UC-34 and UC-79d
Reporting Date: January 1975
Issued: April 1975

SOLA-A Numerical Solution Algorithm for Transient Fluid Flows

by

C. W. Hirt
B. D. Nichols
N. C. Romero

seientific laboratory

of the University of California
los alamos, new mexico 87544

An Alfirmative Action/Equal Opportunity Employer

This work was supported by the Office of Naval Research, contract NAonr-6-75, NR 062-455.

Printed in the 【nited States of America. Availahle from
National Techniral Information Service
(:.S. Department of Commerce
5285 Port Royal Road
Springfield. VA watsi
Price: Printed Cope sidy Microliche $\$ 2.2 \%$

SOLA - A NUMERICAL SOLUTION ALGORITHM FOR TRANSIENT FLUID FEOWS

by
C. W. Hirt
B. D. Nichols
N. C. Romero

Abstract

A finite difference iechnique is presented for solving the NavierStokes equations for an incompressible fluid. The technique, based on the Marker-and-Cell method, is simplified to facilitate its use by persons with little or no experience in numerical fluid dynamics. Section I of the report describes the basic algorithm, SOLA, for confined flows; Sec. Il describes modifications necessary for free or curved rigid surface boundaries. Each includes a flow chart and a FORTRAN listing. Sample problems show how to incorporate simple modifications into the basic code to adapt it to a variety of problems.

INTRODUCTION

Numerical techniques have been used to solve time-dependent incompressible fluid flow problems for well over a decade. ${ }^{1}$ One of the best known techniques, the Marker-and-Cell (MAC) method," uses an Eulerian finite-difference formulation with pressure and velocity as the primary dependent variables. This method, originally developed specifically for problems involving free surfaces, is equally capable of treating flows in confined regions. The basic MAC technique, which has been improved and extended, ${ }^{3-6}$ has been used by researchers around the world for many different applications. The essential ideas of the MAC solution procedure are summarized here so that this report may be used as a self-contained guide. The best description of a sophisticated MAC code, including a flow chart and a FORTRAN computer listing, is given in Ref. 7.

This report describes a highly simplified MAC code, SOLA, that does not use marker particles and does not have built-in setups for internal obstacles or other complicating refinements. SOLA is designed
for persons with little or no experience in numerical fluid dynamics. In addition to serving as an instructional tool, its purpose is to demonstrate that many useful and difficult problems can be solved without large, complicated computer programs. SOLA also provides a basis for developing many new numerical capabilities.

The basic solution technique in SOLA, for incompressible fluid flows without free surfaces, is presented in Sec. I of this report. The equations solved are the Navier-Stokes equations in twodimensional plane or axisymmetric coordinates. Boundaries of the rectangular computing region can be chosen (1) as rigid walls with free-slip or no-slip tangential velocities, (2) as specified inflow or outflow boundaries, (3) as continuative outflow boundaries, or (4) as periodic boundaries. Internal walls and obstacles or sources and sinks can be added by inserting additional boundary conditions in a special section of the code reserved for this purpose.

Section II describes a simple extension of the SOLA code that permits a free surface or curved rigid boundary (free-slip) to be located across the top
or bottom of the fluid region. These surfaces are defined in terms of their height, $\mathrm{H}(\mathrm{x}, \mathrm{t})$ for the top surface and $H B(x, t)$ for the bottom surface, with respect to the bottom of the computational mesh. Although the surface must be single-valued functions of the horizontal coordinate x, many useful and interesting problems can be studied by using them in different combinations.

The basic solution algorithm contained in the SOLA code also serves as a good foundation for developing new codes with other capabilities. For example, a scalar transport equation for density (or temperature) can be easily added to investigate buoyancy-driven flows and flows of stratified fluids. With some modifications of the basic equations, the SOLA solution algorithm has been adapted to saturated or unsaturated flow in porous media, to three-dimensional shallow water motions, to a drift tlux approximation for two-phase flow, and to almost three-dimensional flow of air or water over variable terrain for pollution dispersal models. ${ }^{*}$ Fully threedimensional, time-dependent calculations have also been make with a straightforward extension of the SOLA code persented here.

For persons interested in performing their own calculations, Sec. I contains a simple flow chart, a descriptive list of input parameters. a FORTRAN computer listing for the basic SOLA code, and output from a sample test problem. Section II has a similar flow chart and FORTRAN computer listing for the code version, SOLA - SURF, which contains the curved surface options.

1. SOLA - BASIC SOLUTION ALGORITHM FOR CONFINED FLOWS

A. Equations of Motion

The differential equations to be solved are written in terms of Cartesian coordinates (x, y). For cylindrical (axisymmetric) coordinates, x is the radial coordinate, y the axial coordinate, and several additional terms must be added to the basic equations. In the following equations, these are included with a coefficient ξ, such that $\xi=0$ corresponds to plane geometry and $\xi=1$ corresponds to cylindrical geometry. The SOLA code uses the input parameter CYL instead of ξ.
The mass continuity equation is

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\xi \frac{u}{x}=0 . \tag{1}
\end{equation*}
$$

The equations of motion are the Navier-Stokes equations:

$$
\begin{align*}
& \frac{\partial u}{\partial t}+\frac{\partial u^{2}}{\partial x}+\frac{\partial u v}{\partial y}+\xi \frac{u^{2}}{x}=-\frac{\partial p}{\partial x}+g_{x} \\
& +v\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\xi\left(\frac{1}{x} \frac{\partial u}{\partial x}-\frac{u}{x^{2}}\right)\right] \\
& \frac{\partial v}{\partial t}+\frac{\partial u v}{\partial x}+\frac{\partial v^{2}}{\partial y}+\xi \frac{u v}{x}=-\frac{\partial p}{\partial y}+g_{y} \\
& +v\left[\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\xi}{x} \frac{\partial v}{\partial x}\right] \tag{2}
\end{align*}
$$

The velocity components (u, v) are in the coordinate directions (x, y), p is the ratio of pressure to constant density, and ($\mathrm{g}_{\mathrm{x}}, \mathrm{g}_{\mathrm{y}}$) are body accelerations. The kinematic viscosity coefficient is denoted by the constant ν.

B. Finite Difference Considerations

The finite difference mesh used for numerically solving the above equations consists of rectangular cells of width δx and height δy. The mesh region containing fluid is composed of IBAR cells in the x direction, labeled with the index i, and JBAR cells in the y-direction, labeled with the index j . The fluid region is surrounded by a single layer of fictitious cells (or phantom or bourdary cells) so that the cells in the complete mesh total IMAX $=$ IBAR +2 by $J M A X=J B A R+2$ (see Fig. 1). Fluid velocities and pressures are located at cell positions as shown

Fig. 1.
General mesh arrangement. Fictitious boundary cells are shaded.
in Fig. e: u-velocity at the middle of the vertical sides of a cell. v-velocity at the mididle of the horizontal sides, and pressure at the cell center.

The finite difference notation used in this report is:
$\mathrm{p}_{\mathrm{i}, \mathrm{j}}^{\mathrm{n}}=$ pressure at center of cell (i, j) at time level n
$\begin{aligned} u_{i, j}^{n}= & x \text {-direction velocity at middle of right sidie } \\ & \text { of cell }(i, j) \text { at time level } n\end{aligned}$
$v_{i, j}^{n}=y$-direction velocity at middle of top side of cell (i, j) at time level n .
Subscripts are used for the cell location and superscripts for the time level at which quantities are evaluated such that $\mathrm{t}=\mathrm{n} \delta \mathrm{t}$, where $\delta \mathrm{t}$ is the time increment. In most MAC reports fractional indexes were used to represent quantities located at cell edges, e.g., $u_{i+1 / 2 . j}$ to denote the x-direction velocity on the right-hand side of cell (i, j). In a FORTRAN program, however, fractional indexes are not allowed. Therefore, for consistency, all difference equations are written here as they appear in the actual code.

The difference approximation representing the continuity equation, Eq. (1), for a typical cell (i,j) is

Fig. 2.
Arrangement of finite difference variables in a typical cell.

$$
\begin{align*}
& \frac{1}{\delta x}\left(u_{i, j}^{n+1}-u_{i-1, j}^{n+1}\right)+\frac{1}{\delta y}\left(v_{i, j}^{n+1}-v_{i, j-1}^{n+1}\right) \\
& +\frac{\xi}{2 \delta x(i-1.5)}\left(u_{i, j}^{n+1}+u_{i-1, j}^{n+1}\right)=0 \tag{3}
\end{align*}
$$

The difference equations approximating the Navier-Stokes equations, Eq. (2), are,

$$
\begin{align*}
& u_{i, j}^{n+1}=u_{i, j}^{n}+\delta t\left[\frac{1}{\delta x}\left(p_{i, j}^{n}-p_{i+1, j}^{n}\right)\right. \\
& \left.+g_{x}-F U X-F U Y-F U C+V I S X\right] \text { and } \\
& v_{i, j}^{n+1}=v_{i, j}^{n}+\delta t\left[\frac{1}{\delta y}\left(p_{i, j}^{n}-p_{i, j+1}^{n}\right)\right. \\
& \left.+g_{y}-F V X-F V Y-F V C+V I S Y\right] \tag{4}
\end{align*}
$$

where the convective and viscous fluxes are defined as

$$
\begin{aligned}
F U X= & \frac{1}{4 \delta x}\left[\left(u_{i, j}+u_{i+1, j}\right)^{2}+\alpha\left|u_{f, j}+u_{i+1, j}\right|\right. \\
& \left(u_{i, j}-u_{i+1, j}\right)-\left(u_{i-1, j}+u_{i, j}\right)^{2} \\
& \left.-\alpha\left|u_{i-1, j}+u_{i, j}\right|\left(u_{i-1, j}-u_{i, j}\right)\right]
\end{aligned}
$$

$$
F U Y=\frac{1}{4 \delta y}\left[\left(v_{i, j}+v_{i+1, j}\right)\left(u_{i, j}+u_{i, j+1}\right)\right.
$$

$$
+\alpha \mid v_{i, j}+v_{i+1, j}\left(u_{i, j}-u_{i, j+1}\right)
$$

$$
-\left(v_{i, j-1}+v_{i+1, j-1}\right)\left(u_{i, j-1}+u_{i, j}\right)
$$

$$
\left.-\alpha\left|v_{i, j-1}+v_{i+1, j-1}\right|\left(u_{i, j-1}-u_{i, j}\right)\right]
$$

$$
F U C=\frac{\xi}{8 \delta x(i-1)}\left[\left(u_{i, j}+u_{i+1, j}\right)^{2}+\left(u_{i-1, j}+u_{i, j}\right)^{2}\right.
$$

$$
+\alpha\left|u_{i, j}+u_{i+1, j}\right|\left(u_{i, j}-u_{i+1, j}\right)
$$

$$
\left.+\alpha\left|u_{i-1, j}+u_{i, j}\right|\left(u_{i-1, j}-u_{i, j}\right)\right]
$$

$$
F V X=\frac{1}{4 \delta x}\left[\left(u_{i, j}+u_{i, j+1}\right)\left(u_{i, j}+v_{i \nmid I, j}\right)\right.
$$

$$
+a\left|u_{i, j}+u_{i, j+1}\right|\left(v_{i, j}-v_{i+1, j}\right)
$$

$$
-\left(u_{i-1, j}+u_{i-1, j+1}\right)\left(v_{i-1, j}+v_{i, j}\right)
$$

$$
-\alpha\left\{u_{i-1, j}+u_{i-1, j+1} \mid\left(v_{i-1, j}-v_{i, j}\right)\right]
$$

$$
\begin{aligned}
& F V Y=\frac{1}{4 \delta y}\left[\left(v_{i, j}+v_{i, j+1}\right)^{2}+\alpha / v_{i, j}+v_{i, j+1} \mid 0\right. \\
& \left(v_{i, j}-v_{i, j+1}\right)-\left(v_{i, j-1}+v_{i, j}\right)^{2} \\
& \left.-a\left|v_{i, j-1}+v_{i, j}\right|\left(v_{i, j-1}-v_{i, j}\right)\right] \text {, } \\
& F V C=\frac{E}{8 \delta_{x(i-1.5)}}\left[\left(u_{i, j}+u_{i, j+1}\right)\left(v_{i, j}+v_{i+1, j}\right)\right. \\
& +\left(u_{i-1}+u_{i-1, j+1}\right)\left(v_{i-1, j}+v_{i, j}\right) \\
& +\alpha\left|u_{i, j}+u_{i, j+1}\right|\left(v_{i, j}-v_{i+1, j}\right) \\
& \left.+\alpha \mid u_{i-1, j}+u_{i-1, j+1} l\left(v_{i-1, j}-v_{i, j}\right)\right], \\
& \text { VISX }=v\left[\frac{1}{\delta x^{2}}\left(u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right)\right. \\
& +\frac{1}{\delta y^{2}}\left(u_{1, j+1}-2 u_{i, j}+u_{i, j-1}\right) \\
& \left.+\frac{\xi}{2 \delta x^{2}(i-1)}\left(u_{i+1, j}-u_{i-1, j}\right)-\frac{\xi u_{i, j}}{\delta x^{2}(i-1)^{2}}\right],
\end{aligned}
$$

and

$$
\begin{aligned}
V I S Y & =v\left[\frac{1}{\delta x^{2}}\left(v_{i+1, j}-2 v_{i, j}+v_{i-1, j}\right)\right. \\
& +\frac{1}{\delta y^{2}}\left(v_{i, j+1}-2 v_{i, j}+v_{i, j-1}\right) \\
& \left.+\frac{\xi}{2 \delta x^{2}(i-1.5)}\left(v_{i+1, j}-v_{i-1, j}\right)\right] .
\end{aligned}
$$

All quantities in the above convective and viscous fluxes are to be evaluated at time not. The coefficient α in these expressions gives the desired amount of upstream (donor cell) differencing; that is, when α is zero these difference equations are centered in space and correspond to the original MAC formulation. ${ }^{2}$ The centered equations. however, are numerically unsiable ${ }^{9}$ and generally require some viscosity ν to remain stable. When α is equal to unity the equations reduce to the full upstream or donor cell form, which is stable provided
the fluid is not permitted to cross more than one cell in one time step. In general, α should be chosen slightly larger than the maximum value of

$$
\left|\frac{10 t}{\delta x}\right| \text { or } \left.\frac{v \delta t}{\partial y} \right\rvert\,
$$

occurring in the mesh.
The velocities computed according to Eqs. (4) will not, in general, satisfy the continuity equation. Eq. $\left(i^{2}\right)$. In the MAC method this incompressibility constraint is imposed by adjusting the cell pressures. For example, if the divergence of a cell, i.e., the left side of Eq. (3), is negative corresponding to a net flow of mass into the cell, the cell pressure is increased to eliminate the inflow. Likewise, when there is a net flow out of the cell the pressure is decreased to draw it back. Because there is one pressure variable for each cell, the divergence for each ceil can be driven to zero in this way. The pressure adjustment must be done iteratively, however, because when one cell is adjusted its neighbors are affected. The iteration in SOLA proceeds by sweeping the mesh rows from left to right starting with the bottom row and working upward. For each cell encountered, the divergence D is computed using the most current velocity values available. The pressure change δ p required to make D equal zere is,

$$
\begin{equation*}
s_{p}=-D /\left[2 s t\left(\frac{1}{\delta x^{2}}+\frac{1}{i y^{2}}\right)\right] . \tag{5}
\end{equation*}
$$

The new cell pressure is then $p_{i, j}+\delta \mathbf{p}$, and the velocity components at the sides of the cell are adjusted to reflect this change,

$$
\begin{align*}
& u_{i, j} \rightarrow u_{i, j}+\frac{\delta t \delta p}{\delta x} \\
& u_{i-1, j} \rightarrow u_{i-1, j}-\frac{\delta t \delta p}{\delta x} \\
& v_{i, j} \rightarrow v_{i, j}+\frac{\delta t \delta p}{\delta y} \\
& v_{i, j-1}+v_{i, j-1}-\frac{\delta t \delta p}{\delta y} \tag{6}
\end{align*}
$$

Equation (5) is derived by substituting the right sides of Eqs. (6) into the divergence condition, Eq. (3), and solving for $\delta \mathrm{p}$.

In some cases, convergence of the iteration can be accelerated by multiplying δp by an over-relaxation
factor ω. A value for ω that is often optimium is 1.8 , but in no case should ω be larger than 2.0; otherwise an unstable iteration results.
Because the factor multiplying D in Eq. (5) is constant for all cells, its product with ω is denoted by BEIA in the code and computed automatically in the setup section,

$$
\begin{equation*}
\operatorname{BETA}=\omega /\left[2 \delta t\left(\frac{1}{\delta x^{2}}+\frac{1}{\delta y^{2}}\right)\right] \tag{7}
\end{equation*}
$$

Convergence of the iteration is achieved when all cells have D values satisfying the inequality $\left|D / D_{0}\right|<\epsilon$, where D_{a} is some reference value, and ϵ is typically of the order 10^{-3} or smaller. In practice $D_{\text {, }}$ typically equals unity and ϵ is adjusted to the desired level of accuracy. In this sense D_{0} is superfluous, but it serves as a reminder that an acceptable convergence level must be chosen for each problem.

C. Summary of Steps in a Calculational Cycle

The steps involved in completing one calculational cycle are (1) computing guesses for the new velocities for the eatire mesh from Eqs. (4), which involve only the previous time values for the contributing pressures and velocities in the various flux contributions (1000 sec ion) ${ }^{*}$ and (2) adjusting these velocities iteratively to satisfy the continuity equation, Eq. (3), by making appropriate changes in the cell pressures $(3000$ section). In the iteration. each cell is comsidered successively and is given a pressure change that drives its instantaneous velocity divergence to zero. Finally, when convergence has been achieved, the velocity and pressure fields are at the advanced time level and may be used as starting values for the next cycle.

D. Boundary Conditions

Up to this point, we have avoided applying boundary conditions. However, they are easily imposed by setting appropriate velocities in the fictitious cells surrounding the mesh (2000 section). Consider. for example, the left boundary of the computing mesh. If this boundary is to be a rigid free-slip wall, the normal velocity there must be zero and the

[^0]tangential velocity, should have no normal gradient, i.e.,
\[

\left.$$
\begin{array}{l}
u_{1, j}=0 \\
v_{1, j}=v_{2, j}
\end{array}
$$\right\} for all j
\]

If the left boundary is a no-slip rigid wall, then the tangential velocity component at the wall should also be zero and the conditions imposed are.

$$
\left.\begin{array}{l}
u_{1, j}=0 \\
v_{1, j}=-v_{2, j}
\end{array}\right\} \text { for all } j
$$

These conditions are imposed on the velocities resulting from applying Eqs. (4), and are imposed after each pass through the mesh during the pressure iteration.

Continuative or outflow boundaries always pose a problem for low-speed calculations, because whatever prescription is chosen it can potentially affect the entire flow field upstream. What is needed is a prescription that permits fluid to flow out of the mesh with a minimum of upstream influence. In this code we have used a continuative boundary condition that involves setting. for the left wall, for example,

$$
\left.\begin{array}{l}
u_{1, j}=u_{2, j} \\
v_{1, j}=v_{2, j}
\end{array}\right\} \text { for all } j
$$

These conditions, however, are only imposed after applying Eqs. (4) and not after each pass through the mesh during the pressure iteration. During the iteration the normal boundary velocities can vary with the changes in pressure, as any interior velocity component.

For periodic boundary conditions in the x direction, the left and right boundaries must be set to reflect the periodicity. This is easiest when the period length is chosen equal to (IBAR-1) δx. Then the boundary conditions for the fictitious cells on the left are

$$
\left.\begin{array}{l}
u_{1, j}={ }^{1} \text { IBAR,j} \\
v_{1, j}=v_{I B A R, j}
\end{array}\right\} \text { for all } j,
$$

and on the right
$\left.\begin{array}{l}u_{1, j}=u_{I B A R, j} \\ P_{2, j}=P_{I B A R}+1, j \\ v_{2, j}=v_{I B A R+1, j} \\ v_{1, j}=v_{I B A R, j}\end{array}\right\} \quad$ for all j.

In this case these conditions are imposed after applying Fas. (4) and after each pressure iteration.

Boundary conditions similar to those for the left wall are used at the right, top, and bottom boundaries of the mesh. Of course, the normal and tangential velocities at the top and bottom boundaries are ψ and u, respectively.

