
A simple but inadequate strawman approach to a cross-

shard transaction, is to concurrently send a transaction to
all the corresponding shards for processing. However, for
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a cross-shard transaction, due to the separated verification
processes, some shards might commit this transaction while
others might abort it. In such a case the UTXOs at the shard
who accepted the transactions are lost as there is no straight-
forward way to roll back a half-committed transaction, with-
out adding exploitable race conditions. Thus, we require to
ensure the consistency of transactions between shards, to
prevent double spending and to prevent unspent funds from
being locked forever.

6.2 Atomic Commit

In multi-shard blockchain, it requires to guarantee the global
transactions with the properties of ACID [134]: Atomicity,
Consistency, Isolation, and Durability. Atomic Commitment
(AC) protocol was intially proposed to handle the global
ACID transactions [78]. To ensure the transaction atomicity
in a blockchain sharding, we require the participants to agree
on one output for the transaction: either commit or abort,
but not both.

One of the earliest and most commonly used protocols for
atomic commitment is the two-phase commit (2PC) proto-
col [74]. In a 2PC protocol, the global transaction manager
(or called coordinator node) sends a łprepare" message to
all local transactions. The local transactions try to become
ready to commit, i.e., reach the ready state. In this state, a
local transaction has successfully finished all its actions. To
be able to follow a global commit decision, the changes of
the local transactions are written to a stable storage. Differ-
ent to the committed state, it is still possible to abort a local
transaction in the ready state [77]. In other words, the local
transaction is able to follow either a global commit or abort
decision.
When it is required that every correct participant even-

tually reaches an outcome despite the failure of other par-
ticipants, the problem is called Non-Blocking Atomic Com-

mitment (NB-AC) [11]. Solving this problem enables correct
participants to relinquish resources (e.g., locks) without wait-
ing for crashed participants to recover. The 2PC algorithm
solves AC but not NB-AC, whereas the three-phase commit
(3PC) algorithm [121] [122] solves NB-AC in synchronous
systems (when communication delays and process relative
speeds as bounded). The 3PC protocol introduces an addi-
tional pre-commit state between the ready and commit states,
which ensures that there is no direct transaction between
the non-committable and committable states. This simple
modification makes the 3PC protocol non-blocking under
node failure. However, compared to the 2PC protocol, the
3PC protocol acts as the major performance suppressant in
the design of efficient distributed systems. It can be easily
observed that the addition of the pre-commit state leads to
an extra phase of communication among the nodes. Thus,

it is necessary to design an efficient commit protocol for
geo-scale systems.
However, neither 2PC nor 3PC can be directly applied

to the blockchain sharding schemes without modification.
For different blockchain sharding schemes, they might have
different assumptions among the shards, e.g., the trustwor-
thiness among shards. A practical cross-shard commit ap-
proach depends on its assumptions and the threat models
used. For example, Interledger [130] protocol enables trans-
fers between ledgers, and ledger-provided escrow removes
the need to trust these connectors (e.g., each connector func-
tions as a trusted third party to provide the service to the
payment sender [81]). Analogized to the blockchain shard-
ing scheme, it assumes that different shards (or alternatively
blockchain) that we want to perform atomic transactions
across are mutually distrustful, e.g., one might fail to be
secure and/or live. The mutual distrusts can further lead
to DoS łaccount lockout" attacks, which is why all these
Interledger-type protocols require complex timeout-based
recovery mechanisms. In contrast, OmniLedger relies on
the fact that all shards can be assumed łby construction"
to be both safe and live, which means that the simple 2PC
approach works fine in that context, and the NB-AC problem
does not need to be solved in that threat model. But in Om-
niLedger the shards have to trust each other. If we weaken
the security of OmniLedger’s shard selection so that shards
no longer fully trust each other, then we need to bring back
more complex cross-shard commit protocols.
Thus, for different blockchain sharding schemes, they

might have different mechanisms to deal with the the cross-
shard transactions. We will discuss these different solutions
for specific sharding schemes.

