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SOLA — A NUMERICAL SOLUTION ALGORITHM
FOR TRANSIENT FLUID FLOWS

by

C. W. Hirt
B. D. Nichols
N. C. Romero

ABSTRACT

-NOTICE-•"•WUI i b C — •

TCs report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
Research and Development Administration, nor any or
their employees, nor any of their contractors
suucoi.lrartorf, or their employees, makes any
warranty, express or implied, or assumes any Iwal
liability o; responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

A finite difference technique is presented for solving the Navier-
Stokes equations for an incompressible fluid. The technique, bas-
ed on the Marker-and-Cell method, is simplified to facilitate its use
by persons with little or no experience in numerical fluid dynamics.
Section I of the report describes the basic algorithm, SOLA, for
confined flows; Sec. II describes modifications necessary for free or
curved rigid surface boundaries. Each includes a flow chart and a
FORTRAN listing. Sample problems show how to incorporate sim-
ple modifications into the basic code to adapt it to a variety of
problems.

INTRODUCTION

Numerical techniques have been used to solve
time-dependent incompressible fluid flow problems
for well over a decade.1 One of the best known
techniques, the Marker-and-Cell (MAC) method,2

uses an Eulerian finite-difference formulation with
pressure and velocity as the primary dependent
variables. This method, originally developed
specifically for problems involving free surfaces, is
equally capable of treating flows in confined regions.
The basic MAC technique, which has been improved
and extended,''"6 has been used by researchers
around the world for many different applications.
The essential ideas of the MAC solution procedure
are summarized here so that this report may be used
as a self-contained guide. The best description of a
sophisticated MAC code, including a flow chart and
a FORTRAN computer listing, is given in Ref. 7.

This report describes a highly simplified MAC
code, SOLA, that does not use marker particles and
does not have built-in setups for internal obstacles or
other complicating refinements. SOLA is designed

for persons with little or no experience in numerical
fluid dynamics. In addition to serving as an instruc-
tional tool, its purpose is to demonstrate that many
useful and difficult problems can be solved without
large, complicated computer programs. SOLA also
provides a basis for developing many new numerical
capabilities.

The basic solution technique in SOLA, for incom-
pressible fluid flows without free surfaces, is
presented in Sec. I of this report. The equations solv-
ed are the Navier-Stokes equations in two-
dimensional plane or axisymmetric coordinates.
Boundaries of the rectangular computing region can
be chosen (1) as rigid walls with free-slip or no-slip
tangential velocities, (2) as specified inflow or out-
flow boundaries, (3) as continuative outflow boun-
daries, or (4) as periodic boundaries. Internal walls
and obstacles or sources and sinks can be added by
inserting additional boundary conditions in a special
section of the code reserved for this purpose.

Section II describes a simple extension of the
SOLA code that permits a free surface or curved
rigid boundary (free-slip) to be located across the top



or bottom of the fluid region. These surfaces are
defined in terms of their height, H(x,t) for the top
surface and HB(x,t) for the bottom surface, with
respect to the bottom of the computational mesh.
Although the surface must be single-valued func-
tions of the horizontal coordinate x, many useful and
interesting problems can be studied by using them
in different combinations.

The basic solution algorithm contained in the
SOLA code also serves as a good foundation for
developing now codes with other capabilities. For ex-
ample, a scalar transport equation for density (or
temperature) can be easily added to investigate
buoyancy-driven flows and flows of stratified fluids.
With some modifications of the basic equations, the
SOLA solution algorithm has been adapted to
saturated or unsaturated flow in porous media, to
three-dimensional shallow water motions, to a drift
tlux approximation for two-phase flow, and to
almost three-dimensional flow of air or water over
variable terrain for pollution dispersal models.1

Fully three-dimensional , t ime-dependent
calculations have also been make with a straight-
forward extension of the SOLA code persented here.

For persons interested in performing their own
calculations, Sec. I contains a simple flow chart, a
descriptive list of input parameters, a FORTRAN
computer listing for the basic SOLA code, and out-
put from a sample test problem. Section II has a
similar flow chart and FORTRAN computer listing
for the code version, SOLA - SURF, which contains
the curved surface options.

The equations of motion are the Navier-Stokes
equations:
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The velocity components (u,v) are in the coordinate
directions (x,y), p is the ratio of pressure to constant
density, and (gx. gy) are body accelerations. The
kinematic viscosity coefficient is denoted by the con-
stant v.