For convenipnce the SOLA code has been written so that any of the above boundary conditions can be automatically imposed by setting input numbers. The appropriate input number for the left wall is designated WL, where

$$
W L=\left\{\begin{array}{l}
1, \text { rigid free-slip left wall } \\
2, \text { rigid no-slip left wall } \\
3, \text { continuative outflow left wall } \\
4, \text { peciodic in } x \text { (provided } W R=4 \text {) }
\end{array}\right.
$$

Similar input numbers are used for the right boundary (WR), top boundary (WT), and bottom boundary (WB). Clearly, when periodic conditions are desired in a given direction. both boundaries in that direction must be assigned wall numbers of 4 .

To increase the usefulness of the basic code. specified inflow and outflow boundaries and obstacles inserted within the fluid region are desirable. In the case of obstacles, if restricted to those that can be constructed by blocking out cells of the computing mesh, we can add to the existing boundary conditions additional velocity prescriptions for the interior and boundaries of the obstacles. A place has been reserved for such special boundary conditions (2500 section) at the end of the main boundary condition section (2000 section). Several examples are included in the sample problems in Sec. F.

E. Numerical Stability Considerations

Numerical calculations often have computed quantities that develon large, high-frequency oscillations in space, time, or both. This behavior is usually referred to as a numerical instability, especially if the physical problem being studied is known not to have unstable solutions. When the physical problem does have unstable solutions and if the calculated results exhibit significant variations over distances comparable to a cell width or over times comparable to the time increment, the accuracy of the results cannot be relied on. To prevent this type of numerical instability or inaccuracy, certain restrictions must be observed in defining the mesh increments $\delta \mathrm{x}$ and $\delta \mathrm{y}$, the time increment $\delta \mathrm{t}$, and the upstream differencing parameter α.

For accuracy, the mesh increments must be chosen small enough to resolve the expected spatial variations in all dependent variables. When impossible because of limitations imposed by computing time or memory requirements, special care must be exercised in interpreting calculational results. For example, in computing the flow in a large chamber it is usually impossible to resolve thin boundary layers along the confining walls. In many applications, however, the presence of thin boundary layers is unimportant and free-slip boundary conditions can be justified as a good approximation.

Once a mesh has been chosen, the choice of the time increment necessary for stability is governed by two restrictions. First, material cannot move through more than one cell in one time step, because the difference equations assume fluxes only between adjacent cells. Therefore, the time increment must satisfy the inequality

$$
\delta t<\min \left\{\frac{\delta_{x}}{|u|}, \frac{\delta y}{|v|}\right\},
$$

where the mininum is with respect to every cell in the mesh. Typically, δt is chosen equal to one-fourth to one-third of the minimum cell transit time. Second, when a nonzero value of kinematic viscosity is used, momentum must not diffuse more than approximately one cell in one time step. A linear stability analysis shows that this limitation implies

$$
v \delta t<\frac{1}{2} \frac{b x^{2} y_{y}^{2}}{i x^{2}+s y^{2}}
$$

With δt chosen to satisfy the above two inequalities, the last parameter needed to insure
numerical stability is a. We have already noted in Sec. B that the proper choice for a is

$$
1 \approx 1>\max \left\{\frac{u t}{\Delta x} ; \quad\left|\frac{v t}{c y}\right|\right\} .
$$

As a rule of thumb, an approximately 1.2 to 1.5 times larger than the right-hand member of the last inequality is good choice. If α is too large an unnecessary amount of numerical : moothing (diffusion-like truncation errors) may be introduced. ${ }^{9}$

F. Sample Applications

A cross section of calculations done with the SOLA program are brietly described here. In each case the basic code has been supplemented with special boundary conditions to define the specific problem being studied. These changes are inserted into the code (2500 section) at the end of the main boundary condition section.

1. Flow About a Cylindrical Can. To compute the llow about a colindrical zan moving at constant speed in an axial direction, the SOLA program is set for cylindrical coordinates ($\mathrm{CYL}=1.0$). Figure 3 shows the mesh arrangement, which consists of 20 cells in the radial, x-direction ($1 B A R=20$), and 40 cells in the axial, y-direction (JBAR $=40$). The cylindrical can is composed of 5 by 10 cells ($2 \leq \mathrm{i} \leq 6$ and $12 \leq \mathrm{j} \leq 21$). In this region, and on its boundary, the fluid velocity is maintained identically zero by inserting the following statements into the special boundary condition section:

$$
\begin{aligned}
& u_{i, j}=0 \text { for } i=1, \ldots, 6 \text { and } j=12, \ldots, 21 \\
& v_{i, j}=0 \text { for } i=1, \ldots, \quad \text { fi and } j=11, \ldots, 21 .
\end{aligned}
$$

The mean flow field is generated by defining, in the special boundary condition section, a constant axial velocity VI across the bottom of the computing mesh ($\mathrm{WB}=1$) .

$$
\left.v_{i,]}=v\right] \text { for } i=2, \ldots, 1 M 1
$$

where $I M I=I M A X-1$. A continuative outflow boundary is used across the top (WT=3), and rigid free-slip boundaries are used along the mesh sides ($W L=W R=1$). See Fig. 3 for a complete list of input parameters. Definitions of all the code

Fig. 3.
Initial selocity field and input parameters for calculating flom about a crlinder. Left edge of mesh is axis of symmetry: Vectors flotted as dots indicate centers of cells with the alinder.
parameters are listed at the beginning of Sec. G, which contains the SOLA FORTRAN listing.
Figure 4 shows the computed velocity field at time $\mathrm{t}=8.1$ (81 cycles with $\delta \mathrm{t}=0.1$). Each vector originates at the center of a computational cell and is drawn with a direction and magnitede proportional to the average of the velocity components located at the cell sides.

Fig. 4.
Velocity field generated by translating cylinder at $t=8.1$.

A steany state is not reached in this calculation, because the recirculating wake region continues to grow in length behind the cylinder. A periodic shedding of vortexes (i.e., vortex street) does not develop because of the imposed axial symmetry.

The first cycle of this calculation requires a large number of iterations to achieve convergence, because the initial condition $V=$ VI everywhere outside the cylinder is a poor first guess. Convergence can be improved by defining the outflow velccity at $\mathrm{j}=\mathrm{JM} 1(\mathrm{JM} 1=\mathrm{JMAX}-1)$ to be equal to VI for the first few cycles.

An interesting variation of this problem is to move the right boundary nearer to the cylinder, to impose periodic boundaries in the axial direction (WB $=\mathbf{W T}=4$). and to impose a constant pressure drop across the flow. The resulting calculation then simulates the transport of cans in a pneurnatic tube. ${ }^{\text {II }}$
2. Flow Over a Recessed Highway. Obstacles with boundaries cutting diagonally across cells can be represented by stepped obstacles. For example, to compute the flow across a notch with sloping sides. as shown in Fig. 5, the following boundary conditions were inserted in the special boundary condition section; for the left slope

$$
u_{i, j}=v_{i, j}=0 \text { for }\left\{\begin{array}{l}
i=1, \ldots,(21-j) \\
j=2, \ldots, 11
\end{array}\right.
$$

and for the right slope

$$
\begin{aligned}
& u_{i, j}=0 \text { for }\left\{\begin{array}{l}
i=(26+j), \ldots, \text { IM1 } \\
j=2,1!
\end{array}\right. \\
& w_{i, j}=0 \text { for }\left\{\begin{array}{l}
i=(27+j), \ldots, I M 1 \\
j=2,11 .
\end{array}\right.
\end{aligned}
$$

$$
\text { 18AR= } \quad .50000 \mathrm{E}+01
$$

$$
\text { JBARE 2.00000E }+0 \text { ! }
$$

$$
\text { OELX }=2.00000 E-01
$$

$$
\text { DELY= } 2.00000 \mathrm{E}-01
$$

$$
\begin{array}{ll}
\text { OELT: } & 5.00000 \mathrm{E}-02 \\
\hline
\end{array}
$$

$$
\mathrm{M}=0 .
$$

cn: 0.
EPSI= $5.00000 \mathrm{E}-03$
DZRE $1.00000 E=00$ $G X=0$.
GY $=-1.00000 \mathrm{E}, 00$ UI: 1.00000E•00 VI= 0.
VELMX $=9.00000 \mathrm{E}-01$
THFIN $2.00000 E=01$
CLPRT $=9.99900 \mathrm{E}+03$
CWPLTE 2.00000E*01
OHG 1.70000 E +00
MLPHA= 5.00000E-01
H. $=1.00000 \mathrm{E}+00$

LRE $3.00000 \mathrm{E}=00$
$\begin{array}{ll}\text { WT } & 1.00000 E+00 \\ 1.8= & 1.000005+00\end{array}$

Fig. 5.
Initial velocity field and input parameters for flou over cut highwav.

These conditions approximate a no-slip boundary cutting the diagonals of the obstacle cells adjacent to the fluid cells. These same conditions also approximate a free-slip boundary cutting the diagonals of the fluid cells adjacert to the obstacle cells. In the latter case, however, the tangential stress is not zero; therefore, this free-slip condition only works when the viscous stress terms are omitted from the equations of motion ($\quad=0$). Different slopes can be obtained by appropriately adjusting the ratio $\delta x / \delta y$.

The notched mesh described above has been used to compute the wind field near a sunken highway. A cross flew was generated by inserting into the special boundary condition section.

$$
\mathbf{u}_{1, j}=U 1 \text { for } j=12, \ldots, J M
$$

Boundary conditions input for the basic mesh were rigid free-slip walls ($W \mathrm{WL}=\mathrm{WT}=\mathrm{WB}=1$) except on the right wall, which was a continuative boundary (W T $=3$). In all cases, the special boundary conditions override the input conditions because they are located at the end of the basic boundary condition section. Figure 5 gives other input parameters.

The resulting flow field at $\mathrm{t}=20$ is shown in Fig. 6. A large recirculating eddy is shown in the highway notch. This type of flow structure has a significant effect on the dispersal of automobile pollutants.
3. Water-Cooled Reactor Model. A model simulating the core region of a pressurized watercooled reartor can be easily set up in the following way. Axisymmetric coordinates are used ($\mathrm{CYL}=1.0$) with the mesh arrangement shown in Fig. 7. An inflow collar is located at the upper right corner, and is defined by assigning $u_{22.29}=\mathbf{u}_{22.30}$ $=u_{22.31}=-1.0$ in the special boundary condition

Fig. 6
Velocity field at $t=20.0$ shous large rairculation in highway cut. Center of recirculating eddy is shifted dounstream from the center of the cut.

Fig. 7
Initial velocity field and input parameters for simulation of reactor core and douncomer flou.
section. The top boundary of the mesh is defined as an outhow boundary. except for the four outermost cells. For these last cells, the conditions set in the special boundary condition section are $\mathrm{v}_{\mathrm{i} . \mathrm{JM} 11}=0.0$ for $\mathrm{i}=18$, . . \cdot IM1. The cylindrical collar separating the central core region from the outside boundary is defined by inserting into the special boundary condition section,

$$
\begin{aligned}
& u_{16, j}=u_{17, j}=v_{i 7, j}=0.0 \text { for } j=12, \mathrm{JM1}, \\
& v_{17,11}=0.0 .
\end{aligned}
$$

A frictional drag was used in the core region to represent the influence of control rods, supports. and other plumbing. This drag was inserted in the region $2 \leq \mathrm{i} \leq 16,12 \leq \mathrm{j} \leq \mathrm{JM} 1$ by adding to the right side of the $u_{i, j}$ equation in the temporary velocity calculation (1000 section) a term equal to $-\kappa \delta t u^{2}, i$, and adding to the $v_{i . j}$ equation a term equal to $-\kappa \delta t v_{i, j}^{2}$. Other drag expressions can just as easily be used and can be defined as functions of space and time. The initial relocity distribution was defined in the setup as $v=-1.0$ in the outer collar and
$v=+0.64$ in the inner core. which gives the same amoant of mass moving upward as is moving downward.

Figure 8 shows a comparison of two calculations. one wht the drag coefficient κ equal to zero (A) and the other with n equal to unity (B). With no drag there is a long narrow recirculation region in the core nest io the outer wall. The addition of drag eliminates this recirculation and forces the flow in the core to be nearly uniform. In both cases there is a small recirculation region in the lower right corner of the bottom plenum.

Many variations of this basic setup can be imagined. For example, the inflow and outtlow can be defined as arising from a fixed external pressure drop rather than a fixed intlow rate. Also, a rounded bottom for the lower plenum might be approximated by using a stepped boundary in the bottom right corner.

G. Details of the SOLA Program

A conceptual flow chart and FORTRAN listing of the SOLA Program is given in this section. The numbers beside some of the boxes in the flow chart refer to statement numbers in the main program where those instructions appear.

To set up a problem, program in whatever special boundary conditions are desired, if any, in the 2500 section and define any special initial condicions in

Fig. 8.
(Comparison of two calculations of flow in reacfor core: (A) with no core drag and (B) with drag.
the 100 section. The basic input parameters that must be defined for every problem are as follows:

IBAR = number of cells in the x-direction (excluding boundary cells)
JBAR $=$ number of cells in the y-direction (ex. cluding boundary cells:
DELX $=\delta x=$ width of cell in x-direction
DELY $=\delta y=$ height of cell in y-direction
DELT $=\delta t=$ time increment
$\mathrm{NU}=v=$ coefficient of kinemaiic viscosity
$\mathrm{CYL}=\xi=$ geometry indicator (1.0 for cylindrica: coordinates, 0.0 for plane coordinates)
$\mathrm{EPSI}=\epsilon=$ pressure interation convergence criterion
$D Z R O=D_{0}$ scaling factor for convergence test
$\mathrm{GX}=\mathrm{g}_{\mathrm{x}}=$ body acceleration in positive x direction
$G Y^{\prime}=g_{y}=$ body acceleration in positive y direction
$\mathrm{UI}=x$-direction velocity used for initializing mesh and/or setting special boundary conditions
$\mathrm{VI}=\mathrm{y}$-direction velocity used for initializing mesh and/or setting special boundary corditions
VELMX = maximum velocity expected in problem, used to scale velocity vector plot
TWFIN = problem time when calculation is to be terminated
CWPRT = number of cycles between long prints output on paper
CWPLT $=$ number of cycles between plots and listings to be output on film
$\mathrm{OMG}=\omega=$ over-relaxation factor used in pressure iteration
ALPHA $=c t=$ controis amount of donor cell fluxing (1.0 for full donor cell differencing and 0.0 for centered differencing.)
WL $=$ indicator for boundary condition to be used along the left side of the mesh $(1.0=$ rigid free-slip wall. $2.0=$ rigid no-slip wall. $3.0=$ continuative boundary, and $4.0=$ periodic boundary)
$W R=$ indicator for boundary condition along right side of mesh (see WL)
$\mathrm{WT}=$ indicator for boundary condition along top of mesh (see WL)
WB $=$ indicator for boundary condition along bottom of mesh (see WL).
The following listing of SOLA is for a CDC-7600 computer at the Los Alamos Scientific Laboratory (LASL). The program, in FORTRAN IV, should be compatible with other machines, except for some of
the control cards and some of the subroutine names usid for film output.

H. Sample Test Problem

To help debug new SOLA codes, this section contains listings from a simple test problem. The problem is to compute the flow generated in viscous fluid in a square cavity when the top boundary of the cavity is impulsively set into motion parallel to itself.

The sample problem uses a crude 5×5 mesh, i.e., $\operatorname{IBAR}=J \mathrm{BAR}=5$. Mesh increments are $\hat{\mathrm{o}} \mathrm{x}$ $=\delta y=0.2$ corresponding to a cavity one unit square. All boundaries ase no-slip walls $(W L=W R=W T=W B=2.0)$.

The fluid is initially at rest ($\mathrm{UI}=\mathrm{VI}=0.0$) and has a coefficient of viscosity of $v=0.4$. The sliding of the top boundary is imposed by inserting into the special boundary condition section (2500 section)

$$
u_{i, \mathrm{JMAX}}=1.0 \text { for } i=1, \operatorname{IMAX}
$$

Strictly speaking, the top boundary is located midway beiween $u_{i, \text { mian }}$ and $u_{i, J M A X-i}$ so that the average of these two velocities should equal unity, i.e..

$$
u_{i, J M A X}=2.0-u_{i, J M A X-1} \quad \text { for } i=1, \operatorname{IMAX}
$$

However, for this test problem the less accurate but simple expression was used. A complete list of input parameters is included in Fig. 9.

Fig. 9.
Vilocity field at $t=l .0$ and input parameters for sample test problem of viscous flou in a cacity.

In this problem no velocities are expected to exceed the top boundary's. Therefore, the accuracy and stability condition that fluid not convect more than one cell per cycle is

$$
\delta t<0.2
$$

The diffusion stability condition requires

$$
\delta t<\frac{\partial x^{2}}{6 v}=0.025
$$

Thus, this problem is controlled by diffusion. The time step chosen for the calculation was $0 \mathrm{r}=0.02$.

T'able I lists the computed results after 1 cycle. 10 cycles, and 50 cycles. The flow field reaches steady state by approximately the tenth cycle ($t=0.2$). The velocity field at $t=1.0$ is shown in Fig. 9. The total calculational time (CP ime) for 100 cycles of calculation on a CDC -7600 computer was approximately 6 s , including film output every 10 cycles.

TABLEI

SOL.A TEST PROBLEM

ITERE	19	1102	2, whatekeiz	cycte
		-	,	
1	1	\cdots	\cdots	-.
!	?	3	-9.sicut-c3	r.
1	3	\checkmark	-r.Atiolt-82	\because
!	$\stackrel{3}{4}$	\therefore	--97712t-d2	$\dot{\sim}$
1	-	3	-9.24ucise-r2	\because
1	-	\therefore.	$x^{\text {c }}$	\because
2	1	n, herecters	\checkmark	\therefore
<	2	-E, herictors	4, stusut-is	-4.uluchtar
	5	-1. 271×4 - ${ }^{\text {a }}$	2.31:07t-iz	-3.3biser-ci
	4	-2.custar-za	+., 71 citer	- \cdot. bodita-ci
2	5	-4.0lsaseria	9.c940 ${ }^{\text {c }}$-8i	-1.2esactere
'	\%	9.04.at-32	\because	
3	1	1.02, sui-ar		
1	5	-1.netsic-se	S.1474tens	-s. $537.1+$ - 21
3	3	-1.abisiterid	1.1.1905t-ir	-h. 7 7ram-al
3	4	-5.174125-85	P.12bsatmid	-3.carapt-ril
3	3	-5.293,4t-0.2	rerwoltered	-7.4くwhtesf
3	b	1,18498i 0.91	\therefore	-1.0eractosi*
*	1	1.ncoriter	\therefore	\therefore
4	?	-1,42mateias	4.766725-23	
4	3	-1.90234t-ic	3. Soprst-rs	-x.1ctwatici
4	4	-3.17abot -uil	r-42076t-vs	-2.1248rt-0.1
4	5	-3.299391-32	9,9100\%	
4	-	1:16971E-d	\checkmark.	-cticbeit-0i
5	1	9.44custeri3	0.	
5	2	-9, ciuciskes ${ }^{\text {c }}$	- 3.19435$\}-83$	-0.chuges-x.
5	3	$-1.2849 \mathrm{SE}-\mathrm{n}^{2}$	-1, etc93t-at	-1.37rast-rec
5	4	-2.27asat-3e		1.15140E-C1
5		-4.0105ck-0?	-2,01247t-20	S.17217E-i,
5	,	9.ayc3bt-*	0^{0}	5.97abSE-C1
0	1	\cdots -	Q,	
-	$\stackrel{3}{2}$	0	-9.14cit-23	2,157400.ct2
6	s	\therefore	-2.19001t-32	1,12587t-E1
0	$\stackrel{4}{4}$	0	- +4047 at -ct	3, Seranteil
-	5	"	-9.8906EE-82	$7.191698-1.1$
0	6	0.	${ }^{\circ}$	f. obdezesed
${ }_{7}$	$\frac{1}{2}$	-	3 9,18121F-83	${ }^{\text {a }}$
?	3	0_{0}	2.18181E-83	\because
?	$\stackrel{4}{4}$	0	4.4092 2E-82	-
7	4	d:	P.d9460t-2d	2