6.3 Methods to Deal with Cross-shard
Transactions

Instead of presenting all possible AC protocols, this section
presents several state-of-the-art schemes to deal with cross-
shard transactions. Some of these schemes do not use the
term łshard" but instead using łcommittee" to deal with the
cross-committee transactions, both have the same meaning,
i.e., one transaction involving multiple independent entities.
However, some sharding protocols, such as Elastico, do not
provide a clear or separated process to deal with the cross-
shard transactions.

6.3.1 RSCoin. RSCoin [55] is a cryptocurrency framework
in which central banks maintain complete control over the
monetary supply, but rely on a distributed set of authori-
ties, or mintettes, to prevent double-spending. The mintettes
process the lower-level blocks, which form a potentially cross-
referenced chain. The communication between committee
members takes place indirectly through the client, and it also
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relies on the client to ensure completion of the transactions.
A client first gets signed łclearance" from the majority of the
mintettes that manage the transaction inputs. Next, the client
sends the transaction and signed clearance to mintettes cor-
responding to transaction outputs. The mintettes check the
validity of the transaction and verify signed evidence from
input mintettes that the transaction is not double-spending
any inputs. If the checks pass, the mintettes append the trans-
action to be included in the next block. The system operates
in epochs: at the end of each epoch, mintettes send all cleared
transactions to the central bank, which collates transactions
into blocks that are appended to the blockchain.

However, client/user-driven atomic commit protocols are
vulnerable to DoS if the client stops participating and the
inputs are locked forever. These systems assume that clients
are incentivized to proceed to the unlock phase. Such incen-
tives may exist in a cryptocurrency application where an
unresponsive client will lose its own coins if the inputs are
permanently locked, but do not hold for a general-purpose
platform where inputs may have shared ownership. Besides,
RSCoin relies on a two-phase commit protocol executed
within each shard which, unfortunately, is not Byzantine
fault tolerant and can result in double spending attacks by a
colluding adversary.

6.3.2 Chainspace. Chainspace [2] is a recently proposed,
sharded smart contract platform with privacy built in by
design. To enable scalability on Chainspace, the nodes are
organized into shards that manage the state of objects, keep
track of their validity, and record transactions committed
or aborted. The nodes ensure that only valid transactions,
consisting of encrypted or committed data, along with the
zero-knowledge proofs that assert their correctness, end up
on their shard of the blockchain. The nodes communicate
with the other shards to decide whether to accept or reject
a transaction via inter-shard consensus. Instead of a client-
driven approach, Chainspace runs an atomic commit proto-
col collaboratively between all the concerned committees.
This is achieved by making all the committees act as a re-
source manager for the transactions they manage. To do this,
Chainspace proposes a protocol called Sharded Byzantine

Atomic Commit or S-BAC, which combines existing Byzan-
tine agreement and atomic commit protocols in a novel way.
In S-BAC Byzantine agreement securely keeps a consensus
on a shard of 3f + 1 nodes in total, containing up to f ma-
licious nodes. Atomic commit runs across all shards that
contain objects which the transaction relies on. The transac-
tion is rejected unless all of the shards accept to commit the
transaction.

6.3.3 OmniLedger. OmniLedger [91] uses a Byzantine shard
atomic commit (Atomix) protocol to atomically process trans-
actions across committees, such that each transaction is ei-
ther committed or aborted. Since both deploying atomic
commit protocols and running BFT consensus are unnec-
essarily complex, atomix uses a lock-then-unlock process.
OmniLedger intentionally keeps the shards’ logic simple and
makes any direct shard-to-shard communication unneces-
sary by tasking the client with the responsibility of driving
the unlock process while permitting any other party (e.g.,
validators or even other clients) to fill in for the client if a spe-
cific transaction stalls after being submitted for processing.
Atomix takes a three-step (initialize/lock/unlock) protocol to
deal with cross-shard UTXO transactions. More specifically,
the client first gossips the cross-shard transactions to all
their input shards. Then, OmniLedger takes a two-phase ap-
proach to handle atomic commit, in which each input shard
first locks the corresponding input UTXO(s) and issues a
proof-of-acceptance, if the UTXO is valid. The client collects
responses from all input committees and issues an łunlock to
commit" to the output shard. Interested readers are referred
to [91] for the details.
Both OmniLedger and RSCoin heavily rely on the client