TABLE 1 （cont）

1Ftem	！	11 ！＝	c．rorbuters	c．rchex it	Jtus		$1 \quad i 1 m_{k}=$	1．areverar	Cいした ${ }^{\text {a }}$
1	$\dot{\square}$	\cdots－	＊${ }^{\text {c }}$			J	リ ${ }^{\text {a }}$	1，	
1	2	\because		\because		$\frac{1}{2}$	\because	\therefore 为 1	\because
；	3	\because		\because	i	${ }_{5}$	\because		\because
：	4	\because	－1，ilratoter	\therefore	1	－	\therefore	－1．dratiteril	\because
1	5	\therefore	－1．Averat－si	\because		5	\therefore	－1．471984－81	\because
1	－	$\because 80405-12$	\because	\because	1	－	\because		\because
$\stackrel{3}{2}$	；		2．0．uctict－a		2	1	1，operilf－od	0.	
2	3	－s．91711t－id	S．0．hisuberic	－3．2045tteril	2	？	－1．08A712－：2	3．00n1iters	－S．and9at－01
\％	4	－\quad ，¢icisterc	1，11020t－N1	－5．1／194t－ri	2	4	－5，0is ${ }^{-5}$	3．b8150t＝A	－beicioneril
2	4	－3．151：72－22	1．09．－¢9t－ci	－l．eunbazei：	？	5	－5．0．4．rot－nt	： 09909 ctar	－Sodat eris
，	－	1．491：4t－${ }^{\text {a }}$	\cdots	－2．1lustroiv		6	t，4704．t－id	\because	－throboctic
3	t	S．5774therer	\because	\because ．	3	1	5，042sat－de	0.	
3	？	－3． 5 7／8tera＇	1．9513．trade	－c．eabesencl	3	2	－S．0t25xE－T2	1．99303t－42	
	3	－7．55culerid	S． 53.489 cose	－S．uhice－d	3	3	－7．09074E－u？	h．00445t－62	－3．rabsoc－al
3	4		9．u2bzut－az	－4．1bsheeal	3	4	－9．49cibexes	9．54日z7t－J̌	
3	＊	－3，415－ut－2	9, byteztadz	－bibleset－3il	3	5	－3．7415cteci	$9: 64567 \mathrm{~F}$－${ }^{\text {a }}$	－0．SPtone－n：
3		Cubesbrwis	9.	－9．20518t－\％1	3	－	2，40047－C．	\therefore	－9．Coverpe．e：
4		bobicortmiz	3.	\cdots	4	1	3．7P7．te－A2	4	
4	2	－3．0is 0 dear	4.0 coltedt	－1，62 $410 \mathrm{E}=\mathrm{Cl}$	4	z	－3．7447t－E2	Casibescoma	－1．c2730E－b1
0	3	－T．5e．thl－d2	$0.37485 k-84$		4	，	－7．THSUSE－82	0，99210E－s	－1．0439．t－ia）
4	4	－9．561445－32	1． $58850 \mathrm{f-is}$	－1， P （SLEE＊C！	4	，		1．：0that－es	－1．41sbel－al
4	5	－304173 4 －d2	1．274Y2E－63	－ $2 \cdot 62 j / c \varepsilon+E 1$	4	5	－3，79，480¢－02		
4	；		＊．	－1．48434t－61	5	$\stackrel{0}{0}$	2，47055t－0！	0.	\cdots－1．9H02ct－i
5	J		－ $0 . \mathrm{cosrazt}-\mathrm{dz}$	－7．0346？5－42	5	1	$1.71403 t=82$		
5	3	－3．98625E－r2	－5．5diniobe	－0．414A0E－02	5	3	－1， 4 chiobe－at		－7．4Achatera
5	4	－b，ofsulfore	－9，33258E－2z	－1025siorez	5	4	－5．70320t－02		－0． O
5	5	－3．73944E－4才2	－9， $51 / 9 \mathrm{me}-\mathrm{dz}$	？ 6443 At－id	3	3		－9．08～09E＝02	2，04748E－81
5	0	1，5C9b1E－01	${ }^{\text {a }}$	5.5350 Ct －31	b	0	¢，blosbe－al	\cdots	S．bstost－u1
8	$\frac{1}{2}$	－	－${ }^{-1.0030000 .82}$		6	$!$	－9，	\because	
－	3	0	－5．05414E－ざ2	－4．14792E002	6	2	ă：	－1．71805Le8s	
0	${ }_{5}$	${ }_{0}$	－1．13434t－02	1，5435．4E00］	；	4	0	－1．14799t－d	： $0.545: 2 \mathrm{E}=\mathrm{da}$
0	5	，	－1．60498F－di	$0.000495-81$	－	5	3.	－1．510S8E－大゙1	6．675405－91
7	i	－${ }_{\text {B }}$	c．		＊	\％	0	d，	1．18813E＊S0
，	2	${ }_{0}$	1，66304E－Ė	$0 \cdot$	9	2	0	1．13865E．02	\because
？	3	3.	5，05484E－82	n_{0}	7	3	$\theta ;$	S．1757EE＊2	\because
\％	$\stackrel{3}{3}$	8		${ }_{0}$		4	0.	1，14／9eteal	${ }^{0}$
T	5	？	！astbogt－at	Q	7	5	8 ，	1．510．atevi	4
	\bigcirc	\cdots	${ }^{\text {a }}$	${ }^{*}$	7	6	0.	＂	r．


```
RUNELCNG7 O 75/02/11 17.42.42 T3BDNZZ3NT PAGE NO. 1
```

```
            PNAGGRAM SOLA(INP,OUF,FILM,FSETJB=IAP,FSET9:OUT,FSET12EFILM)
```

 PNAGGRAM SOLA(INP,OUF,FILM,FSETJB=IAP,FSET9:OUT,FSET12EFILM)
 UIMENSIJN U(152,32),V(152,32),UN(152,32),VR(152,52),P(152,32),
 UIMENSIJN U(152,32),V(152,32),UN(152,32),VR(152,52),P(152,32),
 IXPUT(23),NAME(14)
 IXPUT(23),NAME(14)
 GEAL LDNGONU
 GEAL LDNGONU
 INTEGEN CYCLE,NLONN,NI,NL
 INTEGEN CYCLE,NLONN,NI,NL
 READ 45, NAME PRINT 35 PRINT45, NAME
 READ 45, NAME PRINT 35 PRINT45, NAME
 C * \&EAU AND FFINT INITIAL INPUT DATA
C * \&EAU AND FFINT INITIAL INPUT DATA
FEAD 25,NUN, (XPUTPI),I=1,NUM)
FEAD 25,NUN, (XPUTPI),I=1,NUM)
IGAR=XP(iT(I) JGAREXPUT(2) DELX=XPUT(3) 3 DELYEXPUT(4)
IGAR=XP(iT(I) JGAREXPUT(2) DELX=XPUT(3) 3 DELYEXPUT(4)
UELTExPUT(5) \&U=XPUT(6) b CYLEXPUT(7) S EPSIEXPUT(8)
UELTExPUT(5) \&U=XPUT(6) b CYLEXPUT(7) S EPSIEXPUT(8)
GLNOEXPUT(9) S GXEXPUT(1N) \$GYEXPUT(11) S UI=XPUT(12)
GLNOEXPUT(9) S GXEXPUT(1N) $GYEXPUT(11) S UI=XPUT(12)
 VI=XFUT(13)$ VELMX=XPUI(14) \$ TWFINEXP\T(15) b CWPRI=XPUT(16)
VI=XFUT(13)\$ VELMX=XPUI(14) \$ TWFINEXP\T(15) b CWPRI=XPUT(16)
C^FLT=XPUT(17) 5 OMG=XPUT(18) ALPHA=XPUT(19, \$ WL=XPUT(20)
C^FLT=XPUT(17) 5 OMG=XPUT(18) ALPHA=XPUT(19, \$ WL=XPUT(20)
*A=XPUT(21) 5 *T=XPUI(22) \$ wB=XPUT(23)
*A=XPUT(21) 5 *T=XPUI(22) \$ wB=XPUT(23)
P\&INT 5G,{XPUT(I),I=I,N(JM}
P\&INT 5G,{XPUT(I),I=I,N(JM}
25 FORMAT (6X, I2,/(4(6x,E12,5)))
25 FORMAT (6X, I2,/(4(6x,E12,5)))
27 FORMAT(1H,18X,10Aה,1X,A1D,2(1X,A8))
27 FORMAT(1H,18X,10Aה,1X,A1D,2(1X,A8))
35 f \HMAT (1H1)
35 f \HMAT (1H1)
44 FORHAT(6X*CYCLE= *I5,8x*IO= *1PE1C.5,8x*T2= *E12.5,9x*ITER**I5)
44 FORHAT(6X*CYCLE= *I5,8x*IO= *1PE1C.5,8x*T2= *E12.5,9x*ITER**I5)
4:% FUMMAT(1GAB)
4:% FUMMAT(1GAB)
46 FORMAT(1H+,B\&X*T=*,1PE10.3,4X*CYCLE=*,14)
46 FORMAT(1H+,B\&X*T=*,1PE10.3,4X*CYCLE=*,14)
47FOGMAT(6X*I*7X*J*12X*U*17X*V*1BX*P*)
47FOGMAT(6X*I*7X*J*12X*U*17X*V*1BX*P*)
48 FUWMAT(4x,13,5x,13,3(6x,1PE12,5))
48 FUWMAT(4x,13,5x,13,3(6x,1PE12,5))
49 fOR4AT(OX*ITEN= *IS.IUX*TIME= *1PEIZ.5,10X*[YCLE= *I4)
49 fOR4AT(OX*ITEN= *IS.IUX*TIME= *1PEIZ.5,10X*[YCLE= *I4)
SE F!RMAT(1H,5X*IBAK= *1PE1P.5/6X*JBAR= *E12.5/6x*DELX= *EI2.5/
SE F!RMAT(1H,5X*IBAK= *1PE1P.5/6X*JBAR= *E12.5/6x*DELX= *EI2.5/
16X*OHLY= *%1C.ל/6X*DELT= *E12.5/8X*NU= *E{2.5/7X*CYLF 由E12.5/

```
        16X*OHLY= *%1C.ל/6X*DELT= *E12.5/8X*NU= *E{2.5/7X*CYLF 由E12.5/
```



```
        S*X*|l= *E12.5/8X*VI=*t12.5/5X*VELMX= *E12.5/5x*TwrINE *E12.5/
```

 S*X*|l= *E12.5/8X*VI=*t12.5/5X*VELMX= *E12.5/5x*TwrINE *E12.5/
 4\zetaX*C#PRT= *E12. ל/5X*CWPLT=*E12.5/7X*OMG= *E12.5/5X*ALPHA= *E12.5/
    ```
    4\zetaX*C#PRT= *E12. ל/5X*CWPLT=*E12.5/7X*OMG= *E12.5/5X*ALPHA= *E12.5/
```



```
*
```

*

C * CWHPUTE CONSTANT TERMS AND INITIALIZE NECESSARY VARIABLES
C * CWHPUTE CONSTANT TERMS AND INITIALIZE NECESSARY VARIABLES
*
*
I 4AX=16AAR+2
I 4AX=16AAR+2
J'AX= JनAK+2
J'AX= JनAK+2
I;A=IMAX-1
I;A=IMAX-1
JM1=JMAX-1
JM1=JMAX-1
ROX=1.0/0ELX
ROX=1.0/0ELX
WOY=1.G/DELY
WOY=1.G/DELY
JM\sum=JMAX-2
JM\sum=JMAX-2
1MZ=1MAX-2
1MZ=1MAX-2
CALL GETG(LLKJGN:JNM)
CALL GETG(LLKJGN:JNM)
CALL DATEI(DAT)
CALL DATEI(DAT)
CALL CLOCKI(CLK)
CALL CLOCKI(CLK)
UHINT 2T,NAME,JNM,DAT,LLK
UHINT 2T,NAME,JNM,DAT,LLK
T=|.
T=|.
|TER=0
|TER=0
CYCLE=U

```
    CYCLE=U
```



```
    1mPLT=い。
```

 1mPLT=い。
 こ上TA: (MG/(2.*OELT*(RDX**2.*ROY**2))
 こ上TA: (MG/(2.*OELT*(RDX**2.*ROY**2))
 * C
* C
C * * SPECIAL INPUT DATA

```
C * * SPECIAL INPUT DATA
```

```
```

RUN=LCMY7 O SQLA IS/WZ/11 17.42.4Z T3GDNZZ3NT PAGE ND. ?

```
```

RUN=LCMY7 O SQLA IS/WZ/11 17.42.4Z T3GDNZZ3NT PAGE ND. ?
*
*
C * SET CONGTANT TERAS FOR PLOTTIING

```
C * SET CONGTANT TERAS FOR PLOTTIING
```

```
    L\HGG= FLOAT(IBAR)*OELX
```

 L\HGG= FLOAT(IBAR)*OELX
 HIGH= FLOAT(JHAR)*UELY
 HIGH= FLOAT(JHAR)*UELY
 IYR=916
 IYR=916
 If(LONG.LE,(1.13550*HIGH))GDTO 30|
 If(LONG.LE,(1.13550*HIGH))GDTO 30|
 IXL=D
 IXL=D
 1Xに=1022
 1Xに=1022
 IYT= INT(91b.-HIGH*1022./LONG)
 IYT= INT(91b.-HIGH*1022./LONG)
 GOTO 33L
 GOTO 33L
 30* }x={.0.0G*450./HIG
 30* }x={.0.0G*450./HIG
 IXL=INT(511.--x)
 IXL=INT(511.--x)
 IXH= INT(SIL.*X)
 IXH= INT(SIL.*X)
 IYT= 16
 IYT= 16
 33! CUNTINUE
 33! CUNTINUE
 VELMXI= AMIVI(DELX.DELY)/VELMX
 VELMXI= AMIVI(DELX.DELY)/VELMX
 *
 *
 C* * SET INITIAL VELOCITY FIELD INTO U AND V ARKAYS
 C* * SET INITIAL VELOCITY FIELD INTO U AND V ARKAYS
 0| 5ヵ\ I=2,IM1
 0| 5ヵ\ I=2,IM1
 \squarei) 560 J=2.JM1
 \squarei) 560 J=2.JM1
 U(I.J)=UL
 U(I.J)=UL
 v(i;J)= vI
 v(i;J)= vI
 SOW CONTINUE
 SOW CONTINUE
 AJSIGN SOQG TO KRET
 AJSIGN SOQG TO KRET
 Gう 10 2000
 Gう 10 2000
 *
 *
 C * START CYCLE
 C * START CYCLE
 *
 *
 10%G COINTINGE
 10%G COINTINGE
 1TYR=0
 1TYR=0
 FLG=1.
 FLG=1.
 ASSIGN 3GDE TO KRLT
 ASSIGN 3GDE TO KRLT
 *
 *
 C * CUMDUTE TEMPUHAFY U ANDV
 C * CUMDUTE TEMPUHAFY U ANDV
 *
 *
 00 1100 I=2,IMI
 00 1100 I=2,IMI
 00 1100 J=2,JM!
 00 1100 J=2,JM!
 F.JX=((UN(I,J)+UN(I+I,J))*(UN(I,J)+UN(I+I,J))+ALP+iA*ABS(UN(I,J)&UN(
 F.JX=((UN(I,J)+UN(I+I,J))*(UN(I,J)+UN(I+I,J))+ALP+iA*ABS(UN(I,J)&UN(
 II+I,J) **(U^(I,J)-UN(I+I,J))=(UN(I-I,J)+UN(I,J))*(UN(I=I;J)+UN(I;J)
 II+I,J) **(U^(I,J)-UN(I+I,J))=(UN(I-I,J)+UN(I,J))*(UN(I=I;J)+UN(I;J)
 2)=ALPHA*AHS(UN(I=1,J)+UN(I,J))*(UN(I=I,J)=UN(I,J)))/(4,*UELX)
 2)=ALPHA*AHS(UN(I=1,J)+UN(I,J))*(UN(I=I,J)=UN(I,J)))/(4,*UELX)
 FUY=((VN(I,J) +VN(I+I,J))\star (UN(I,J)+UN(I,J+I))
 FUY=((VN(I,J) +VN(I+I,J))\star (UN(I,J)+UN(I,J+I))
 1+ALPMA*ABS(VN(I,J)+VN(I+1,J))*(UN(I,J)=UN(I,J+1))
 1+ALPMA*ABS(VN(I,J)+VN(I+1,J))*(UN(I,J)=UN(I,J+1))
 L=(VN(1,J-1)+VN(1+1,J-1))*(UN(I,J-1)+UN(I,J))
 L=(VN(1,J-1)+VN(1+1,J-1))*(UN(I,J-1)+UN(I,J))
 3-ALPHA*ABS(VN(I,J=i)+VN(I+I,J-1))*(UN(I,J-I)-UN(I,J)))/(4.*DELY)
 3-ALPHA*ABS(VN(I,J=i)+VN(I+I,J-1))*(UN(I,J-I)-UN(I,J)))/(4.*DELY)
 FUC=CYL*((UN(I,J)+UN(I+I,J))*(UN(I,J)+UN(I+1,J))+(UN(I-I,J)+UN(I,J
 FUC=CYL*((UN(I,J)+UN(I+I,J))*(UN(I,J)+UN(I+1,J))+(UN(I-I,J)+UN(I,J
 1))*(UN(I-1,J)+UN(I,J))
 1))*(UN(I-1,J)+UN(I,J))
 Z+ALPHA*ARS(IJN(I,J)+UN(1+1,J))*(UN(I,J)=UN(I+1,J))
 Z+ALPHA*ARS(IJN(I,J)+UN(1+1,J))*(UN(I,J)=UN(I+1,J))
 3+ALPHA*AHS(UN(I-I,J) +UN(IfJ))*(UN(I=I,J)=UN(I,J)))
 3+ALPHA*AHS(UN(I-I,J) +UN(IfJ))*(UN(I=I,J)=UN(I,J)))
 4/(8.*DELX*FLUAT(I=1))
 4/(8.*DELX*FLUAT(I=1))
 FVX=((UN(I,J)&UN(I,J+I))* (VN(I,J) &VN(I+I,J))+ALPHA*ABS(UN(I,J) +UN(
 FVX=((UN(I,J)&UN(I,J+I))* (VN(I,J) &VN(I+I,J))+ALPHA*ABS(UN(I,J) +UN(
 1I,J+I))*(VN(I,J)=VN(I+I,J))=(UN(I=I,J)+UN(I-I,J+I))*(VN(I-I,J)+VN(
 1I,J+I))*(VN(I,J)=VN(I+I,J))=(UN(I=I,J)+UN(I-I,J+I))*(VN(I-I,J)+VN(
 2I,J))=ALPHA*ABS(UN(I-I,J)+UN(I-I,J+I))*(VN(I-1,J)=VN(I,J)))/(A,*DE
    ```
    2I,J))=ALPHA*ABS(UN(I-I,J)+UN(I-I,J+I))*(VN(I-1,J)=VN(I,J)))/(A,*DE
```

```
nUN－LCMAT 0 SOLA 15／02／Id 17．42．4C T3BENLLSNT PAGF NU． 3
```

NUN-LCMQ7 0 SOLA 15/02/1\& 17.42.4Z T3BENLZSNT PAGF NU. 3

```
NUN-LCMQ7 0 SOLA 15/02/1& 17.42.4Z T3BENLZSNT PAGF NU. 3
    3Lx)
    3Lx)
    FVY={(VN(1,J)+VN(I,J+I))*(V:V(I,J)+VN(I,J+1))*ALPMA*AOS(VN(I,J)+VSN
    FVY={(VN(1,J)+VN(I,J+I))*(V:V(I,J)+VN(I,J+1))*ALPMA*AOS(VN(I,J)+VSN
    1(I,J+1))*(VN(I,J)-VN(I,J+1))-(VN(1,J-1)+VN(1,J))*(VN(1,J-1)+VN(1,J
    1(I,J+1))*(VN(I,J)-VN(I,J+1))-(VN(1,J-1)+VN(1,J))*(VN(1,J-1)+VN(1,J
    2))=ALPHA*AFS(VN(I,J-1]+V'V(I,J))*(VN(L,J=I)=VN(I,N)))/(4,*DELY)
    2))=ALPHA*AFS(VN(I,J-1]+V'V(I,J))*(VN(L,J=I)=VN(I,N)))/(4,*DELY)
        fVC=CYL*(GUN(I,J)+UN(I,J+1))*(VN(I,J)+VM(I+1;J))+CUN(I-1,J)+UN(1-1
        fVC=CYL*(GUN(I,J)+UN(I,J+1))*(VN(I,J)+VM(I+1;J))+CUN(I-1,J)+UN(1-1
    i,j+1))*(VN(I-1,J)+V'(I, J))*ALPHA*ABS(UA(1,J)+JN(I,J+1])*(VN(I,J)=V
    i,j+1))*(VN(I-1,J)+V'(I, J))*ALPHA*ABS(UA(1,J)+JN(I,J+1])*(VN(I,J)=V
    2M(1+1,J))+ALFHA*Abj(UN(I-1,J)+UN(I=a,J+1))*(VN(I-{,J)=\N(I,J)))
    2M(1+1,J))+ALFHA*Abj(UN(I-1,J)+UN(I=a,J+1))*(VN(I-{,J)=\N(I,J)))
    3/(6.*णELX*(FLOAT(I-1)-*.5))
    3/(6.*णELX*(FLOAT(I-1)-*.5))
        VISX= &.U*((UN(I+I,J)=2,*UN(I,J)+UN(I-1,J))/DELX**24
        VISX= &.U*((UN(I+I,J)=2,*UN(I,J)+UN(I-1,J))/DELX**24
    1(UIV(I,J+1)-2,*UN(I,j)+UN(I,J-1))/OELY**2
    1(UIV(I,J+1)-2,*UN(I,j)+UN(I,J-1))/OELY**2
    2 +CYL*((UN(I+1,J)=UN(1-1,J))/(C.*DELX*DELX*FLOAT(I-1))
    2 +CYL*((UN(I+1,J)=UN(1-1,J))/(C.*DELX*DELX*FLOAT(I-1))
    3-N(I,J)/(Ot(x*+LJAT(1-1))**2))
    3-N(I,J)/(Ot(x*+LJAT(1-1))**2))
    -ISY= vj*((V+(I+I,I)-c**VN(I,J)+Viv(I-I,J))/DELX****
    -ISY= vj*((V+(I+I,I)-c**VN(I,J)+Viv(I-I,J))/DELX****
    1(V, (I,J+1)-2,*VN(I,J)+VN(I,J-1))/DELY**2
    1(V, (I,J+1)-2,*VN(I,J)+VN(I,J-1))/DELY**2
    2 +CYL*(VN(1+1,J)-VN(I-1,J)]/(2,*DF:bx*DELX*FLOAT(I-1,5)))
    2 +CYL*(VN(1+1,J)-VN(I-1,J)]/(2,*DF:bx*DELX*FLOAT(I-1,5)))
        J(I,J)=UN(I,J)+DELT*({P(I,J)=P(I+I,J))**DX + GX-FUX-FUY=FUC+VISX)
        J(I,J)=UN(I,J)+DELT*({P(I,J)=P(I+I,J))**DX + GX-FUX-FUY=FUC+VISX)
        V(I,J)=VN(I,J) +DELT*((P(I,J)=P(I,J+1)\*RDY + GY-FVX-FVY-FVGC+VISY)
        V(I,J)=VN(I,J) +DELT*((P(I,J)=P(I,J+1)\*RDY + GY-FVX-FVY-FVGC+VISY)
    110. CINTINUE
    110. CINTINUE
    *
    *
C * * SEj hounizany CuvditIUNS
C * * SEj hounizany CuvditIUNS
*
*
    2000 co`!INuE
    2000 co`!INuE
    U(1 2CD: J=1,JMAX
```

 U(1 2CD: J=1,JMAX
    ```




```

 v(1,J)=v(2,5)
    ```
        v(1,J)=v(2,5)
        6u ro 21,0
        6u ro 21,0
2040 U(1,J)=0.0
2040 U(1,J)=0.0
    v(1,j)=-v(2, 人)
    v(1,j)=-v(2, 人)
    Go TO 21.36
    Go TO 21.36
2060 IF(ITEF,GT.(1)G0 10 2100
2060 IF(ITEF,GT.(1)G0 10 2100
    U(1,J)=U(弓,J)
    U(1,J)=U(弓,J)
    v(1,J)=v(2,J)
    v(1,J)=v(2,J)
    Go 10 21*0
    Go 10 21*0
2080U(1,J)=U(IM2,j) s V (2,J)=V(IM1,J)
2080U(1,J)=U(IM2,j) s V (2,J)=V(IM1,J)
    V(1,J)=V(IM2,J) s P(2,J)EF(IM1,J)
    V(1,J)=V(IM2,J) s P(2,J)EF(IM1,J)
    0) T0 2100
    0) T0 2100
2180 60) 10 (2120,2148,210v,21%日)NK
2180 60) 10 (2120,2148,210v,21%日)NK
212: U(I:41,J)=0.0
212: U(I:41,J)=0.0
        V(IMAX,J)=V(IMI,J)
        V(IMAX,J)=V(IMI,J)
        Gu TO 22ata
        Gu TO 22ata
2140 U(IM1,J)=0,0
2140 U(IM1,J)=0,0
    V(IMAX,J)=-V(IM1,J)
    V(IMAX,J)=-V(IM1,J)
    60 T0 22%0
    60 T0 22%0
2160 IF(ITEN.GT.0) LDTO 2&んU
2160 IF(ITEN.GT.0) LDTO 2&んU
    U(IM1,J)=U(IML,J)*(IML/IMI*CYL.+(1.D-CYL))
    U(IM1,J)=U(IML,J)*(IML/IMI*CYL.+(1.D-CYL))
    V(IMAX,J)=V(IM1,J)
    V(IMAX,J)=V(IM1,J)
    Gj ra 2z+4
    Gj ra 2z+4
2180 |(IM1,j)=1)(2,J)
2180 |(IM1,j)=1)(2,J)
    v(IMAX,J)=v(3,J)
    v(IMAX,J)=v(3,J)
z2j0 continue
z2j0 continue
    00 2506 1=1. INAX
    00 2506 1=1. INAX
    GOTO (2320,234%,2360,2380) wT
    GOTO (2320,234%,2360,2380) wT
2326V(I,J41)=#.W
2326V(I,J41)=#.W
    U(I,SMAX)=U(I,JMI)
```

 U(I,SMAX)=U(I,JMI)
    ```
```

RUNELCMG7 O SOLA 75/0Z/11 17.4Z.4E T3BO:NLZSNT PAGE NO. a

```
```

 G0 TO 2400
    ```
    G0 TO 2400
    2340 V(I,JM1)=0.*
    2340 V(I,JM1)=0.*
    U(I,JMAX)=-U(I,JM1)
    U(I,JMAX)=-U(I,JM1)
    GO TO 24*4
    GO TO 24*4
    2360 IF(ITER.GT.0) GOTO 2400
    2360 IF(ITER.GT.0) GOTO 2400
    V(1,JM1)=V(I,JM2)
    V(1,JM1)=V(I,JM2)
    U(I,JMAX)=U(I,SMI)
    U(I,JMAX)=U(I,SMI)
    G0 TO 24us
    G0 TO 24us
    2580 v(I,JM1)=V(I,2)
    2580 v(I,JM1)=V(I,2)
    U(I,JMAX)=U(I,3)
    U(I,JMAX)=U(I,3)
    60 10 2400
    60 10 2400
    2404 G0T0 (2420,2444,2460,2486) WB
    2404 G0T0 (2420,2444,2460,2486) WB
    2.42.4 v(1,t)=0.0
    2.42.4 v(1,t)=0.0
        U(I,1)=U(I,2)
        U(I,1)=U(I,2)
        G0 T0 2500
        G0 T0 2500
    2440 v(1, 1)=0.0
    2440 v(1, 1)=0.0
        U(1,1)=-U(1,2)
        U(1,1)=-U(1,2)
    G% TO 2530
    G% TO 2530
    2460 IF(1TER.GT.N) GO 10 25A&
    2460 IF(1TER.GT.N) GO 10 25A&
        v(1,1)=v(I,2)
        v(1,1)=v(I,2)
        v(1,1)=u(1,2)
        v(1,1)=u(1,2)
        G0 T0 2504
        G0 T0 2504
    2480V(I,I)=V(I,JM2) s U(I,2)=U(I,JMI)
    2480V(I,I)=V(I,JM2) s U(I,2)=U(I,JMI)
    U(I,1)=U(I,JMZ) s P(1,2)=P(I,JM1)
    U(I,1)=U(I,JMZ) s P(1,2)=P(I,JM1)
zbag cuntinue
zbag cuntinue
*
c * * SPECIAL hounidaty conditions
c * * SPECIAL hounidaty conditions
*
*
    1M2= IMAX-2
    1M2= IMAX-2
    100 2BAn I= 1,IM2
    100 2BAn I= 1,IM2
    289% U(I,JMAX)=1.0
    289% U(I,JMAX)=1.0
    go TO KGET
    go TO KGET
3a|Z continue
3a|Z continue
*
*
c * * mAS cONVERGENCE bEEN REACbiED
c * * mAS cONVERGENCE bEEN REACbiED
    IF(FLG.EO.H.)GOTO aREQ
    IF(FLG.EO.H.)GOTO aREQ
    1YEK=ITER+1
    1YEK=ITER+1
    [F(1TER.LT.56H) 6010 30SA
    [F(1TER.LT.56H) 6010 30SA
    IF(CYCLE.LT.AJ) GU T! 40va
    IF(CYCLE.LT.AJ) GU T! 40va
    I=1,E+1H
    I=1,E+1H
    G0TO SBOO
    G0TO SBOO
    305* FLG=0.*
    305* FLG=0.*
*
*
C. * * CCMPIJEE UPDATED CELL PRESSURE. aND VELOCITIES
C. * * CCMPIJEE UPDATED CELL PRESSURE. aND VELOCITIES
    DO 354W J=2.JM!
    DO 354W J=2.JM!
    OU 3504 I=2,IM1
    OU 3504 I=2,IM1
    D=RDX*(U(I,J)~U(I-1,J))+RDY*(V(I,J)~V(I,J-{))+CYL*(U(I,J)
    D=RDX*(U(I,J)~U(I-1,J))+RDY*(V(I,J)~V(I,J-{))+CYL*(U(I,J)
    1+U(I-1,J))/(2.*DELX*(FLUAT(I)-1,5))
    1+U(I-1,J))/(2.*DELX*(FLUAT(I)-1,5))
    IF(ABS(D/DZH(U).GE.EPSI)FLG=1.G
    IF(ABS(D/DZH(U).GE.EPSI)FLG=1.G
    RELP= -BETA*U
    RELP= -BETA*U
    N(I,J)=P(I,J)+UELP
    N(I,J)=P(I,J)+UELP
    U(T,J)=U(I,J)+UELT*RUX*DELP
    U(T,J)=U(I,J)+UELT*RUX*DELP
    U(I-1,J)=U(I=1,J)=OELT*RDX*DELP
```

 U(I-1,J)=U(I=1,J)=OELT*RDX*DELP
    ```
```

RUNELCMOT O SOLA 75/42/11 17.42.42 T3BDNL23NT PAGE NO. S

```
\(V(I, J)=V(I, J)+D E L Y * R O Y * D E L P\)
\(v(I, J-I)=V(I, J-1)=U E L T * R D Y * D E L P\)
350，CONTINUE
GO TO 2uen
4000 CONTINJt
＊
C＊PRIGT AND PLUT
5世0N CONTINUE

WHITE（12，SW）（XPUT（I），I \(=1\), NLMM）
5030 CONTINUE
PRINT 49．ITEH，T，CYCLE
IF（CYCLE．LE．ひ）GOTO 5180
If（T＋1．E＊D，LT．TWHLT）GU TO 5680
「ゅPLT＝TWPLT＋C\＆PLT＊DELT
5130 CONTINJE
CALL ADV（1）
CALL LINCNI（1）
NRITE（12．49）ITER，T，CYCLE
CALL LINCMI（3）
由2ITF（12．4\％）
\(0052511=1\) ， 1 MAX
\(005250 \mathrm{~J}=1, \mathrm{Jm} 1\)
WRITE \((12,46) \quad I, J, U(1, J), V(1, J), P(1, J)\)
525：CUNTINIJE
\(\stackrel{*}{*}\)
C＊＊ELOCITY VECTON PLJT
＊
CALL ADV（L）
CALL DGA（IXL，IXR，IYT，IYB，©．，LONG，HIGH，E．）
CALL FRAME（IXL，IXR，IYT，IYB）
CALL FKAME（IXL，IXR，IYT，IYB）
CALL LINCNT（6（A）
WHITE（I2， 27 ）NAME．JNM，DAT．ELK
CALL LINCNT（62）
WHITE（12，46）T，CYCLE

DL \(5504 \quad J=2, J M 1\)
\(X C C=D E L X *(F L O A T(1)-1,5)\)
YECエOELY＊（FLUAT（J）－1．5）
UVEC＝（U（I－1，J）＋U（I，J））＊ \(0.5 * V E L M X 1+X C C\)
VVEC＝（V（I，J＊I）＋V（I，J））＊ 0.5 ＊VELMXI＋VCC
CALL CONVRT（UVEC，IUVEC，W．，LONG，IXL，IXR）

CALL CONVKT（XCC，IXCC，O．ILONG，IXL，IXR）
CALL CONVRY（YCC，JYCC，HIGH，O，IYT，IYG）
CALL DRVCIXCC，JYCL，IUYEC，JVVEC）
550』 CONTINUE
\({ }^{*}\)
\(C\)＊LIST VELOCITY AND PRESSURE FIELDS
\(\star\)
560ロ CONTINUE
IF（CYCLE．LE．\(X\) ）GO TO 580日
IF（T＋1．E＝6．LT．TWPAT）GU TO 6000

1122
RUAFICMG7 SOLA 75/42/11 17.42.42 TSBUNLZ3NT PAGE ND. 6

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Run-lcmal & 0 & SOLA & \multicolumn{2}{|c|}{15/02111} & 17.42.42 & T3H0N2L3N1 & Page no. 7 \\
\hline 610 & 403206 & 2100 & 554 & 563 & 305 & 516 & 647 \\
\hline 62. & L83211 & 2120 & 014 & & & & \\
\hline 63. & Laxzla & 2146 & 615 & & & & \\
\hline 640 & Lonel7 & 2100 & 616 & & & & \\
\hline 603 & L04225 & 2100 & 617 & & & & \\
\hline 671 & 1.89227 & 226: & 627 & 637 & 641 & 657 & \\
\hline 7.15 & Lonz36 & 2320 & 761 & & & & \\
\hline 714 & L-4241 & 2340 & 742 & & & & \\
\hline 723 & 1.90244 & \(236{ }^{\text {2 }}\) & 7.3 & & & & \\
\hline 737 & Lon252 & 258u & 7114 & & & & \\
\hline 746 & Louz55 & 2404 & 713 & 122 & 724 & 736 & 745 \\
\hline 756 & L00?68 & 2420 & 752 & & & & \\
\hline 762 & Lev203 & 2440 & 753 & & & & \\
\hline 766 & L00260 & 2404 & 754 & & & & \\
\hline 775 & Lan274 & 2482 & 755 & & & & \\
\hline 1363 & 103276 & 2500 & 701 & 165 & 767 & 714 & \\
\hline 1224 & L00311 & Sute & 230 & & & & \\
\hline 1035 & 106322 & 3050 & 1235 & & & & \\
\hline 1120 & L0n346 & ands & 224 & 1824 & 1032 & 1034 & \\
\hline 1120 & L0A306 & bioun & 224 & 1024 & 1032 & 1834 & \\
\hline 1131 & L00334 & Sose & 1121 & & & & \\
\hline 1132 & L02364 & 5100 & 1143 & 1144 & & & \\
\hline 1554 & Led4at & 5 sec & \(11+7\) & & & & \\
\hline 1363 & C0.4470 & Sent & 1354 & 1355 & & & \\
\hline 1453 & coss 17 & ontas & 1360 & & & & \\
\hline 15 !3 & Le75al & 6520 & 1475 & & & & \\
\hline
\end{tabular}

\section*{VARIABLE RFFERENCES}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline KUR L L CMA 7 & 0 & SULA & & \multicolumn{2}{|c|}{75/22/11} & 17.42.42 & 13BUN2C3N1 & -AGE & No. & 8 \\
\hline 1753 & von 12 & FVi & \R & \(4{ }^{4}\) & 521 & & & & & \\
\hline 1754 & \(\checkmark 3{ }^{4} 120\) & FVX & VR & Sth & 517 & & & & & \\
\hline 1755 & VA, 1 E1 & fvy & , 12 & 410 & 520 & & & & & \\
\hline 1756 & vave31 & \(6 \times\) & 1 T & 5 ? & 564 & & & & & \\
\hline 1757 & varesa & GY & 14 & 54 & 516 & & & & & \\
\hline 1760 & v0.923 & HIGH & VR & 100 & 174 & 1236 & 1331 & 1341 & & \\
\hline 1761 & \(\checkmark 60020\) & 1 & \I & 210 & 211 & 222 & 232 & 233 & & 457 \\
\hline & & & & 531 & 674 & 725 & 114 & 165 & & 737 \\
\hline & & & & 756 & 762 & 176 & 775 & 1463 & & 1418 \\
\hline & & & & 1048 & 1044 & 1471 & 1112 & 1171 & & 1203 \\
\hline & & & & 12 М7 & 1214 & 1217 & 1223 & 1361 & & 1303 \\
\hline & & & & 1361 & 1422 & 1426 & 1432 & 1437 & & 1442 \\
\hline & & & & 1454 & 1454 & 1455 & 1401 & & & \\
\hline 1762 & Vatore 1 & 18AR & \I & 35 & 145 & 152 & & & & \\
\hline 1763 & Vab343 & IMAX & 11 & 116 & 114 & 117 & 623 & 635 & & 643 \\
\hline & & & & 662 & 1003 & 1226 & 1451 & \[
1467
\] & & \\
\hline 1704 & V04045 & IMI & \I & 11.3 & \(22 ?\) & 531 & ori & 630 & & 542 \\
\hline & & & & 650 & 665 & 1115 & \(135 \%\) & & & \\
\hline 1765 & vactiob & 1.42 & II & 121 & 577 & 644 & 100n & 1012 & & \\
\hline 1766 & v dog5 7 & ITEA & II & 153 & 220 & 564 & 64\% & 723 & & 760 \\
\hline & & & & 1625 & 1134 & 1101 & 1406 & & & \\
\hline 1707 & *00113 & IUVEC & II & 1324 & 1345 & & & & & \\
\hline 1777 & \(\checkmark 20115\) & IXC6 & V1 & \(: 330\) & 1340 & & & & & \\
\hline 1771 & vonets & \(1 \times 1\) & \1 & 106 & 260 & 1232 & 1242 & 1245 & & 1326 \\
\hline & & & & 1336 & & & & & & \\
\hline 1772 & voseres & \(1 \times\) P & 11 & 171 & 201 & 1232 & 1242 & 1245 & & 1326 \\
\hline & & & & 1336 & & & & & & \\
\hline 1773 & void064 & IYB & 11 & 102 & 1233 & 1243 & 1246 & 1332 & & 1342 \\
\hline 1774 & venobl & IYT & II & \(1 / 2\) & 20? & 1233 & 1243 & 1246 & & 1332 \\
\hline & & & & 1342 & & & & & & \\
\hline 1775 & vocut? & \(\checkmark\) & , 1 & & & & & & & \[
547
\] \\
\hline & & & & \[
556
\] & \[
566
\] & \[
600
\] & \[
621
\] & \[
631
\] & & \[
642
\] \\
\hline & & & & 060 & 671 & 1637 & 1040 & 1473 & & 1115 \\
\hline & & & & 1200 & 1205 & 1210 & 1223 & 1382 & & 1311 \\
\hline & & & & 1347 & 1423 & 1430 & 1433 & 1440 & & 1455 \\
\hline 1776 & v00022 & JBAR & , I & 36 & 107 & 155 & & & & \\
\hline 1777 & voncua & \(J\) MAX & II & 147 & 671 & 710 & 717 & 721 & & 740 \\
\hline & & & & 1410 & 1457 & & & & & \\
\hline 2003 & V00046 & JM1 & \I & 116 & 213 & 527 & 726 & 115 & & 725 \\
\hline & & & & 742 & 1115 & 1223 & 1347 & 1446 & & \\
\hline 2091 & voubsi & JME & \I & 117 & 131 & 716 & & & & \\
\hline 2002 & vaugs 3 & JNM & 1I & 12? & 135 & 1257 & 1374 & & & \\
\hline 2003 & V10114 & JVVEC & II & 1330 & 1345 & & & & & \\
\hline 2044 & vodil6 & JYCC & VI & 1340 & 1344 & & & & & \\
\hline 2065 & va0.73 & KRET & 11 & 225 & 231 & 1026 & & & & \\
\hline 2026 & vanalo & LONG & , 12 & 156 & 163 & 173 & 1234 & 1325 & & 1335 \\
\hline 2807 & A \({ }^{\text {acam } 7}\) & AAME & \I & 6 & 20 & 133 & 1255 & 1372 & & \\
\hline 2021 & vowbl 1 & NL & \R & 44 & 454 & & & & & \\
\hline 2022 & VOOSI 7 & NUM & \(\backslash 1\) & 26 & 30 & 101 & 1125 & & & \\
\hline 2023 & VM0041 & OMG & \R & no & 151 & & & & & \\
\hline 2024 & A0000S & \(p\) & VK & 502 & 513 & 1100 & 514 & 502 & & 1217 \\
\hline & & & & 1442 & & & & & & \\
\hline 15424 & 100047 & RDX & VR & 114 & 144 & 505 & 1055 & 1013 & & \\
\hline 13425 & VODOSO & RDY & \R & 126 & 144 & 516 & 1056 & 1872 & & \\
\hline 13426 & v00056 & r & \R & 146 & 1034 & 1120 & 1136 & 1144 & & 1163 \\
\hline
\end{tabular}



\section*{II. SOLA-SURF - BASIC SOLUTION ALGORITHM FOR FLOWS BOUNDED BY CURVED SURFACES}

We can easily modify the SOLA code to permit free or curved rigid surfaces across the top and botlom of the computational mesh. The principal restriction is that these surfaces must be definable by single-valued functions, for example, \(y=H(x, t)\) fir the top surface and \(v=H B(x, t)\) for the bottom surtace. Also, the slope of the surface must not exceed the cell aspect ratio \(\delta y / \delta x\). Several examples illustrating different combinations of the curved surface options are described in Sec. B. The basic modifications required in SOLA to permit these more general boundary conditions are described next.