to proceed with the cross-shard transactions, thus both pro-
tocols assume that the client is the honest part. Typically,
OmniLedger allows the output committee to verify transac-
tions independently; the transactions have to be gossiped to
the entire network and one proof needs to be generated for a
batch of transactions, potentially incurring some communi-
cation overhead. Besides, OmniLedger depends on the client
to retrieve the proof which incurs extra burden on typically
lightweight client nodes.

6.3.4 RapidChain. In RapidChain [141], the user does not
attach any proof to transaction. It lets the user commu-
nicate with any committee who routes transaction to its
output committee via the inter-committee routing protocol.
RapaidChain considers a simple UTXO transaction tx =<

(I1, I2),O > that spends coins I1, I2 in shard S1 and S2, re-
spectively, to create a new coin O belonging to shard S3.
The RapidChain engine executes tx by splitting it into three
sub-transactions: txa =< I1, I

′
1 >, txb =< I2, I

′
2 >, and

txc =< (I
′
1, I
′
2),O >, where I

′
1 and I ′2 belong to S3. txa and

txb essentailly transfer I1 and I2 to the output shard, which
are spent by txc to create the final output O . All thress sub-
transactions are single-shard. In case of failures, when, for
example, txb fails while txa succeeds, RapidChain sidesteps
atomicity by informing the owner of I1 to use I ′1 for future
transactions, which has the same effect as rolling back the
failed tx . The cross-shard transaction in RapidChain has
largely relied on the inter-committee routing scheme which
enables the users and committee leaders to quickly locate
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to which committees they should send their transaction.
To achieve this, RapidChain builds a routing overlay net-
work, at the committee level, which is based on a routing
algorithm of Kademlia [104]. Specifically, each RapidChain
committee maintains a routing table of loд(n) records which
point to loд(n) different committees which are distance 2i

for 0 ≤ i ≤ loдn − 1 away.
For cross-shard transactions in RapidChain, one drawback

is that, for each transaction, it creates three different transac-
tions to exchange information among shards. This inherently
increases the number of transactions to be proceeded, and
the communication by sending the extra transactions back to
its input committees also increases. It uses the committee’s
leader to produce these transactions without considering the
status of a leader (e.g., malicious leader). Also, the input com-
mittees include the created new transaction into its leader.
This behavior to some extent modifies the originality of trans-
actions. Besides, the cross-shard transaction largely depends
on the routing algorithm, which is a potential bottleneck.

6.3.5 Discussion. Sharding protocols reduce the communi-
cation, computation and storage requirements of each node
by dividing the blockchain into partitions, each stored by one
of the committees. The cross-shard transactions, however,
makes the verification more challenging. Thus, an efficient
mechanism to deal with the cross-shard transactions is cru-
cial in the design of a practical blockchain sharding protocol.

Intuitively, there exist some fallacies about the client (who
is a coordinator to handle cross-shard transactions) or the
shard consensus leader. Taking OmniLedger and RSCoin
as examples, one fallacy is that if the client performs some
malicious behaviors, then the protocol could not proceed suc-
cessfully. This is not the fact. Both RSCoin and OmniLedger
have backup łgarbage collection" strategies that enable the
ledger (or other clients) to complete or abort cross-shard
transactions that failed or malicious clients might leave un-
completed. It is not a complicated process, and just a matter
of ensuring that the łlock" phase records all the cross-shard
transaction information that a future garbage-collector or
other interested client needs to complete or abort the trans-
action that has an account of interest locked. Another fallacy
is that the OmniLedger uses the leader of a shard to issue
and indicate acceptance or rejection; this might involve some
problems, especially if the leader is a malicious one. This is
also not true. An OmniLedger shard’s leader is merely the
leader of a PBFT-sytle Byzantine consensus group, and has
no power to carry out any (malicious) behaviors itself with-
out getting them validated by a majority of honest nodes
within the same group. In other words, the łaccept" or łre-
ject" decision, like all decisions that an OmniLedger shard
makes, are products of (and layered on top of) the PBFT state
machine, and thus will always be łcorrect" and łhonest"