\section*{A. Madifications to Basic SOLA}

Let \(\mathrm{H}_{3}\) be the height of the top surface above the bottom of the mesh, as measured up the center of the \(i^{\text {th }}\) column of cells, and let \(\mathrm{HB}_{\mathrm{i}}\) be the corresponding height of the bottom surface. Dimension statements must be added to SOLA for \(\mathrm{H}_{i}, \mathrm{HB}_{\mathrm{i}}\) and for their old time values \(\mathrm{HN}_{i}, \mathrm{HBN}_{j}\). In addition, it is convenient to dimension for storage the \(j\) index of the cell rontaining the top surface \(\mathrm{J}_{\mathrm{i}}\) and the bottom surface \(\mathrm{JB}_{\mathrm{i}}\). An input number TB is 1.0 if the top surface is to be free and is 2.0 for a rigid curved boundary. Likewise, for the bottom boundary the input number BR is 1.0 for a free surface and 2.0 for a rigid surface.

Initial values of \(\mathrm{H}_{\mathrm{i}}, \mathrm{HB}_{\mathrm{i}}\) and corresponding \(\mathrm{J}_{\mathrm{i}} \mathrm{H}_{\mathrm{i}}\), ITh must be defined in the initial condition section (l00 section) for each problem. Of course, if curved boundaries are not wanted \(\mathrm{H}_{\mathrm{i}}\) can be set equal to the height of the mesh and \(H B_{i}\) to zero. The corresponding input numbers TB and BR should then be set to zero, which indicates that those secfions of the code used to update these boundaries can be omitted.

For some problems. when the botom boundary is rigid, it is best to start with a hydrostatic pressure tield. This is done in the setup after \(H_{1}\) has been defined.
\[
P_{i, j}=-s_{v}\left[H_{i}-(j-1.5) j y\right\} .
\]

All IOO LOOPS sweeping the mesh are arranged to run up columns starting with the far left and ending with the far right column. In each column the \(j\) index
runs from the bottom boundary cell. \(\mathrm{JB}_{\mathrm{i}}\) to the top boundary cell \(\mathrm{JT}_{\mathrm{i}}\).

In the pressure iteration ( 3000 section) the top and bottom surface cells must be given special consideration to reflect the new boundary conditions. At a free surface the pressure must be zero (or at some specified value), whereas at a rigid boundary the normal fluid velocity must vanish.

First, consider the free surface condition for the top boundary ( \(\mathrm{TB}=1.0\) ). The surface cell pressure is chosen such that a linear interpolation between it and the pressure in the fluid cell below yields zero or an applied value \(p_{s}\) at the surface,* i.e.,
\[
p_{i, J T}=(1-n) p_{i, J T-1}+n p_{s}
\]
where
\[
n=\delta y /\left[H_{i}-(J T-2.5) \delta y\right]
\]

When the bottom surface is free \((\mathrm{BB}=1.0)\) a similar prescription is used for the surface cell pressure \(p_{\text {J J }}\), except the interpolation is with the fluid cell above ( \(\mathrm{j}=\mathrm{JB}+1\) ) and \(\mathrm{H}_{\mathrm{i}}\) is replaced by \(\mathrm{HB}_{\mathrm{i}}\).
\[
P_{i, J B}=(1-\eta) p_{i, J B+1}+\pi p_{s}
\]
where now
\[
\eta=\hat{\Delta} y /\left\{(J B-0.5) y-H B_{i} \mid .\right.
\]

If the bottom boundary is a rigid surface ( \(B B=2.0\) ), the pressure in the surface cell is chosen to make the normal velocity at the surface zero. In difference form the outward normal velocity at \(\mathrm{HB}_{\mathrm{i}}\) is approximated by

\footnotetext{
*The applied pressure is generally a function of time and location along the surface that must be defined for each specific problem. In the code contained in Sec. \(C, p\) is assumed equal to zero and does not appear there explicitly. Therefore, when a nonzero \(p_{s}\) is desired the \(\eta p_{\mathrm{s}}\) term must be added to the surface cell pressure in the 3000 section of the code.
}
\[
\begin{aligned}
u_{n} & =-\frac{1}{4 \delta X}\left(u_{i, J B}+u_{i-1, J B}\right)\left(H B B_{i+1}-H B_{i-1}\right) \\
& +\zeta v_{i, j B}+(1-\zeta) v_{i, J B-1},
\end{aligned}
\]
where
\[
\zeta=\left|H B_{i}-(J B-2) 6 y\right| / \delta y
\]

In the code \(v_{1 . J B}\) has been replaced by its value computed from Eq. (3), which is the boundary condition used at the top surface and the form needed to derive \(\delta u_{n} / o p\) below. The velocities appearing in this expression are functions of the cell pressure so that \(\mathrm{u}_{\mathrm{n}}=0\) ) can be considered an implicit equation for prims. A Newton-Raphson type solution method is used to obtain a new estimate for \(p_{i, j \mathrm{H}}\) during each iteration pass. Specifically. the change added to \(p_{i . J B}\) in each iteration is
\[
s_{p}=-u_{n} / \frac{u_{n}}{u_{p}} .
\]
where the denominator is given by
\[
\frac{\partial u}{\partial p}=\frac{s t}{\delta y}\left[1+\frac{2 \delta y^{2}}{\delta x^{2}}(1-\zeta)\right] .
\]

Similar expressions are used in the top cell \(\mathrm{j}=\mathrm{J} \mathrm{T}\) for a rigid curved boundary ( \(\mathrm{TB}=2.0\) ).

For both the top and bottom surfaces, velocity boundary conditions are set in the boundary condition section ( 2000 section), after the regular boundary conditions but before the location reserved for special boundary conditions. These conditions, which are identical for both the free and rigid cases, are set by proceeding from left \((i=2)\) to right ( \(\mathrm{i}=\mathrm{lM} 1\) ). For each top surface cell the u-velocity on its right face is sel equal to the u-velocity in the cell below if the cell to the right is empty. Also, the uvelocity in the cell above is set equal to the uvelocity in the surface cell. The v-velocity at the top of the surface cell is chosen to insure that the velocity divergence for the cell is zero. In difference form, for cell JT(i) these conditions are:
\[
\begin{aligned}
u_{i, J T} & =u_{i, J T-1}, \quad \text { if } J T(i+1)<J T(i) \\
u_{i, J T+1} & =u_{i, J T} \\
v_{i, J T} & =v_{i, J T-1}-\frac{\delta y}{\delta x}\left(u_{i, J T}-u_{i-1, J T}\right) \\
& -\frac{\varepsilon, V}{2 \delta_{X(i-1.5)}}\left(u_{i, J T}+u_{i-1, J T}\right) .
\end{aligned}
\]

At the bottom surface cell JB(i) the corresponding conditions are.
\[
\begin{aligned}
u_{i, J B} & =u_{i, J B+1} \text {, if } J B(i+i)>J B(i) \\
u_{i, J B-1} & =u_{i, J B} \\
v_{i, J B-1} & =v_{i, J B}+\frac{\delta y}{\delta X}\left(u_{i, J R}-u_{i-1, J B}\right) \\
& +\frac{\zeta \delta y}{2 \hat{6} \times(i-1.5)}\left(u_{i, J B}+u_{i-1, J B}\right) .
\end{aligned}
\]

The simplicity of these boundary conditions results from the limitation that surface slopes not exceed the cell aspect ratio \(\delta y / \delta x\).

In the case of a free top surface, a new surface configuration must be computed each cycle ( 4000 section) according to the kinematic equation
\[
\frac{\partial H}{\partial t}+u \frac{\partial H}{\partial x}=v,
\]
but only after convergence of the pressure iteration has been obtained. The difference equation used is,
\[
\begin{aligned}
H_{i}^{n+1}= & H_{i}+\delta t\left\{\left.-\frac{i}{4 \delta x} \right\rvert\,\left(u_{i, J T}+u_{i-1, J T}\right)\right. \\
& \left(H_{i+1}-H_{i-1}\right)-\gamma \mid u_{i, J T}+u_{i-1, J T} \\
& \left.\left(H_{i+1}-2 H_{i}+H_{i-1}\right)\right\}+h v_{i, J T} \\
& \left.+(1-h) v_{i, J T-1}\right\} .
\end{aligned}
\]
where \(h\) is an interpolation length used to get the \(v\) velocity at the surface position,
\[
h=\left|H_{i}-(J T-2) \hat{t y}\right| / \delta y .
\]

All quantities without superscripts are evaluated at time not. The constant \(\gamma\) is used for upstream differencing in analogy with \(\alpha\) (it is often chosen equal to \(\alpha\) ).

When the bottom surface is free it is updated with a similar equation.
\[
\begin{aligned}
H B_{i}^{n+1}= & H B_{i}+\delta t\left\{-\frac{1}{4 \delta x}\left[\left(u_{i, J B}+u_{i-1, J B}\right)\right.\right. \\
& \left(H B_{i+1}-H B_{i-i}\right)-\gamma / u_{i, j B}+u_{i-1, J B} \mid
\end{aligned}
\]

with
\(h_{b}=\left\{H B_{i}-(J B-2) \delta y\right\} / \delta y \quad\).
If the surface configurations are changed, the \(\mathrm{JT}(\mathrm{i})\) and \(\mathrm{JB}(\mathrm{i})\) indexes and the surface velocity boundary conditions must be reset in preparation for the next cycle.

\section*{B. Sample Problems}

With the above, relatively minor modifirations added to SOLA, many interesting problems can be investigated. The following examples illustrate some of the possibilities.
1. Interaction of Two Solitary Waves. A solitary wave is a single, finite amplitude wave that propagates without a change in shape. According to approximate analytic theories, \({ }^{11}\) two solitary waves can interact nonlinearly without losing their identity. To study this phenomenon with a direct numerical simulation, two solitary waves moving toward one another were set up as initial conditions, as shown in Fig. 10. The mesh consisted of 150 cells in the \(x\)-direction and 10 cells in the \(y\)-direction ( \(\mathrm{IBAR}=150, \mathrm{JBAR}=10\) ). The top surface is to be free ( \(\mathrm{TB}=1.0\) ) with an undisturbed denth of 1.0 . The bottom surface is flat and rigid ( \(\mathrm{BB}=0.0\) and \(\mathrm{HB}_{\mathrm{i}}=0.0\) ). The initial wave profiles and velocity distributions were generated using the second-order theory of Laitone. \({ }^{12}\) The left wave has an initial amplitude of 0.25 and is moving to the right, whereas the right wave has an amplitude of 0.5 and is moving to the left. Figure 10 gives the remaining input parameters for this calculation.

Subsequent times in the evolution of the two waves are shown in Fig. 11. In the last frame the two waves have separated, are moving apart, and are closely approximating the original two waves, as predicted analytically. Some low-level fluctuation is caused by dispersive errors in the numerical approximations and by the fact that the initial conditions are from an approximate theory. There is also a slight amplitude fluctuation and change after interaction; the parting waves have average heights of 0.241 and 0.522 . This change may be the result of nonlinear effects not included in the theoretical


Fig. 10.
Initial free surface profile and input parameters used for intercction of two solitary waves.
analysis. However, more careful and more extensive calculations must be undertaken before this conclusion can be established.
2. Flow Over a Corrugated Bottom. To illustrate the curved wall boundary condition in SOLA-SURF we performed a calculation for a fluid with a free surface flowing over a wavy bottom. For small-amplitude bottom perturbations a linear solution for steady flow conditions can be found in Sec. 246 of Lamb's Hydrodynamics. \({ }^{13}\) This problem, therefore, serves as a good test case. The aslculational mesh was set up as follows; the inesh is 41 cells wide ( \(\delta \mathrm{x}=0.15\) ) and 15 cells high ( \(\delta \mathrm{y}=0.1\) ). The top boundary is a free surface (TB \(=1.0\) ) andthe bottom boundary is rigid \(\mathrm{BB}=2.0\) with a sinusoidal variation in height.
\[
H B_{i}=H[1+\cos (k x)],
\]
where \(\mathrm{k}=2 \pi / \lambda\) is the perturbation wave number, corresponding to the wave length \(\lambda=\) (IBAR-1) \(\delta x\), and \(\mathrm{H}=0.05\). The left and right boundaries of the mesh are periodic ( \(\mathrm{WL}=\mathrm{WR}=4\) ). The mean depth of fluid relative to the mean bottom height is 0.90 , and the fluid is initially moving with velocity \(\mathrm{UI}=\mathrm{U}_{\mathrm{0}}\) to the right. Gravity is down, \(\mathrm{g}_{\mathrm{y}}=-1.0\). The surface profiles at \(t=10\) and remaining input parameters are shown in Fig. 12.

When the flow is subcritical, \(\mathrm{U}_{6}^{2} \mathrm{k} /\left(-\mathrm{g}_{\mathrm{y}}\right)<1\), the surface develops corrugations inverted with respect to those of the bottom, but for supercritical flow, \(\mathrm{U}_{6}^{2}\) \(\mathrm{k}\left(-\mathrm{g}_{\mathrm{N}}\right)>1\), the corrugations are in phase with those of the bottom.


Fig. 11.
Sequence of surface profiles showing the interaction of two solitary waves. Left to right the


Fig. 12.
Steadr-state top and bottom surface profiles arrd input parameters used in calculation of flow over a corrusated bottom.

The first calculation we attempted used a flat free surface and a uniform horizontal velocity \(\mathrm{U}_{\mathrm{o}}=+2.0\) for supercritical flow as initial conditions. The resulting flow developed free surface corrugations that periodically oscillated in phase and amplitude around the correct steady-state values. We believe that these results are reasonable, because any perturbation of the steady flow in an infinitely periodic system without dissipation has no mechanism to return it to the steady state. To check this, the calculation was repeated with the theoretical free surface profile, velocity, and pressure fields input as initial conditions. In this case, the calculated free surface amplitude remained steady at the theoretical value to within \(3 \%\) of the surface amplitude shown in Fig. 12.
3. Flow About a Planing Surface. An interesting and useful variation of the curved surface treatment in SOLA-SURF is to let only portions of the surface be a rigid boundary. For example, the fluid flowing about a planing body like a surfboard or hydrofoil is confined only underneath the body, but is free elsewhere. To model this type of flow we must introduce a test in the pressure iteration ( 3000 section) to decide where to apply the free boundary condition (zero pressure) or the confined boundary condition (zero normal velocity at the body).
For a flat planing surface we know that a forward moving jet or splash is usually produced at the leading edge of the flow. \({ }^{14}\) This cannot be modeled in SOLA-SURF because of the restriction that the surface must remain a single-valued function of the horizontal coordinate. However, in gravity-
dominated situations the principal fluid resistance experienced by a planing body is due to the generation of a train of trailing waves and is not significantly influenced by the forward jet.

A calculation in which the forward jet is ignored can he set up as follows. To avoid a sudden transition in boundary conditions at the free surface, the surface cell pressure condition is modified to be a linear combination of the rigid and free condition: i.e., the pressure is chosen to make the following expression zero.
\[
F=*\left[p_{i, J T}-p_{i, J T-1}\left(\frac{h-t_{2}}{h+\frac{1}{2}}\right)\right]-(1-k) \frac{j y}{i_{i}} u_{n}
\]
where \(h=\left[\mathrm{H}_{\mathrm{i}}-(\mathrm{JT}-2) \delta y\right] / \delta \mathrm{y}\) and \(\mathrm{u}_{\mathrm{n}}\) is the normal velocity at the surface. The minus sign for the second term was chosen to insure that \(F\) would be a monotonic function of the surface cell pressure. When \(\kappa\) is unity, \(F=0\) is the free-surface boundary condition, and when \(\kappa\) is zero, \(F=0\) corresponds to the usual rigid boundary condition, \(u_{n}=0\). In this problem the interpolation factor a was chosen to be
\[
k=\left\{\begin{array}{l}
k_{0} \equiv 2\left(H-H_{i}\right) / \partial y, \quad \text { if } 0<k_{0}<1 \\
0, \text { if } k_{0}<0 \\
1, \text { if } k_{0}>1,
\end{array}\right.
\]
where \(H\) is the height of the planing body at the center of the \(\mathrm{i}^{\text {th }}\) column of cells. If this transition between the two kinds of surtace boundary conditions is not used, the fluid at the leading edge of the body will periodically bounce off the rigid surface, because of large forward pressure gradients produced every few cycles when the fluid passes from a free surface region with approximately zero prer sure to a confined fluid region with large positive pressure.
When inserting the condition \(F=0\) in the pressure iteration scheme, the surface cell pressure is computed using a Newton-Raphson type approximation in which the pressure change \(\delta \mathrm{p}\) in the given iteration pass is given by
\[
\delta p=-F / \frac{\partial F}{\partial p}
\]
with
\[
\frac{\partial F}{\partial p}=\kappa+(1-k)\left(I+2 h \delta y^{2} / \delta x^{2}\right) .
\]

When the top surface profile is advanced in time for this problem, a special test must also be inserted into the 4000 section to prevent \(\mathrm{H}_{1}\) from exceeding the height of the planing body. Using the above modified boundary condition, we constructed a mesh with \(\mathrm{IBAR}=60, \mathrm{JBAR}=15, j \mathrm{x}=0.1\). and \(\delta \mathrm{y}=0.1\). The initial undisturbed fluid height was 1.15 in front of the body. Behind the body, where a tlat plate tilted \(9.5^{\circ}\) with respect to the horizontal, the initial height wa.s 0.95 . corresponding to the elevation of the trailing edge of the plate. With respect to the plate the fluid is initially moving uniformly to the left with speed 0.6364. The mesh boundary conditions are \(W L=3\). \(W T=W B=W R=1\). Uniform inflow along the right mesh boundary was specified in the special boundary condition section ( 2500 section). Because of this special right-wall velocity condition we must reset the free-surface-velocity boundary conditions for the last cell (IMi. JT) next to the wall. This had been set in the 2000 section assuming a zero horizontal velocity at the right wall. Calculational parameters are listed in Fig. 13, which also shows the initial top surface profile (exaggerated by a factor of 4 in the vertical direction). Figure 14 shows the development of the surface profile in time. At the plate's leading edge the free surface initially climbs upward. but eventually reaches the steady profile shown in Fig. 14's last frame. The tree surface behind the plate also settles down to a steady profile, in this case, without waves. The lack of a trailing wave pattern may be the result of not having a long enough mesh or possibly a result of the continuative outflow condition used at the left boundary.