and łnon-malicious" because of PBFT, unless the system’s
basic security invariants are broken, e.g., leading to fully-
compromised with too many corrupted nodes.
How to efficiently handle the cross-shard transactions

is a fundamental topic in most blockchain sharding proto-
cols. When designing an efficient mechanism to deal with
cross-shard transactions, it requires to consider several sig-
nificant factors, e.g., the atomic commitment scheme within
the shard, the communication complexity among the shards
(e.g., the number of message exchanges), and the transac-
tion model. Technically, the transaction model affects the
cross-shard transaction mechanism significantly. We should
notice that for different applications, they might adopt dif-
ferent transaction models. Currently, most of the state-of-
the-art sharding protocols are still based on the traditional
cryptocurrency-based UTXO model. However, for different
transaction models, it might result different storage require-
ments [135] [136].
Besides the garbage-collection mechanisms, there exist

some blockchain protocols, such as SideCoin [92] and Roller-
Chain [43], utilizing the distributed state snapshotting mech-
anism [40] to record the blockchain’s recent status. And this
state snapshotting mechanism can be applied into sharding
blockchain, e.g., RapidChain, to check the cross-shard trans-
actions much quicker, and it also can be used to reconfigure
the committees of next epoch.

7 EPOCH RECONFIGURATION

Sharding protocols partition the consensus nodes into differ-
ent shards, so that each shard can process the transactions
in parallel, and hence improve the scalability of the whole
system. However, partitioning the nodes into shards in block-
chain sharding introduces new challenges when dealing with
the phenomenon of the churn. For example, corrupted nodes
could strategically leave and rejoin the shards, so that even-
tually they can take over one of the shards and break the
security guarantees of the blockchain protocol. Moreover, the
adversary can actively corrupt a constant number of uncor-
rupted nodes in each epoch even if no nodes join/rejoin [141].
Most current sharding protocols did not explicitly provide
the approaches to deal with the epoch reconfiguration. How-
ever, the epoch reconfiguration is critical to guarantee the
security of blockchain system.
Clearly, to prevent attacks from the adversary, e.g, cor-

rupting a specific shard, the adversary should not have the
knowledge, in advance, how the partition (reconfiguration)
process works. This requires that the partition process should
not be affected by the adversary who do not know which
participating nodes will be assigned to which shard ahead.
Also, for each shard working correctly, it must guarantee
that the majority of participating nodes within each shard
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(e.g., at least 2/3 of the shard members) are honest and fol-
low the consensus protocol. One simple and naive way is to
leverage the randomness, discussed in Section 5. By applying
the randomness on epoch reconfiguration, the probability
of one shard being bad is negligible (e.g., less than 10−7). In
this section, we present several state-of-the-art schemes to
deal with epoch reconfiguration, which typically rely on the
(modified) epoch randomness and the specific mechanisms
together. We call epoch reconfiguration and shard reconfig-
uration interchangeably in this section.

7.1 Hash + Final Committee

One simple and naive approach for epoch reconfiguration
is to re-elect all committees periodically faster than the ad-
versary’s ability to generate the churn. A previous approach
is used to generate epoch randomness [8]. However, this so-
lution tolerates at most 1/6 fraction of malicious nodes and
only works for a small network since it essentially bears
an excessive message complexity. The cryptographic hash
operations can be used to achieve the same purpose at some
extent. In the last step of Elastico [100], it takes a similar
but optimized approach via the final committee (or called
consensus committee) to achieve epoch reconfiguration. The
final committee at the final step generates a set of random
strings used for next epoch. In general, Elastico consists of
two main phases for epoch reconfiguration.
In the first phase of the reconfiguration, each member of