Fig. 13
Initial top surface profile and input parameters for calculation of flow about a planing surface.

This example shows how simple methods can often be built up in easy steps to perform increasing. ly complex problems. Many other variations and modifications can also be imagined. In the next problem, for example, this partially rigid and partially free top-boundary method is used to compute the wave field generated by a floating body.
4. Waves Generated by a Floating Body in Forced Heave. In contrast to the previous problem, the partially confined, partially free top-boundary condition is here used in connection with a rigid boundary (the floating body) moving relative to the computing mesh. The principal, new modification required is that the normal velocity at the confining top surface be allowed to assume nonzero values.

The floating body used is a right circular cylinder. with axis oriented vertically, undergoing forced heave. Axisymmetric coordinates are used ( \(\mathrm{CYL}=1.0\) ) with the mesh and cylinder arrangement as shown in Fig. 15.

In the SOLA-SURF boundary treatment. surface slopes are not to exceed \(\delta y / \delta x\). We eliminate this restraint at the side of the cylinder. however. by aligning the vertical side with an \(i=\) constant mesh line and by adding boundary conditions that set to zero all u-velocities along the side of the cylinder. This is done by adding to the special boundary condition section ( 2500 section) the statement.
\[
u_{i R, j}=0.0 \text { ior } j=J R, J M A X
\]
where IR corresponds to the interior cell along the side of the cylinder and \(J R=J T_{i}+1\) for \(i=I R\). The forced heaving of the body is periodic and defined by
\[
H=H_{0}-A \sin (. t)
\]
in which \(H\) is the height of the bottom of the body above the mesh floor. \(H_{0}=0.25 . A=0.10\). and \(u=2 \pi / \pi\) with \(\tau=2.0\).

In the pressure iteration ( \(: 3000\) section) the boundary conditions for the top surface are that the surface pressure be zero (free surface condition) for \(i>6\) and that \(u_{11}\) be equal to the body velocity given by
\[
\frac{\mathrm{d} H}{\mathrm{dt}}=-A_{\omega} \cos (\omega t)
\]
for \(\mathrm{i} \leq 6\).
Figure 15 lists the remaining parameters used for the calculation shown in Fig. 16. Note that vorticity is gonerated at the bottom corner of the body: therefore. this problem could not be solved analytically with a potential flow calculation. even for low-amplitude displacements.


Fig. 14.
S'quence of surface profiles as flou decelops about a planing surface. Left to right profiles ar, at times 0.0. 1.025, 1.525, and 10.025. The flou has reached steady state by the last frame.


Fig. 15.
Initial free surface profile around cylinder and imput parameters for the calculation of a fluationg calinder in forced hoace. Side of cylinder is certical but appears stoping because lime is drawn between surface height calues at ncishboring cell centers.

Waves radiating ont from the body rapidly lose amplitude hecause of their radial expansion. In addition to the wave field. calculations of this sort can be used to obtain added mass and damping coefficients for floating bodies.
5. Frec-Floating Body. Instead of forcing a periodic body motion. we now wish to have the body dynamically interact with the fluid. The body is to be initially raised above its equilibrium position and allowed to fall, starting from rest. Its subsequent motion will consist of damped oscillations as waves are generated and radiated away. The only difference between this calculation and the previous one is that the velocity of the body is not prescribed a priori but determined from the equation of motion
\[
\frac{d V_{B}}{d t}=H_{y}+f / x i
\]
where \(f\) is the total force exerted on the base of the body by the instantaneous fluid pressure and M is the mass of the body. Thus, it seems that we need only replace the previously specified body velocity with that calculated by the above ordinary differential equation. There is. however. one difficulty with this procedure. The pressures computed in the code. when used to accelerate the body. lead to an unstable body motion. To correct this. the body equation of motion must be implicitly coupled with the
pressure iteration. This is done by computing a new \(V_{B}\), for use in the pressure iteration, at the end of



Fig. 16.
Surface profile at \(:=8.0\) and celocity fields at yuarter periods as generated by cytinder undergeings forced heave.
each iteration pass using the most updated pressure values available. If the \(V_{B}\) calculation is inserted into the special boundary condition section ( 2500 section) this will be done automatically. Because of the dependence of \(V_{B}\) on the new pressures, however, we mast also modify the relaxation factor \(\partial F F^{h} p\) described in subsection 3 to have for each cell (i.JT) under the cylinder the additional term
\[
\frac{2 \pi}{M} \delta x^{2}(i-1.5)[H-(J T-2.5) 5 y] .
\]

Figure 17 shows body height as a function of time computed in this way. The pressures used to accelerate the body may also be used to compute added mass and damping coefficients. Unfortunately. we know of no theoretical or experimental data for this or the previous problem to make comparisons.

\section*{C. Details of the SOLA-SURF Program}

A conceptual flow chart and FORTRAN listing of the SOLA-SURF code is included here. Comparing this flow chart with SOLA's shows that the only significant differerence is section 4000 , which is used to update the free surface position. All input parameters are identical in the two codes, except SOLA-SURF has some additional parameters associated with the surface options. The parameters are defined as:


Fig. 17.
Elevation of free-floating cylinder us time, shou's damping of motion as waves are radiated auay.

GAMMA \(=\gamma=\) controls the amount of donor cell fluxing in kinematic equations for free surface position (1.0 for full donor cell differencing and 0.0 for centered differencing),
\(\mathrm{TB}=\) top boundary definition 0.0 for top boundary coincident with the top mesh boundary. 1.0 for a free surface, and 2.0 for a rigid boundary), and
\(\mathrm{BB}=\) bottom boundary definition \((0.0\) for bottom boundary coincident with the bottom mesh boundary, 1.0 for a free surface, and 2.0 for a rigid boundary).

\section*{RETERENCES}
1. F. H. Harlow, "Numerical Methods for Fluid Dynamics - An Annotated Bibliography." Los Alamos Scientific Laboratory report LA-4281 (December 1969).
2. F. H. Harlow and J. E. Welch, "Numerical Calculation of Time-Dependent Viscous Incompressible Flow," Phys. Fluids 8, 2182 (1965); J. E. Welch, F. H. Harlow, J. P. Shannon, and B. J. Daly, "THE MAC METHOD: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces," Los Alamos Scientific Laboratory report LA-3425 (March 1966).
3. C. W. Hirt and J. P. Shannon, "Free-Surface Stress Conditions for Incompressible-Flow Calculations," J. Comput. Phys. 2, 403-411 (1968).
4. R. K.-C. Chan and R. L. Street, "A Computer Study of Finite-Amplitude Water Waves," J. Comput. Phys. 6, 68-94 (1970); R. K.-C. Chan and R. L. Street, "SUMMAC - A Numerical Model for Water Waves," Department of Civil Engineering, Standford University, Stanford, CA, Technical Report No. 135 (1970).
5. B. D. Nichols and C. W. Hirt, "Improved Free Surface Boundary Conditions for Numerical Incompressible-Flow Calculations," J. Comput. Phys. 8, 434-448 (1971).
6. J. A. Viecelli, "A Method for Including Arbitrary External Boundaries in the MAC Incompressible Fluid Computing Technique," J. Comput.

Phys. 4. 54:3-iñ) (1969); "A Computing Method for Incompressible Flows Bounded by Movirg Walls," J. Comput. Phys. 8, 119-143 (1971).
7. A. A. Amsden and F. H. Harlow, "The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows." Los Alamos Scientific Laboratory report LA-4:30 (May 1970 ).
8. P. I. Nakavama and N. C. Romero, "Numerical Method for Almost Three-Dimensional Incompressible Fluid Flow and a Simple Internal Obstacle Treatment." J. Comput. Phys, 8. 2331-240 (1971).
9. C. W'. Hirt. "Heuristic Stability Theory for Finite-Difference Equations." J. Comput. Phỵs. 2. 399-355 (1968).
10. A. E. Vardy. M.I.G. Bloor and J. A. Fox. "Capsular Flow in Pipelines." .]. Fluid Mech. 56. 4959 (1972).
11. N. .J. Zahusky and C. J. Galvin, "ShallowWater Waves, the Korteweg-deVries Equation and Solitons." .J. Fluid Mech. 47. 811-824 (1971).
12. R. L. Wiegel. (jceanograjúicical Engineering (Prentice-Hall. Inc.. Englewood Cliffs. N.J. 1964). pp. 65-67.
13. H. Lamb. Hydrodynamics (Dover Publications. New York. 1945), pp. 409-410.
11. L. I. Sedov. Tuo-Dimensional Problems in Hydrodynamics and Aerodynamics (Interscience Publishers. New York. 1965) pp. 238-244.

```

*JOLCM4)U
74%2/15 12.43.6!S T3BUNLZSNN NAGE MO.

```



``` 2, Ant (1.)
```





## $\star$
















```
at Fionsit (1fAn)
```




``` 1)
```




``` 1 +12.5;
```









```
\(\star\)
```



```
\(\stackrel{C}{*}\)
j \(\because: A x=144 x+2\)
\(g \sim \Delta x=\sin \Delta t+c\)
\(\left\lceil{ }^{\prime} 1=\lceil M A x=1\right.\)
\(J^{n} f=J \mu \mathrm{~A},=1\)
```





```
142=1"AK-2
```





```
rall i:ATr 1 (isA)
r.abl Clit(1) (GL*)
```



```
\(\Gamma=\therefore\) 。
```



```
 1Tヒッジ
 CYCL!E:
```



```
 Tい゙し「=&.
```



```
*
```



```
*
```



```
 ッ人一T= \because."
 <2,4 I= 2.1+1
 #ツ(|)= -4rt
```




```
 H0(j)= -b(2)
```



```
 Ja(1)= Jn(?)
 foc(INAXI= J.(1):1)
#
C CHOMP:TTE ITITJAL TCO SumFACE CO'FIGJNATIO:
 HMT=1..
 心{126M I=2.IM!
 m(I)= FLMT
 JT(I)=Ivi(#(I)*m)i+1.t=d) + (2
 IH(JT(1).GI.,imi) Ji(1)= JM:
 20% C"*IIN.NE
 H(1)=m(2)
 M([14ax)= H(I-1)
 JT(:)= JT(Z)
 J!(1^AK)=J!(!&1)
*
C * Calculate myjuigSatIC mizlSSune
 uf1 296 I=2.1*1
 j!=3!(1)
 341= To(I)
```




```
 O(I.J)= -GY*(r(I)=(FLTMT(J)-1,b)*DELY)
 28% CuNTINUE.
 G2 TO 240
 2B? CU&TL!NF
 0i. 2H5 J= J41,JT!
```



```
 285 CLATIVUF.
 29n CONTINUE
C COLEULATE POSITIUR OF IME CEATER OF TACH VERIICAL COL:AN OF CELGS
 90 52: I= 1, 14Ax
 x(I)=(FLGAT(I)=1.5)* \tLX
 320 CONTINUE
```






```
```

* 

```
```

```
```

* 

```
```






```
 ゙ツ=91力
```

```
 ゙ツ=91力
```




```
 J^L=1
```

```
 J^L=1
```






```
 ;ri: Sj:
```

```
 ;ri: Sj:
```




```
 |xl= J. ((511.-*)
```

    |xl= J. ( (511.-*)
    IAn=1:V(blla+A)
    IAn=1:V(blla+A)
    ivT=1%
    ivT=1%
    33.1 6:M.9IN..t
    ```
 33.1 6:M.9IN..t
```




```
C* * SEI IVITIAL VELDCITYFIHIS INTO I ANU * ARRAYS
```

C* * SEI IVITIAL VELDCITYFIHIS INTO I ANU * ARRAYS
A Fo,! 1=a,1*1
A Fo,! 1=a,1*1
JT2=\T(T)+1
JT2=\T(T)+1
JN2=Jん(I)-1
JN2=Jん(I)-1
i' 5ん0 j=JNC,Jic
i' 5ん0 j=JNC,Jic
v(I,J)= vI
v(I,J)= vI
M(I,j)= 'JI
M(I,j)= 'JI
G.क.Cr!?!心E
G.क.Cr!?!心E
4\#SI!N, 42m. IO NREI

```
 4#SI!N, 42m. IO NREI
```




```
&
```

\&
C:Sram: frcite

```
C:Sram: frcite
```




```
 1!+a=!
```

        1!+a=!
    -!-こ!.
    ```
 -!-こ!.
```






```
 u' il:!" I=r.i"1
```

    u' il:!" I=r.i"1
    N1= JT(T)
    N1= JT(T)
    Ja!= j!a(!)
    Ja!= j!a(!)
    Oi 11A, J= JH1.NTI
    ```
 Oi 11A, J= JH1.NTI
```








```
 F.y=(rv::(I,J)+v*(I+1,j))*(irc(I,N)+!v(I,I+1))
```

```
 F.y=(rv::(I,J)+v*(I+1,j))*(irc(I,N)+!v(I,I+1))
```




```
 {-{~+!I, I-1)+viiI +I, j-1)}*(.jA(I,J-1)+!N(I,J))
```

```
 {-{~+!I, I-1)+viiI +I, j-1)}*(.jA(I,J-1)+!N(I,J))
```














C * * 3ह.T amuvimafy CuNOIrlur.s
*

```

```

    rio(1)= - 吅(2)
    WH(I\becauseAX)= MA({H!)
    J!(1)=.jT(2)
    JT(I:AK)=JT(IMM)
    r+jen(!)= 4HAN(c)
    mofA(IMAX)= MBN(IMI)
    Jis(1)= J;(2)
    JB(IMAX)= JH(IMI)
    (]) 2.ND J=1.JMaX
    ```

```

2w2. \cup(1., )=4.n
v(1, J)=v(?.,j)
G0 t% 子10%
2か4:4 U(1,J)=6.{
v(1,J)=-v(2,J)
G(1 T! 21\&6
2Wも\& IF(ITER,GT.0)GOTO 210|
U(1,J)=t(2,J)
v(1,J)=v(2,J)

```

```

2080U(1,J)=U(IMC,J) s V(2,J)=V(IM\&,J)
V(1,J)= V(IM2,J) \$ P(2,J)=P(IM1,J)
H+J(i)= Hi,([MC)
JT(1)= JT(IMZ)
NH:(t) = MBN(1M2)
JH(1)= JR(IMR)
Gu TO ? INU
21月0 GU TU (212%,ci4*,2160,218%)WR

```

```

    V(IЧAX,J)=V(IMII,J)
    ```
```

RUN-LCM47 0

1033
1641
1641
1043
1044
1055
1255
1064
1075
1075
1475
1875
1075
1075
1075
1275
1975
1275
1112
1115
1117
1117
1122
1137
1137
1141
1146
1146
11be
1158
1162
1162
1164
1171
117
11／3
1173
$124^{4}$
$12 \times 4$
1247
1214
1216
1215
1213
1217
1217
1222
1226
1226

G0 90 22明

V（IMAX，J）$=-v(1 M 1, J)$



$V(I M A X, J)=V\left(I^{N} I, j\right)$
G！TC 22．！6．

$V(I M A X, J)=V(3, J)$
His（I＊1）$=\min (2)$
J1f（IN1）＝JT（2）
$H \sin (\mathrm{~A} x)=\tan (3)$
$J T(1 \because \Delta x)=J 1(3)$
HAH（IM1）$=\tan (\mathrm{N}(\mathrm{C})$
$\mathrm{Ja}(1 \mathrm{~m} 1)=\mathrm{Jan}(\mathrm{z})$
$\operatorname{Hing}\left(I_{A X}\right)=\operatorname{Han}(3)$
$J H(I 4 A x)=J 6(3)$
2abe cantinut
DO Zらゆら I＝1．IMAX
$J I=J T(I)$
$\mathrm{JHI}=\mathrm{Jem}(\mathrm{I})$
GOTO（232v，234n，256n，23An）w1
2324 ＂（I．JM1）＝3．6
（J）J．JMAx）＝11（1，JM1）
GO Tu 2460


GT TC 2a4，${ }^{\circ}$

$V(1, J M 1)=V(1, J 4 z)$
$U(1,1 \times A x)=U(1, \sqrt{1+1})$
60 Ti，？4in
$2386 \mathrm{v}(1, \mathrm{Jin} \lambda)=\mathrm{v}(\mathrm{I}, \mathrm{P}$ ？
リ（1，di－Ax）$=u(1,3)$


242．$v(1, t)=$ ？．，
$4(1,1)=1(1,2)$
（G）T！e5．：
244： $6(1.1)=10.6$
（1） 1,1$)=-1,(1, c)$
1010250

$v(1,1)=v(1,2)$
$0(1,1)=(1,2)$
GO 「0 टs：4u
$2480 \quad V(1,1)=V(I, J M 2) \quad s \quad U(1,2)=U(I, J M 1)$ $U(I, 1)=U(I, J M 2) \quad 5 \quad P(I, 2)=P(I, J M 1)$
25ina cuntriaf
＊

20A：cuntiry．



```
1244 JTj= !T(!)
1こ山4 JHi= JH(1)
1246
1250
1262
1202
1277
1277
13vn
1313
1513
1336
1333
1333
```

    202.x comTlNuE
    ```
 202.x comTlNuE
2050 GuNTIPUE
2050 GuNTIPUE
*
*
 C * * SPECIAL SOUNIANY GOMBITIUNS
 C * * SPECIAL SOUNIANY GOMBITIUNS
*
*
 3i:50 FLGi=r.a
 3i:50 FLGi=r.a
 C * * CDMPMIE HPGATEU LELL PMESSUHE ANO VELINEITITS
```

    C * * CDMPMIE HPGATEU LELL PMESSUHE ANO VELINEITITS
    ```



```

        IF(JT(I+!).LT.JT(I)) J(I,N11)= リ(I,JTI-1)
    ```
```

        IF(JT(I+!).LT.JT(I)) J(I,N11)= リ(I,JTI-1)
    ```



```

        U(I,j!1+1)=u(1.J\l)
    ```
 U(I,j!1+1)=u(1.J\l)
 2bin COMTINUE
```

    2bin COMTINUE
    ```


```

        IF(Jis(I+1).GT.JB(I)) U(I,JNI)=U(I,JHI+1)
    ```
 IF(Jis(I+1).GT.JB(I)) U(I,JNI)=U(I,JHI+1)
 V(I,JH!-1)=V(I,JH1)+UFLY*Kいx*(U(I,J日I)-U(L-1,JAI))
 V(I,JH!-1)=V(I,JH1)+UFLY*Kいx*(U(I,J日I)-U(L-1,JAI))
 1 +CYL*UE!Y*V:S*{U(I,JH1)+U(I-1,JH1))/((FLOAT(I)-1.5)*CELX)
 1 +CYL*UE!Y*V:S*{U(I,JH1)+U(I-1,JH1))/((FLOAT(I)-1.5)*CELX)
 U(l.JF1-1)= j(1,JH1)
 U(l.JF1-1)= j(1,JH1)
 GOTU KPFT
 GOTU KPFT
 SNut CONTIlavt
 SNut CONTIlavt
 *
 *
 C * WAS CONVENGE*NE NEE.N REACHED
 C * WAS CONVENGE*NE NEE.N REACHED
 IF{FLG.EN.G.)GUTO +GEO
 IF{FLG.EN.G.)GUTO +GEO
 1TER=1TER+1
 1TER=1TER+1
 IF(ITER.LT.5***) GUT! 3w丁口
 IF(ITER.LT.5***) GUT! 3w丁口
 IF(CYCLE.LT.1%) GO TO 4uwn
 IF(CYCLE.LT.1%) GO TO 4uwn
 T=1.E+1t!
 T=1.E+1t!
 GOTO 40!2*
 GOTO 40!2*
 *
 *
 乚㇒ 3500 1= 2.1M1
 乚㇒ 3500 1= 2.1M1
 JT1= IT(I)
 JT1= IT(I)
 JBj= Jb(I)
 JBj= Jb(I)
 0G 35世4 J= Jal.J1!
 0G 35世4 J= Jal.J1!
 IF(J.NE.JE1 AND. J.NE.JT1) GOTU 32&#
 IF(J.NE.JE1 AND. J.NE.JT1) GOTU 32&#
 IF(J.Fi|.JTI,AND.ITg.ER.I) G0 TU SINZ
 IF(J.Fi|.JTI,AND.ITg.ER.I) G0 TU SINZ
 IF(J.FiJ.JH; AND. IHM.E!.2) GOTO 3UG*
```