the final committee chooses a r -bit random string Ri and
sends a hash H (Ri ) to everyone in that committee. The final
committee then runs an interactive consistency protocol to
agree on a single set of hash values S [112] and broadcasts
S to everyone in the network. This set S contains at least
2c/3 (where c is the size of the final committee) hash values
and serves as a commitment to the random strings. In the
second phase, eachmember of the final committee broadcasts
a message containing the random string Ri itself to everyone
(i.e., not just to the final committee). This phase starts only
after the agreement of S is done, i.e., having 2c/3 signatures
on S . This is to guarantee that honest members release their
commitments only after they are sure that the committee has
agreed on S and the adversary cannot change its commitment.
After the second phase, each node in this system has received
at least 2c/3 and at most 3c/2 pairs of Ri and H (Ri ) from
members of the final committee, since the honest members
follow the protocol, while the malicious nodes may choose
not to release their commitments. Nodes discard any random
strings Ri that do not match the commitments H (Ri ). Finally,
the agreed-to set S is used to configure the next epoch.

However, there exist several weaknesses in this kind of
epoch reconfiguration. First, re-generating all the commit-
tees is very expensive due to the large overhead of the boot-
strapping protocol. Second, maintaining a separate ledger
for each committee is challenging when several committee
members may be fully replaced in every epoch. Third, the
randomness used in each epoch can be biased by an adver-
sary, and hence, compromise the committee selection process
and even allow malicious nodes to precompute PoW puzzles.
Besides, Elastico requires a trusted setup for generating an
initial common randomness that is revealed to all parties at
the same time.

7.2 DRG + PoW + Cuckoo Rule

RapidChain adopts a different approach to handle partial
issues in Elastico via Cuckoo rule [9] [119]. In general, the
epoch reconfiguration has three components: offline PoW,
epoch randomness generation, and reconfiguration process.
The reconfiguration process uses Cuckoo rule to re-organize
only a subset of shard members during the reconfiguration
event that shards are balanced with respect to their sizes as
nodes join or leave the network.
RapidChain relies on PoW to protect against Sybil attack

by requiring every node who wants to join or stay in the
protocol to solve a PoW puzzle. In each epoch, a fresh puzzle
is generated based on the epoch randomness so that the
adversary cannot precompute the solutions ahead of the
time to compromise the committees. All nodes in RapidChain
solve a PoW offline without making the protocol stop and
wait for the solution. Thus, the expensive PoW calculations
are performed off the critical latency path. The reference
committee (CR ) in RapidChain is responsible to check the
PoW solutions of all nodes at the start of each epoch, and then
agrees on a reference block consisting of the list of all active
nodes for that epoch as well as their assigned committees.

To compute an offline PoW solution, an epoch randomness
generation process is needed, in which the members of the
reference committee run a distributed random generation

(DRG) protocol to agree on an unbiased random value. CR

includes the randomness in the reference block so that other
committees can randomize their epochs. RapidChain uses a
verifiable secret sharing (VSS) of Feldman [67] to generate
an unbiased randomness within the reference committee.
Any new node who wishes to join the system can contact
any node in any committees at any time and request the
randomness of this epoch as a fresh PoW puzzle.
To assign the nodes to shards, it first maps each node to

a random position in [0, 1) using a hash function. Then the
range [0, 1) is partitioned into k regions of size k/n, and a
committee is defined as the group of nodes that are assigned
to O(loд(n)) regions, for some constant k . Awerbuch and
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Scheideler [9] propose the Cuckoo rule to ensure that the set
of committees created in the range [0, 1) remain robust to
join-leave attacks. Based on this rule, when a node wants to
join the network, it is placed at a random position x ∈ [0, 1),
while all nodes in a constant-sized interval surrounding x
are moved (or cuckoo’ed) to a new random position in [0, 1).
It is proved that given ε ≤ 1/2 − 1/k in a steady state, all
regions of size O(loд(n))/n have O(loд(n)) nodes (i.e., they
are balanced) of which less than 1/3 are faulty, with high
probability, for any polynomial number of rounds.