    IF(J.FiJ.JH; AND. IHM.E!.2) GOTO 3UG*
    ```



```

    GO T0 326\
    ```
 GO T0 326\
306* CUNTINUE
306* CUNTINUE
 VTM= ROY*(HB(1)=(J-2)*DELY)
 VTM= ROY*(HB(1)=(J-2)*DELY)
 VFM=RDY* ((J-1)*DELY=HAS(I))
 VFM=RDY* ((J-1)*DELY=HAS(I))
 F=-g.2S*RDX*(HEI(I+I)=Hti(I=I))*(U(I,J)+U(I-1,J))+V(I,J)*VTM
 F=-g.2S*RDX*(HEI(I+I)=Hti(I=I))*(U(I,J)+U(I-1,J))+V(I,J)*VTM
 I+VGM*(V(I, 访DLY*NDX*(U(I,J)=U(I-1,J)))
 I+VGM*(V(I, 访DLY*NDX*(U(I,J)=U(I-1,J)))
 OFDP= UEL: ROY* (VTM+VGM) * ?.*#DFLY*RDX*RUX*OELT*VBM
 OFDP= UEL: ROY* (VTM+VGM) * ?.*#DFLY*RDX*RUX*OELT*VBM
 DELP= FF/LFUF
 DELP= FF/LFUF
 GOTD 33BO
 GOTD 33BO
3070 CONTINUE
3070 CONTINUE
 VTM=ROY*(H(I)*(J-2)*OELY)
 VTM=ROY*(H(I)*(J-2)*OELY)
 F=-\varepsilon.25**R!)X*(H(I+I)=H(I-I))*(U(I,J)+u(I-I,J))+V(I,J=1)
```

    F=-\varepsilon.25**R!)X*(H(I+I)=H(I-I))*(U(I,J)+u(I-I,J))+V(I,J=1)
    ```



```

        DELD= - F/OFDP
        30 1!! 33%%
    31:1CUNTJNUF
        FETA= DELY/(TM(I)=(FLOCT(J|I)-?.S)*作LV)
    ```

```

        {01 \il 33.%w
    315:% COmT1t,at
        #ETA= DELY/((FL!AAT(Jこ!)=:5%*CELY - MH(I))
        ノ゙ん+'=(1.f゙-HトTA)*P(I,N4I+l)-F(I,JBI)
        ix r: 33,%
    ```


```

    1+!(J-1,J))/(?.*íti**(FL(OAT(I)*I.5))
    ```

```

        iof(r'= - तeTA*!
    353. r(T,j) =i'(1,J)+ij+L6
    ```


```

        v(1,!)=V(1,J) +UELT*N)Y*is+!ん
    ```

```

    35a: CuNIINUE
        Gt! T:] 2:a!'s
    ```

```

* 

< * LJup-ite ata Simatale misililem
IF(IIU.Nt.|) GU 「\ 4Cひ心.
:1) 山!6:1 J:3., IM1
\T1= !!(1)
*v= n!%*(His(1)-FLGAT(JT1-?)*UFLY)
*av= .5*(v(1-1,JT1) + U(1.1T1))

```



```

    4!.T* [!],T]:1F
    ```

```

    *
    ```

```

1735 423. CMN1.01F
*

```


\(17: 5\)
17.1
\(172:\)
\(17{ }^{\circ}\)
172.1
172.


```

    JT(I)= IN.T(H(I)*&DY+1.JE-d) + ?
    ```
 JT(I)= IN.T(H(I)*&DY+1.JE-d) + ?
 IF(JT(I).[GT.J*II)JI(I)= JMI
 IF(JT(I).[GT.J*II)JI(I)= JMI
 J\mu(I)= INT(nS(I)*4NY+1.At_=8) + 2
 J\mu(I)= INT(nS(I)*4NY+1.At_=8) + 2
 425A LONTINUR
 425A LONTINUR
 ASSIriv 42Ss 10 kNtI
 ASSIriv 42Ss 10 kNtI
 GO TO 26*20
 GO TO 26*20
 42.8'M CONTINJE
 42.8'M CONTINJE
*
*
C * * CALCUATE TOIAL FLUIO VULUNE
C * * CALCUATE TOIAL FLUIO VULUNE
 FVCL= =1.0
 FVCL= =1.0
 O0 43.1% I=2.1N1
 O0 43.1% I=2.1N1
 ANELX= (CYL*G.2HSIS*{FLOAT(IJ=1.S)*{E{X + (1.N-CYLS)*NELX
 ANELX= (CYL*G.2HSIS*{FLOAT(IJ=1.S)*{E{X + (1.N-CYLS)*NELX
 HOL= FWतLL + (rr&)=ono(L))mADLLX
 HOL= FWतLL + (rr&)=ono(L))mADLLX
 43.1E CD:T1N:JE
 43.1E CD:T1N:JE
 Fど=に.!
 Fど=に.!
 IF(nL.L.T.3)rO 10 43&3
 IF(nL.L.T.3)rO 10 43&3
 JTF=JT(己)-1
 JTF=JT(己)-1
 Jat= ith(2)+1
 Jat= ith(2)+1
 LO 434t, J=J活,JTF
```

    LO 434t, J=J活,JTF
    ```


```

434FCllNTl:NHF

```
434FCllNTl:NHF
 HOIF= "(1)=FLOAT(JT(1j-2)*UELY + FLOAT(JK(1)-1)&DELYO+N(1)
 HOIF= "(1)=FLOAT(JT(1j-2)*UELY + FLOAT(JK(1)-1)&DELYO+N(1)
 F!x=F!x+NDIF*|(1, IT1)*UFLT
 F!x=F!x+NDIF*|(1, IT1)*UFLT
4Sub COOT1DME
4Sub COOT1DME
 [F(wh.LT.3) GOTCl 435%
 [F(wh.LT.3) GOTCl 435%
 JTF=|T(INCI)-!
 JTF=|T(INCI)-!
 JMF= JN(Im1)+1
 JMF= JN(Im1)+1
 rij usSd J= JofojTf
 rij usSd J= JofojTf
 FLx=+ (x-11(1:42.\)*OLLT*UKI.Y
 FLx=+ (x-11(1:42.\)*OLLT*UKI.Y
 4350. CONT1':IE
```

    4350. CONT1':IE
    ```


```

    fLX=FLX=MDIF&し(I:11, JTI)*DFLT
    ```
 fLX=FLX=MDIF&し(I:11, JTI)*DFLT
4355 [MNTINUE
4355 [MNTINUE
 IF(#T.LP.3) (0) 90 43%5
 IF(#T.LP.3) (0) 90 43%5
 7! 436t I=2.IMI
 7! 436t I=2.IMI
 4.)GLX= (EYL*O. 2B314*(FLUAT(1)-1.5)*DELX * (1.G=CYL))*DELX
 4.)GLX= (EYL*O. 2B314*(FLUAT(1)-1.5)*DELX * (1.G=CYL))*DELX
 +LX= FLX - U(I,JyI)*DELT*AIJELX
 +LX= FLX - U(I,JyI)*DELT*AIJELX
4300 [UNTINUE
4300 [UNTINUE
4305 CTNTID+LE
4305 CTNTID+LE
 IF(NH,LY,5) Gi)TU 4375
 IF(NH,LY,5) Gi)TU 4375
 O) 4S74 1=2.J*1
 O) 4S74 1=2.J*1
 \triangleUELX- (CYL*O.28318*(FLOAT(I)-1.S)*DELX + (z.O-CYL))*UELX
 \triangleUELX- (CYL*O.28318*(FLOAT(I)-1.S)*DELX + (z.O-CYL))*UELX
 FAX= FLX + I(IFI)&UELT&ALELX
 FAX= FLX + I(IFI)&UELT&ALELX
 437: COFTINUE
 437: COFTINUE
 4375 EONTITUUE
 4375 EONTITUUE
 FVOL=FVOL+FLx
 FVOL=FVOL+FLx
*
C * PRIMT AND MLUT
C * PRIMT AND MLUT
S23, CUNTINUE
S23, CUNTINUE
 IF(T.GI.0.)GO1G 5030
 IF(T.GI.0.)GO1G 5030
 wRITE(12,501)(XPUT(1),IE1,NUNH)
 wRITE(12,501)(XPUT(1),IE1,NUNH)
5日3* CONTIMUE
5日3* CONTIMUE
 PRIP:T 49,ITEH,T,CYCLE,FVOL
```

    PRIP:T 49,ITEH,T,CYCLE,FVOL
    ```

1757
1764 1767 1774 1777 20．0 2uce

24vis
己號
2614
2014
2014
26？4
रे ？？ 4
2427
2ヶ27
2か32
2043
2443
2050
2い5n
2バか
2463
2467
2467
2以 32
2243
21か3
2111
2111
2124
2124
2127
2143
2143
2143
2153
2153
2156
217 7
2176
2170
2240 \(22 r 0\)

```

    (cyClE.lf.en) (irivgsin.*
    ```
```

    (cyClE.lf.en) (irivgsin.*
    ```


```

    T*FLT=TWPLT+C*PLT*1)ELT
    ```
 T*FLT=TWPLT+C*PLT*1)ELT
 51.小b CU:TI'vJE
 51.小b CU:TI'vJE
 CALL A!JV(1)
 CALL A!JV(1)
 CaLL LIA(c!!(1)
```

    CaLL LIA(c!!(1)
    ```


```

    CALL (I*ic*!(3)
    ```
 CALL (I*ic*!(3)
 *NIt&(12.47)
```

    *NIt&(12.47)
    ```


```

    Jr1= JH(1)
    ```
 Jr1= JH(1)
 \T1= JT(1)
 \T1= JT(1)
 J!2= JT(I)+1
 J!2= JT(I)+1
 JH2= Ji,(I)-1
 JH2= Ji,(I)-1
 \! 5%Sr:j= jug,jtr
```

    \! 5%Sr:j= jug,jtr
    ```


```

325:- [?:.TINJE.

```
325:- [?:.TINJE.
c
```

c

```


```

    CALL SFIOT(I,IEAM,*x(2),"(3),44.A)
    ```
 CALL SFIOT(I,IEAM,*x(2),"(3),44.A)
 CNIL LlNLAT(OH)
```

    CNIL LlNLAT(OH)
    ```


```

    CALL LIV(N.I(OR)
    ```
 CALL LIV(N.I(OR)
 **Itf(12,46)felvGLt.
```

    **Itf(12,46)felvGLt.
    ```


```

    CalL LI*C'+T(6, )
    ```
```

    CalL LI*C'+T(6, )
    ```


```

    CAIL I|NCNT(OC)
    ```
 CAIL I|NCNT(OC)
 Ms!PE(12.4n) T,CMr.LE.
 Ms!PE(12.4n) T,CMr.LE.
 CALL AOV(1)
 CALL AOV(1)
 CALL LJv[NT(ON)
```

    CALL LJv[NT(ON)
    ```


```

    CALL LI&C*I(O2)
    ```
 CALL LI&C*I(O2)
 ANIff(IL,4n) i. LYCLE
```

    ANIff(IL,4n) i. LYCLE
    ```



```

    {\DeltaLL SILIN(iNAR,#l)
    ```
 {\DeltaLL SILIN(iNAR,#l)
 CAlL S「jl:*(10.0I)
```

    CAlL S「jl:*(10.0I)
    ```



```

C***IOCITY VECPUH PLUT

```
C***IOCITY VECPUH PLUT
 CALL AUV(1)
```

    CALL AUV(1)
    ```


```

    CALL FmAMF(IXL,IXK,TY「,IYR)
    ```
 CALL FmAMF(IXL,IXK,TY「,IYR)
 CA(L +NANL(IXL,IXD,IYT,IY'A)
 CA(L +NANL(IXL,IXD,IYT,IY'A)
 [A!L LINCNT(ni.)
 [A!L LINCNT(ni.)
 ri!I!(12,27) NAME,JNッ.UAT,CI.^
 ri!I!(12,27) NAME,JNッ.UAT,CI.^
 C.ALL LIAC'.l(0.)
 C.ALL LIAC'.l(0.)
 #FITE(12,4h)T.GYCL+
```

    #FITE(12,4h)T.GYCL+
    ```


```

    JTI= JT(I)
    ```
```

    JTI= JT(I)
    ```
2356
220a
2264
2267
2267
2207
2267
2374
2275
2326
2333
2337
2341
2335
23ち7
2367
\(<373\)
2375
2411
2413
2473
2445
24.27
2443
2445
24b5
2400
2463
2473
2475
2477
\(25{ }^{2} 6\)
2515
2517
こちく7
25.32
2545
? 537
2553
2355
2565
2576


```

    JA!= J!(!)
    ```
 JA!= J!(!)
 vu 5he: J=, 131,311
 vu 5he: J=, 131,311
 xCC=UC, **(+L:A!(1)-1.\zeta)
 xCC=UC, **(+L:A!(1)-1.\zeta)
 rCC= FL+*(FLUS!(J)={.5)
 rCC= FL+*(FLUS!(J)={.5)
 JvbC=(i(l-1,J)+i(1, J))* **S*VE("x1+xCC
```

    JvbC=(i(l-1,J)+i(1, J))* **S*VE("x1+xCC
    ```



```

    \zetaちw" Cvarlmut
    ```
 \zetaちw" Cvarlmut
*
```

* 

```


```

* 

```
*
 50ai: COPITINUE
 50ai: COPITINUE
 IF{CYCLE.LE.d) (:O (N b&.!
```

            IF{CYCLE.LE.d) (:O (N b&.!
    ```



```

    OmIvi se
    ```
```

    OmIvi se
    ```


```

    म:\NT 49,ITEN,Y, CYCLE
    ```
 म:\NT 49,ITEN,Y, CYCLE
 ##10147
 ##10147
 Lif 59041 1= 1,14AX
 Lif 59041 1= 1,14AX
 JT1= J!(1)
 JT1= J!(1)
 Jん\= Jn(1)
 Jん\= Jn(1)
 ITC= J1(1)+1
 ITC= J1(1)+1
 Jr?= J!B(I;-1
 Jr?= J!B(I;-1
 J" 54%H J= JnR.JI2
 J" 54%H J= JnR.JI2
 D&!N! 4R, L,J,U(1,J),V(I,J),P(I,J),M(I),JP1,J91
 D&!N! 4R, L,J,U(1,J),V(I,J),P(I,J),M(I),JP1,J91
S9OR LGRTINUE
S9OR LGRTINUE
*
*
C* SET TME ADVAVCL TIME vFLGRITIES ! AAD V INTA THE UA. AGU VA AKKAYS
```

C* SET TME ADVAVCL TIME vFLGRITIES ! AAD V INTA THE UA. AGU VA AKKAYS

```


```

    *JG CONT&NUE
    ```
 *JG CONT&NUE
 UO bidw J=1,jNAX
 UO bidw J=1,jNAX
 00 610% I=1,IMAX
 00 610% I=1,IMAX
 U~(I,J) =u(I,J)
 U~(I,J) =u(I,J)
 V*(I,J)=V(I,J)
 V*(I,J)=V(I,J)
 HTi(I)=H(I)
 HTi(I)=H(I)
 MKA(T)= HE(I)
 MKA(T)= HE(I)
61G: CUNTINUE
61G: CUNTINUE
*
*
C** ATVANCE TIME T= T*UELT
C** ATVANCE TIME T= T*UELT
*
*
 T=T+DELT
 T=T+DELT
 IF(T.GT.TWFIN) GUTO b'SP:
 IF(T.GT.TWFIN) GUTO b'SP:
 CYCLE=CYCLE+1
 CYCLE=CYCLE+1
 GOTO 10DA
 GOTO 10DA
 6לOD STDP
 6לOD STDP
 END
```

    END
    ```
257. 2573 \(\therefore 0 \cdot 4\) ころを ごひ： \(20+8\) ct 15 262． 1 2025 2631 2635 264．＂
276:
2773
3 HCl 3
3045
3010
3011
3312
3014
2045
2045
2647
がった
265:4
2654
20014
\(\therefore 674\)
c. 7 in 6
27:2
2715
2715
2715
2715
2722
2723
2754
76:

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline RUN－LCM97 & 0 & solasua & \multicolumn{2}{|c|}{75／42／13} & 12．43．05 & T3HLincz3ak & Page nje It \\
\hline 1635 & L04573 & 4000 & 1333 & 1341 & 1343 & & \\
\hline 1705 & Litad & 426 & 1035 & & & & \\
\hline 175 2 & 1：10623 & 4230 & 1703 & & & & \\
\hline 1775 & Lab630 & 420.1 & 377 & \(17 / 3\) & & & \\
\hline 2000 & Lust663 & 4345 & 2023 & & & & \\
\hline 2121 & Lav7d2 & 4353 & 20802 & & & & \\
\hline 2150 & 104714 & 4305 & 2123 & & & & \\
\hline 2175 & L04720 & 4375 & 21＇52 & & & & \\
\hline 2177 & L0．9727 & Sunt & none & & & & \\
\hline 221： & L26735 & 5933： & 22：4 & & & & \\
\hline 2233 & LA0745 & 5180 & \(2 ? 24\) & 2225 & & & \\
\hline 2n＋2 & L01134 & 56.19 & 2234 & & & & \\
\hline 2051 & L01141 & bind & 2． 042 & 2643 & & & \\
\hline 2750 & LA1174 & orde & 2640 & & & & \\
\hline 3AVO & L＂1220 & －5ins & 30.33 & & & & \\
\hline
\end{tabular}

VARIABLE MEFELEVCE：
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline LOCATIO． & Gev ：ag & VA．ME & & EFEMEN & & & & & \\
\hline se7e & 人以，142 & a 06 LEx & 3 & 2．tes & 2134 & 2101 & & & \\
\hline 3273 & vevids & AiPha & Vk & 10 & 437 & 103 & 518 & 532 & Sb3 \\
\hline & & & & nuio & & & & & \\
\hline 38.4 & wiunts & 54 & 1 A & 18 E & 127 & & & & \\
\hline 5275 & velato & et． 14 & 14 & 10 b & 1615 & & & & \\
\hline 1275 & －sedel & CLA & in & 137 & 152 & 2341 & 2403 & 2436 & 2545 \\
\hline & & & & 266t & & & & & \\
\hline \(327 \%\) & －003047 & Cripl． 1 & \ir & 05 & 2231 & & & & \\
\hline 3500 & vedede & C\％PAT & T & 04 & 155 & 2647 & & & \\
\hline 3301 & vinuel & cyClt & VI & 101 & 1337 & 2217 & 2224 & 2240 & 2501 \\
\hline & & & & 2413 & 2447 & cちら7 & 2642 & 4lub & 30.4 \\
\hline 3 suc & vadu3 & Cri & 12 & 46 & 514 & 612 & 632 & 650 & 1053 \\
\hline & & & & 1207 & 13 ar & 1571 & 111 & ＜124 & 2153 \\
\hline S303 & 64，135 & 0 & N & 15／4 & & & & & \\
\hline 3314 & ruse7t & Usi & TH & 135 & 150 & 2345 & 24.41 & 2433 & 2543 \\
\hline & & & & r604 & & & & & \\
\hline 53.15 & ט，1133 & it \({ }^{\text {a }}\) & V & 1461 & ［5cid & 1335 & 1531 & 16 nd & 1512 \\
\hline S3960 & venuesa & －Eti & \F & ＋1 & 155 & \(6 / 4\) & 742 & 1431 & 1435 \\
\hline & & & & 1515 & 1610 & 1073 & 1745 & 2esis & 2054 \\
\hline & & & & 2．1： & 2115 & 2143 & 2174 & 2231 & 2647 \\
\hline & & & & Suct & & & & & \\
\hline \(35: 7\) & vanse & 3ELX & SH & \(44^{4}\) & 116 & \(31 \%\) & 324 & 352 & 416 \\
\hline & & & & \(5 n 4\) & 614 & 621 & 641 & 633 & ：251 \\
\hline & & & & 1314 & 15.56 & 2912 & 2141 & ¢166 & cblb \\
\hline 351. & V1833 & JELY & VN & \(4{ }^{2}\) & 129 & 204 & \(3: 1\) & 325 & 352 \\
\hline & & & & 14．4 & 631 & bst & 1203 & 1314 & 1420 \\
\hline & & & & 1400 & \(15 \mathrm{k}{ }^{1 / 4}\) & lsel & 1543 & 1640 & 1710 \\
\hline & & & & 2．431 & 2041 & 2，11 & 2111 & chul & \\
\hline 3sil & vi．132 & utup & \(\checkmark\) & 14tas & \(15 \times 1\) & & & & \\
\hline 3512 & v．1．337 & 3＜60 & \(1+\) & ＇， & 1515 & & & & \\
\hline 3315 & viessi & EPSd & in & jr & 1570 & & & & \\
\hline 3314 & － 0.131 & F & \a & 1458 & 1457 & 1511 & 1517 & & \\
\hline 3315 & v2110 & ＋6． & U & 4,3 & 1533 & 1544 & 16.4 & & \\
\hline 3515 & vr：1：c & 81.9 & － & 114 & 216 & & & & \\
\hline 5311 & vid143 & P！\(\times\) & UH & cicl & 2036 & 205s & cals & 2116 & 2145 \\
\hline & & & & 217？ & 2175 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 1. & \multicolumn{2}{|l|}{butasin} & \multicolumn{2}{|c|}{731．2115} & \multirow[t]{2}{*}{1e．43．45} & \multirow[t]{2}{*}{T Sitivel \(\angle 3 \mathrm{Hm}\)} & \multirow[t]{2}{*}{PATE} & \multirow[t]{2}{*}{13} \\
\hline 33 x & －1． 121 & ri．l & \4 & Scs & 6hth & & & & \\
\hline 532.1 & 8．1，117 & －ix & 1. & －1） & brid & & & & \\
\hline 5352 & \(\because \therefore\) 尤 & rir & 1＊ & \(4 / 5\) & b＊ 5 & & & & \\
\hline 3323 & \(\therefore 12\). & r ve & \r & 417 & 7：1： & & & & \\
\hline SSred & －\(\cdot . .141\) & －\％ & 1w & 1713 & c＜16 & 21／b & く2く1 & 2251 & \\
\hline \(53<7\) & va．1rd & F＊x & 1 H & 5.45 & 075 & & & & \\
\hline 53 io & vi．13 \({ }^{\text {a }}\) & Pry & \m & ग67 & 577 & & & & \\
\hline SSEl & & （1，A．ara & 1.2 & 12 & 1003 & 1135 & & & \\
\hline 355， & y－＇c．\(\cdot 4\) & L， X & ini & 37 & 063 & & & & \\
\hline 3331 & 6．9．9．41 & ur & 12 & 34 & 251 & 217 & 013 & & \\
\hline \multirow[t]{3}{*}{3532} & د6：A！ 7 & ＂ & \n & dib & 235 & 2.51 & 1470 & 1750 & 2005 \\
\hline & & & & －：31 & 3112 & 2111 & 234 & 1476 & c356 \\
\hline & & & & \[
\text { c. }+14
\] & 854 & 1416 & 1754 & & \\
\hline \multirow[t]{3}{*}{Sisud} & A＋：1； & \(4 i\) & 12 & 1／1 & 200 & 214 & 1421 & 1434 & \(1 / 58\) \\
\hline & & & & 2．36 & 203s & 2114 & 2172 & 205 & 1441 \\
\hline & & & & d304 & \(25<3\) & ？ 14 & 1442 & 1544 & 1764 \\
\hline 415 & & ．．．．．．r r & 120 & inl & 1／3 & & & & \\
\hline \multirow[t]{3}{*}{41：7} & A．9：914 & unv & in & i2d & 120 & 14．17 & 1.160 & 1115 & 1166 \\
\hline & & & & \[
1 / 1 \%
\] & C174 & 72.2 & \(11 \times 1\) & \(1 / 13\) & 1184 \\
\hline & & & & \[
1712
\] & & & & & \\
\hline 4411 & Vi 148 & nr．v & 1 l & 1／co & 1／4：9 & & & & \\
\hline \(4+72\) & \(\checkmark \therefore \div 1+6\) & \(\cdots 1+\) & 1 m & c93 & 2122 & & & & \\
\hline \(4+75\) & \(\cdots 1.4\) & －I \％ & 12 & \(33 v\) & S＋3 & 2404 & 2520 & 2617 & 2627 \\
\hline \multirow[t]{3}{*}{\(14 / 4\)} & & \(: 1\) & No & 710 & 728 & 1024 & 1いへ5 & 3115 & 1104 \\
\hline & & & & 1124 & 2715 & 115 & 1074 & 1643 & 1076 \\
\hline & & & & \[
1^{5}, 30
\] & \[
1042
\] & & & & \\
\hline 3，i：0 & \[
\because A .136
\] & ＂ & 12 & \[
1 \text { tho }
\] & \[
161:
\] & & & & \\
\hline \multirow[t]{11}{*}{50.1} & \[
\times 10: 27
\] & 1 & \(\backslash 1\) & 17.1 & 215 & \(2 \mathrm{C3}\) & C3a & 243 & 252 \\
\hline & & & & 212 & 3114 & 313 & 351 & 364 & 375 \\
\hline & & & & 4.45 & 412 & 650 & \(71 \%\) & \[
1114
\] & 1130 \\
\hline & & & & 11.37 & 115 m & 110 ？ & 12.1 & 120 & 1213 \\
\hline & & & & 13.2 & 12 Can & 1237 & 1254 & 1215 & 1365 \\
\hline & & & & 1325 & 1346 & \(141 \%\) & 1402 & 1523 & 1557 \\
\hline & & & & \[
1553
\] & \[
160^{\prime \prime}
\] & \[
1020
\] & \[
1635
\] & \[
1705
\] & \[
1 / 53
\] \\
\hline & & & & 1704 & 1717 & 2124 & 2151 & 2153 & 2262 \\
\hline & & & & ＜274 & 23， & 2505 & 2310 & 2313 & 2325 \\
\hline & & & & \[
303
\] & \[
2371
\] & \[
2657
\] & \[
2710
\] & \[
2722
\] & 2726 \\
\hline & & & & \[
2755
\] & \[
2730
\] & \[
2141
\] & \[
2753
\] & \[
270 \%
\] & \\
\hline & viounsin & Inami & \1 & \[
\begin{array}{r}
36 \\
\times 5 \cdot 4
\end{array}
\] & 112 & 323 & 2331 & 2305 & ＜475 \\
\hline \multirow[t]{2}{*}{9：11} & \(\checkmark\) Alou & Ing & \I & 132 & 2il & 1233 & 1274 & 1573 & 1411 \\
\hline & & & & 17：？ & & & & & \\
\hline \multirow[t]{3}{*}{5.112} & － 06405 & \(1.4 x\) & ，I & 113 & 115 & 125 & 204 & 233 & 315 \\
\hline & & & & 715 & 1才ざo & \[
1336
\] & 1246 & 1403 & 1226 \\
\hline & & & & 2360 & 2754 & 2762 & & & \\
\hline \multirow[t]{5}{*}{5，113} & vi，is 7 & \(1+1\) & ，\} & 120 & 179 & 201 & 253 & 310 & 375 \\
\hline & & & & 12u & 713 & 1025 & 1 133s & 14， 6 & 1054 \\
\hline & & & & 1月ち4 & \[
1325
\] & \[
1027
\] & \[
1636
\] & \[
1706
\] & \[
1771
\] \\
\hline & & & & 2：3？ & 2H0？ & 2367 & 2105 & 2154 & 2150 \\
\hline & & & & & & & & & \\
\hline 5114 & \(v .9\) 904 & \(i^{\text {kit }}\) & \I & 130 & \(1 / 4\) & 1247 & & & \\
\hline 5.115 & v．7365 & 119 & VI & 151 & 1231 & 1243 & 1364 & 1402 & 1032 \\
\hline \multirow[t]{2}{*}{ל110} & 6：11473 & 17in & \I & 157 & 4 Ht & 761 & 1045 & 1146 & 1211 \\
\hline & & & & \[
1334
\] & \[
2213
\] & 2242 & 2674 & & \\
\hline 5.111 & v4．123 & IUTEC． & 11 & 2612 & 2633 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline n．in－lemes & 0 & \multicolumn{2}{|l|}{SOLASUȦ} & \multicolumn{2}{|c|}{75／42／13} & 12．43．05 & T3GENECSHR & \multicolumn{2}{|l|}{page nue 14} \\
\hline SJ2．1 & verulis & \(1 \times C \mathrm{C}\) & 11 & 20.2 & 263 ？ & & & & \\
\hline 5di： & vailat & ［ XL & 11 & 355 & 347 & 2514 & 2524 & 2527 & 2614 \\
\hline & & & & 2024 & & & & & \\
\hline Seze & vag1， 7 & Ixr & 11 & 346 & \(35:\) & 2514 & 2524 & 25¢1 & 2614 \\
\hline & & & SI & 2624
331 & & & & & \\
\hline 3024 & vendie & Iri & II & 331 & 2515 & 2525
2515 & 2530 & 2624
2330 & 2039
2020 \\
\hline \multirow{8}{*}{5025} & & & & 2039 & & & & & \\
\hline & vebtj & J & \I & ？ 5 ？ & 272 & 364 & 412 & 65 & 705 \\
\hline & & & & 152 & 144 & 153 & 7103 & 13 & 1024 \\
\hline & & & & 145＊ & 1044 & 13785 & 1113 & 1353 & 1378 \\
\hline & & & & 1410 & 1424 & 1431 & 1402 & 1500 & 1686 \\
\hline & & & & 16.24 & 2027 & 2067 & 2271 & 2276 & 2301 \\
\hline & & & & 2ses & 2573 & 2517 & 2635 & 2717 & 2724 \\
\hline & & & & ぐぐ & c151 & 2157 & 2700 & 2715 & \\
\hline \multirow[t]{5}{*}{3.120} & 4，39312 & j H & \(\backslash\) & 172 & 211 & 212 & 200 & 302 & 418 \\
\hline & & & & J21 & 136 & 1411 & 1012 & 11.45 & 1187 \\
\hline & & & & 1110 & 1242 & 1275 & 1351 & 1：15 & caus \\
\hline & & & & 2ens & 21：0 & 2263 & 2500 & 2713 & 247 \\
\hline & & & & 725 & 1183 & 2024 & 1100 & 1210 & 1701 \\
\hline 23：3 & ：A． 151 & Juna & 11 & 30 & 114 & 326 & ［47d & & \\
\hline 5541 & \(\therefore \therefore 1+5\) & Jot & 11 & 己320 & 2．300 & & & & \\
\hline \multirow[t]{4}{*}{5342} & －4＇b：3 & Jnl & 11 & 2.4 & 271 & 411 & 1117 & 1743 & 1308 \\
\hline & & & & 15.3 & 1552 & 1353 & 1311 & 14 sl & 1337 \\
\hline & & & & 1111 & 1724 & 2204 & C323 & く50］ & 21：4 \\
\hline & & & & \(27+6\) & & & & & \\
\hline 2343 & 4．11：4 & Jhe & 11 & 303 & cश 0 & 2710 & & & \\
\hline \multirow[t]{2}{*}{5304} & －יarbe & j＂ax & \I & 114 & 1114 & 1133 & 1142 & 1132 & 1103 \\
\hline & & & & ［7？ & & & & & \\
\hline \multirow[t]{2}{*}{5345} & w．1．90\％ & J＊1 & 11 & \(1<4\) & 224 & 1191 & 1140 & 115： & 1105 \\
\hline & & & & \(1 / 01\) & 2125 & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 5340 \\
& 55+7
\end{aligned}
\]} & －10，05 & J．？ & VI & 125 & 1154 & 1221 & & & \\
\hline & \(\because \because \because 7\) & is： & 11 & 153 & 146 & 2543 & 2371 & 24st & 2541 \\
\hline & & & & \(200 \%\) & & & & & \\
\hline \multirow[t]{6}{*}{3534} & 2014，11 & い & \！ & 225 & \(3{ }^{3} 4\) & 241 & 24.1 & \(30 \%\) & 420 \\
\hline & & & & 121 & な3 & 1000 & 18 n 7 & 1011 & 11 c \\
\hline & & & & 1114 & 1248 & 1244 & 1547 & 1645 & 2045 \\
\hline & & & & 2,105 & C1．6 & 2265 & chas & ［111 & 224 \\
\hline & & & & 2 ta & 1245 & 1757 & 1704 & 1705 & 250 \\
\hline & & & & 111 & 1－15 & 2 2 24 & 1104 & & \\
\hline Shes & － \(18: 1.6\) & Jir & \1 & 2820 & 0.32 & 2065 & 2972 & & \\
\hline \multirow[t]{4}{*}{Sons} & ．．1．1．9 & J！ & ， 1 & 345 & 255 & 275 & 487 & 706 & 1115 \\
\hline & & & & 1248 & 1 1－bu & \(135 \%\) & 1350 & 15es & 1024 \\
\hline & & & & 14．19 & 103： & 2042 & C12） & 2200 & 2516 \\
\hline & & & & chab & 2635 & 2712 & 2744 & & \\
\hline 500.1 & \(\cdots 113\) & iTc & 11 & 302 & 3so & 2207 & －323 & さ1ち & ：151 \\
\hline hoos & －！！¢ & Juve & 11 & cibls & cos； & & & & \\
\hline bens & ．\(\because 194\) & urit & 11 & cors & cos？ & & & & \\
\hline bosl & － 6115 & Put！ & \(1!\) & 4， & 474 & 13se： & 1／14 & & \\
\hline 50.7 ． & －9i．317 & Lias & （r & \[
\begin{array}{r}
3<5 \\
20<3
\end{array}
\] & 352 & 348 & 2402 & csio & cat3 \\
\hline 2011 & 2 1．130 & － 4 ＊ & 11 & 6 & \(d \mathrm{l}\) & 144 & 2541 & C315 & ＜487 \\
\hline & & & & 2537 & 2606 & & & & \\
\hline 57.5 & w A：＊？ & \(\because\), & 12 & ＋4 & oss & & & & \\
\hline 57．4 & & \(\cdots \%\) & \(\cdots\) & 20 & 30 & 106 & 22．t4 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline ーお゙ーLCM97 & \(1)\) & \multicolumn{2}{|l|}{217．A．sime} & \multicolumn{2}{|r|}{13182133} & 12．43．AS & 1 SBじ＋く23nm & rabe & －0． & 15 \\
\hline 3705 & visemiss & UMG & 12 & \(n 0\) & 105 & & & & & \\
\hline 374 & & \(\nu\) & 14 & C＇th & \(27 \%\) & 601 & & 1531 & & 13S\％ \\
\hline & & & & 1014 & －13 & 1547 & 061 & 1533 & & 2310 \\
\hline & & & & 2．130 & & & & & & \\
\hline 17200 & Vr9154 & －Eta & In & 1533 & 1547 & & & & & \\
\hline \(1 / 267\) & \(\checkmark 60901\) & －1）\(\times\) & 12 & 121 & 150 & 642 & 1205 & 1314 & & \(142 \times\) \\
\hline & & & & 1445 & 1454 & 1417 & 1305 & bsol & & 1611 \\
\hline & & & & 1035 & 1183 & & & & & \\
\hline 1／2／0 & voritiol & ＊i¢ & VN & 120 & 150 & 174 & 217 & hic & & 1405 \\
\hline & & & & 1413 & 1513 & 1570 & 1087 & 1052 & & 1722 \\
\hline & & & & 1754 & 1103 & & & & & \\
\hline 17271 & －8．4972 & 1 & 3.4 & 101 & 1343 & 2117 & 2215 & 2225 & & 2244 \\
\hline & & & & 2337 & 24：3 & 244 & 2355 & 2h4 5 & & colt \\
\hline & & & & 3．tir & & & & & & \\
\hline \(1 / 212\) & 254．533 & 1 H & V 1 & 1．11 & & & & & & \\
\hline 17273 & vilith & \(\mathrm{Pa+I}\) & 1\％ & ac & \(3 \cdot 5 \cdot 2\) & & & & & \\
\hline 17214 & & Iarlet & 10 & 100 & 228 & & & & & \\
\hline 17215 & & ｜a，ph｜ & in & 174 & Cक44 & & & & & \\
\hline \(1 / 278\) & A 3．46\％1 & \(\checkmark\) & 1\％ & 611 & 310 & 60 & 367 & 310 & & 119 \\
\hline & & & & 1．A1 & 1，12 & \(1+51\) & 1．141 & 1201 & & 1154 \\
\hline & & & & 1143 & 1151 & 1204 & 1212 & 1210 & & 1211 \\
\hline & & & & \(11^{2} 24\) & 1323 & 1261 & 1211 & 1312 & & 1322 \\
\hline & & & & 1435 & 1411 & 1015 & \(: 654\) & 112. & & ＜ts） \\
\hline & & & & 8．1／1 & 2134 & 210， & くbi？ & 6100 & & 14ら1 \\
\hline & & & & 1）／d & 115 ？ & 1141 & 1154 & 1100 & & 1241 \\
\hline & & & & \(150 \cdot 0\) & 17 lec & र124 & c \(5 \cdot 4\) & \(27<0\) & & \(18 / 2\) \\
\hline & & & & \(1!\) e7 & \(12 \cdot 5\) & 1207 & 1251 & 1235 & & 1262 \\
\hline & & & & 15：2 & 1313 & 1435 & 1411 & 1611 & & －ths \\
\hline & & & & 1123 & 2bil & 1324 & 2844 & \(150 \%\) & & \\
\hline 56 3＇3 & virl3 3 & un & In & \(16+1\) & 1／31 & & & & & \\
\hline \[
5 \cdot 0 \zeta 7
\] & \(\checkmark\) AOCHE & UI & 14 & 46 & 310 & & & & & \\
\hline 5゙osの & atrobis & （1）\({ }^{\text {a }}\) & 1＊ & 453 & 012 & 2707 & 425 & 4.25 & & 440 \\
\hline & & & & 0 Cl 4 & 4＜0 & ＇21 & 972 & 4．1 & & \\
\hline 42240 & vッ゙ら1 & WVEC & 12 & －611 & col？ & & & & & \\
\hline 422＊1 & 2axat 2 & \(\psi\) & 14 & 111 & 1.3 & 751 & Ted & 771 & & 172 \\
\hline & & & & 18i3 & 136 & 1238 & \(13+4\) & 10nt & & 1135 \\
\hline & & & & 11.4 & 1106 & 1？ P & 1210 & 12.4 & & 1215 \\
\hline & & & & 1233 & 12 c 4 & 1215 & 1316 & 14.4 & & 1445 \\
\hline & & & & 1025 & 1612 & 1742 & 2606 & 2704 & & 740 \\
\hline & & & & 135 & 1826 & 1.430 & 103． & & & 1158 \\
\hline & & & & 1104 & 1504 & \[
23+5
\] & 2833 & 1 Hos & & 1166 \\
\hline & & & & \[
1205
\] & 132.4 & \(151: 6\) & 1622 & 107？ & & 1742 \\
\hline & & & & 12046
1423 & 1505 & & & & & \\
\hline \[
\begin{aligned}
& 55021 \\
& 53022
\end{aligned}
\] & \(v 601356\)
vatid4 & Vam
\(V+L \therefore A\) & 14 & 1.233
063 & 355 & & & & & \\
\hline 53023 & voalia & Vt［Mx］ & 12 & 3bs & 2576 & & & & & \\
\hline 53624 & \(\checkmark 64043\) & \(\checkmark 1\) & 1N & 31 & 3／6 & & & & & \\
\hline 53023 & \(v\) del2S & \(415 x\) & \＊ & 635 & 507 & & & & & \\
\hline 59626 & － 010120 & －1．＊ & Vin & h 11 & 74 & & & & & \\
\hline \(\leq 3027\) & A HAnsa & \(V\)＊ & ， \(\mathrm{H}^{\text {d }}\) & 424 & 646 & 735 & 2755 & 510 & & 578 \\
\hline & & & & 0.96 & 645 & 652 & 463 & らご & & 58\％ \\
\hline & & & & 6.2 & 645 & ost & 451 & 542 & & 647 \\
\hline & & & & 5bl & 64b & 452 & & & & \\
\hline 65237 & vildide7 & VT:4 & ： 4 & 142？ & 1405 & & & & & \\
\hline 6218 & volls & vrec & \i＇ & ？ 611 & 2616 & & & & & \\
\hline
\end{tabular}
```


[^0]:    *Numbers refer to statements in the SOLA program listed in Sec. G.