7.3 VRF + Global Reconfiguration

Similar to Elastico, OminiLedger also runs a global recon-
figuration protocol at each epoch, e.g., once a day, to allow
new participants to join the protocol. The protocol generates
identities and assigns participants to shards using a slow
identity blockchain protocol that assumes the synchronous
channels. In each epoch, a fresh randomness is generated
using a bias-resistant random generation protocol that relies
on a verifiable random function (VRF) [105] for unpredicat-
ble leader election in a way similar to the lottery algorithm
of Algorand [72]. Then, the protocol uses the elected leader
as the client in the RandHound [127] protocol to generate
the epoch randomness.

More specifically, at the beginning of an epoch, each valida-
tor computes a ticket which contains all properly registered
validators of the current epoch (e.g., as stored in the identity
blockchain) and the view counter. Validators then gossip
these tickets with each other for a time δ , after which they
lock in the lowest-value valid ticket they have seen thus far
and accept the corresponding node as the leader of the Rand-
Hound protocol run. Once the validators have successfully
completed a run of RandHound and the leader has broadcast
randomness together with its correctness proof, each of the
registered validators can verify and use this randomness to
compute a permutation, and subdivide the result into ap-
proximately equally-sized buckets, thereby determining the
assignment of nodes to shards.

8 STATE-OF-THE-ART SHARDING
PROTOCOLS

This section summaries a comparison of the state-of-the-art
blockchain sharding protocols in amore general way.We first
summarize and compare several state-of-the-art blockchain
sharding protocols, and then briefly discuss other protocols
to deal with the scalability in blockchain.

8.1 Comparision of State-of-the-art
Sharding Protocols

Table 2 provides a comprehensive comparison for the current
classic blockchain sharding protocols. Instead of consider-
ing the individual protocols, we map out the landscape by
extracting and evaluating the high-level design themes in
blockchain sharding schemes. The system designer can have
a general overview on these blockchain sharding schemes.
In this section, the terms committee and shard have the same
meaning.

In this comparison, we mainly focus on four aspects: pro-
tocol settings, intra-committee consensus, inter-committee
consensus, as well as safety and their performances. Note
that some properties have already been described in the pre-
vious sections. The protocol settings show how the protocols
set up in an overall perspective, such as committee forma-
tion, network model. The intra-committee consensus shows
how to achieve a consensus within a committee, and the
inter-committee consensus shows how to achieve an agree-
ment among different committees. Finally, we compare their
safety aspects and the achieved performance.
Protocol Settings: Committee formation refers to the cri-

teria used to allow nodes to join a committee, which describes
the mechanisms to establish the membership, e.g., member-
ship based on PoW or PoS. This is an important aspect of
decentralized and permissionless systems to thwart Sybil
attacks. However, for permissioned blockchain, e.g., RSCoin,
we do not need to deal with Sybil attacks, since permissioned
systems operate in a relatively trust environment where
the participating nodes are granted committee membership
based on these organizational policy. Consistency shows the
likelihood that the system will reach a consensus on the
proposed value, typically, it can be either strong or weak. In
general, classic BFT protocols offer strong consistency, but
are subject to the scalability issue. Network Model shows the
synchrony of the underlying communication network. Typi-
cally, the communication networks can be categorized into
three types: strongly synchronous, partially synchronous,
and asynchronous.
Intra-Committee Consensus: Committee Configuration

represents how the committee members are assigned to the
committee in a single committee setting, e.g., either the mem-
bers serve on the committee permanently (static) or they are
changed at regular intervals (rolling or swap) for the epoch-
based protocols. Incentives show the mechanisms that keep
participating nodes motivated to participate in the consensus
process and follow its rules. We distinguish the incentives
in two aspects: one is the join process, and the other is the
participating process. Leader indicates, within a specific com-
mittee, where the leader comes from. It can be either elected
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Table 2: A comparison for sharding blockchain protocols

RSCoin

[55]

Chainspace

[2]

Elastico

[100]

OmniLedger

[91]

RapidChain

[141]

Committee

Formation
Permissioned Flexible PoW Pow/PoX Offline PoW

Strong

Consistency
✓ ✓ ✓ ✓ ✓

Network Model ! Async Partial Sync. Partial Sync. Sync.

Single

Intra-committee

Consensus

Committee

Configuration
Static Flexible Full Swap

Rolling

(subset)
Partical Swap

Incentives

(join, participate)
(-, -) (✗, ✗) (✓, ✗) (✓, ✗) (✓, ✗)

Leader Internal Internal Internal Internal Internal

Msg. Compl† O(n) O(n2) O(n2) O(n) O(n)

Multiple

Inter-committee

Consensus

Inter-Committee

Configuration
✗ ✗

Dynamic

(Random)

Dynamic

(Random)

Dynamic

(Random)

Mediated Client ✗ ! Client ✗

Incentives ✗ ✗ ! ✗ ✗

Safety

TX Censorship

Resistance
✓ ✓ ✗ ✓ ✓

DoS

Resistance
✓ ✓∗ ✓ ✓ ✓

Adversary

Model
33% 33% 33% 33%‡ 33%

Performance

Throughput 2k tx/s 1 350 tx/s 2 16 blocks in 110s 3 ≈10k tx/s 4 ≈7,300tx/s 5

Scalable ✓ ✓ ✓ ✓ ✓

Latency <1s <1s 110s for 16 blocks ≈1s 8.7s for 7300tx

✓: has property; ✗: does not have property; ∗: partially has property; −: means the property does not apply to the given category;

!: means the value is missing; †: means message complexity.
‡: each shard tolerates 1/3-fraction adversary, and the overall protocol tolerates only 1/4.
1: 3 nodes/committee and 10 committee in total; 2: 4 nodes/committee and 15 committees in total; 3: 100 nodes/committee and 16

committees in total; 4: 72 nodes/committee (12.5% adversary) and 25 committees in total; 5: 250 nodes/committee and 4000 nodes in

total.

among the current committee (internally), externally, or flexi-
ble (e.g., through the specified smart contracts). For the listed
schemes, all leaders come internally from its committee mem-
bers. Msg. Complexity shows the communication complexity
within one committee at the message level, where n refers
to the number of participating nodes.
Inter-Committee Consensus: Inter-committee configu-

ration shows how the members are assigned to the commit-
tees in a multiple-committee setting, which can be either
static or dynamic. A dynamic approach is typically based on
the randomness generated from the previous epoch.Mediated

indicates how to mediate the cross-sharding transactions. It
can be optionally mediated by an external resource, e.g., the
client. Incentives indicates, for mediators, whether they will
get some rewards for their mediation efforts.
Safety and Performance: For safety, we focus on the

resistance against an adversary. TX Censorship Resistance

shows the system’s resilience to the proposed transactions
being suppressed (i.e., censored) by malicious nodes involved

in consensus process.DoS Resistance represents the resilience
of the nodes involved in consensus to Denial-of-service (DoS)
attacks. If the participants of the consensus protocol are
known in advance, an adversary may launch a DoS attack
against them. Adversary Model represents the fraction of
malicious or faulty nodes that the consensus protocol can
tolerate (e.g., the protocol still works correctly despite the
presence of such nodes). Note that for different adversary
models, it might have different resistance rates. In this com-
parison, the adversary models are all based on the Byzantine
setting. For performance, we target at analyzing its through-
out, latency and scalability. Throughput is the maximum rate
at which transactions can be agreed upon by the consensus
protocol; latency represents the time it takes from when a
transaction is proposed until consensus has been reached on
it. Scalability shows if the system has the ability to achieve
greater throughput when consensus involves a larger num-
ber of nodes. All the listed schemes in Table 2 can scale.
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8.2 Discussion

Besides the sharding-based blockchain protocols summa-
rized in Table 2, there exist other alternatives to deal with
scalability issues, which are conceptually similar to the men-
tioned sharding-based protocols, e.g., Monoxide [137] and
SSChain [42].

Monoxide utilizes the concept of asynchronous consensus
zones, in which each zone is conceptually a shard. Instead
of utilizing UTXO transaction models, this protocol is based
on the account/balance transaction model, which is similar
to a bank account model. It proposes an eventual atomicity

scheme, by relying on the relay transactions, to ensure the
atomicity of transactions across zones. For the consensus
protocol, Monoxide builds on the PoW scheme in general,
and it uses the Chu-ko-nu mining scheme, which allows a sin-
gle PoW solution to create multiple blocks at different zones
simultaneously, to ensure the effective mining power in each
zone to be at the same level of the entire network. Concep-
tually, Monoxide can be categorized as a kind of blockchain
sharding scheme.

SSChain utilizes a two-layer architecture to eliminate the
data migration overhead in reshuffling scheme. In SSChain,
participating nodes can freely join in one or more shards
without reshuffling network periodically. In this two-layer
structure, the first layer is the root chain network, which has
a significantly large portion (e.g., over 50%) of computing
power over the whole network, while the second layer is
the shard networks, in which each shard maintains disjoint
ledgers and independently processes a disjoint subset of
transactions. In the words, the root chain maintains security
of the system, while shards improve the throughput and
decrease storage requirements.
There also a large number of non-peer reviewed block-

chain sharding protocols in the literature, e.g., Aspen [71],
Blockclique [69], Ethereum 2.0 [28], etc. Due to the page limit,
the interested reader are referred to the provided references
for their details.

It is necessary to briefly discuss the techniques to handle
the blockchain scalability (including sharding protocols) in
general. There exists two main-stream solutions: off-chain
solutions [114] [63] and DAG solutions [115].

Off-chain Solutions. In this solutions, each node holds its
transactions locally, referred as łoff-chain", and only sends
a description or the eventual outcome of these transactions
to the łmain chain", referred as łon-chain". However, there
is no guarantee on the validity of the łoff-chain" transac-
tions, either validation node are introduced to validate and
endorse these transactions, or economical deposit should be
provided for the transactions. And, the validity condition
might be compromised due to centralization or the economi-
cal constraint. There exist several key chellenges in off-chain

solutions, e.g., the way to keep the state consistency (and
final conformation of transactions) between łoff-chains" and
the łon-chain" in real-time (or acceptable time) manner, the
centralization and security issues in the łoff-chains" which
rely on intermediaries to aggregate and settle transactions
off-chain.

Directed Acyclic Graph (DAG) Solutions. In DAG, the trans-
actions are not structured in a chain, but in a graph. The
validity is dependent on the (directly or indirectly) outgoing
edges of the transaction, which represents the nodes that
have validated it. A scale-out throughput can be achieved
if the acquirement of the complete graph is not obligated
for all nodes. And, the validity of the transaction might be
compromised due to its dependency on the validators. Also,
there exist some probability that the valid transactions are
appended to the parasite chains [115].

Sharding Solutions. Besides the common issues discussed
in this paper, there exist some potential research topics on
blockchain sharding, such as horizontal sharding (e.g., Chan-
nels [4]) and heterogeneous sharding (e.g., nodes with dif-
ferent capacity), and application-specific blockchain shard-
ing schemes (e.g., sharding schemes targeted to industrial
Internet of Things (IIoT) [136] [138]). Sharding based block-
chain systems make trade-offs between the scalability of
throughout, storage efficiency, and security [96]. A widely
open fundamental question is that Is there a blockchain design
that simultaneously scales throughput, storage efficiency, and

security?

9 CONCLUSION

This paper presents a Systematization of Knowledge for
sharding on blockchain. We identified key components and
challenges in sharding. The publicly verifiable randomness is
critical for placing participating nodes uniformly into shards.
Within each shard, a consensus protocol is needed to reach
an agreement on the blocks. BFT-based protocols are domi-
nating in existing solutions. For the cross-shard transactions,
the protocol needs to guarantee the atomic properties. Fi-
nally, a reconfiguration process is needed at the end of an
epoch. We analyzed several well-known blockchain shard-
ing protocols and then discussed several potential research
directions.
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