B. Finite Difference Considerations

The finite difference mesh used for numerically
solving the above equations consists of rectangular
cells of width hx and height <5y. The mesh region con-
taining fluid is composed of IBAR cells in the x-
direction, labeled with the index i, and JBAR cells in
the y-direction, labeled with the index j . The fluid
region is surrounded by a single layer of fictitious
cells (or phantom or boundary cells) so that the cells
in the complete mesh total IMAX = IBAR -I- 2 by
JMAX = JBAR + 2 (see Fig. 1). Fluid velocities
and pressures are located at cell positions as shown

I. SOLA — BASIC SOLUTION ALGORITHM
FOR CONFINED FLOWS

A. Equations of Motion

The differential equations to be solved are written
in terms of Cartesian coordinates (x,y). For cylin-
drical (axisymmetric) coordinates, x is the radial
coordinate, y the axial coordinate, and several ad-
ditional terms must be added to the basic equations.
In the following equations, these are included with a
coefficient £, such that £ = 0 corresponds to plane
geometry and £ = 1 corresponds to cylindrical
geometry. The SOLA code uses the input parameter
CYL instead of $.

The mass continuity equation is

oy
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General mesh arrangement. Fictitious boun-
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in Fig. '2: u-velocity at the middle of the vertical
sides of a cell, v-velocily at the middle of the
horizontal sides, and pressure at the cell center.

The finite difference notation used in this report
is:

?i j = pressure at center of cell (i,j) at time level n

u
n = x-direction velocity at middle of right side

of cell (i,j) at time level n

vi i = y-direction velocity at middle of top side of
cell (i,j) at time level n.

Subscripts are used for the cell location and
superscripts for the time level at which quantities
are evaluated such that t = n6t, where <5t is the time
increment. In most MAC reports fractional indexes
were used to represent quantities located at cell
edges, e.g., u;*i/a.j to denote the x-direction velocity
on the right-hand side of cell (i,j). In a FORTRAN
program, however, fractional indexes are not allow-
ed. Therefore, for consistency, all difference
equations are written here as they appear in the ac-
tual code.

The difference approximation representing the
continuity equation, Eq. (1), for a typical cell (ij) is

Fig. 2.
Arrangement of finite difference variables in a
typical cell.

( u f u
x \ i,J l-l,

n+l ^ n+l
(3)

The difference equations approximating the
Navier-Stokes equations, Eq. (2), are,

n + l
a

+ g - FVX - FUY - FUC + VISX j and

+ g - FVX - FVY - FVC + VISY f ,

where the convertive and viscous fluxes are defined
as
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All quantities in the above convective and viscous
fluxes are to be evaluated at time nc5t. The coef-
ficient a in these expressions gives the desired
amount of upstream (donor cell) differencing; that
is, when a is zero these difference equations are
centered in space and correspond to the original
MAC formulation.2 The centered equations,
however, are numerically unscable and generally
require some viscosity v to remain stable. When a is
equal to unity the equations reduce to the full up-
stream or donor cell form, which is stable provided

the fluid is not permitted to cross more than one cell
in one time step. In general, a should be chosen
slightly larger than the maximum value of

lir1! or | ^ £ |
' ox ' ' oy '

occurring in the mesh.
The velocities computed according to Eqs. (4) will

not, in general, satisfy the continuity equation, Eq.
(.'n. In the MAC method this incompressibilitv con-
straint is imposed by adjusting the cell pressures.
For example, if the divergence of a cell, i.e.. the left
side of Eq. (3), is negative corresponding to a net
flow of mass into the cell, the cell pressure is in-
creased to eliminate the inflow. Likewise, when
there is a net flow out of the cell the pressure is
decreased to draw it back. Because there is one
pressure variable for each cell, the divergence for
each ceil can be driven to zero in this way. The
pressure adjustment must be done iteratively,
however, because when one cell is adjusted its
neighbors are affected. The iteration in SOLA
proceeds by sweeping the mesh rows from left to
right starting with the bottom row and working up-
ward. For each cell encountered, the divergence D is
computed using the most current velocity values
available. The pressure change 5p required to make
D equal zero is,

(5)

The new cell pressure is then pij + &p, and the
velocity components at the sides of the cell are ad-
justed to reflect this change,

u. .
l . J

6t 6]
ox

i-l,j i-l.J 6x

6t 6p

0-y (6)

Equation (5) is derived by substituting the right
sides of Eqs. (6) into the divergence condition, Eq.
(3), and solving for <5p.

In some cases, convergence of the iteration can be
accelerated by multiplying 5p by an over-relaxation



factor a'. A value for w that is often optimium is 1.8,
but in no case should u be larger than 2.0; otherwise
an unstable iteration results.

Because the factor multiplying D in Eq. (5) is con-
stant for all cells, its product with u: is denoted by
BETA in the code and computed automatically in
the setup section,

BETA

Convergence of the iteration is achieved when all
cells have D values satisfying the inequality
jD/Di>| < t, where Do is some reference vaiue, and t
is typically of the order 10~3 or smaller. In practice
D(, typically equals unity and c is adjusted to the
desired level of accuracy. In this sense D(, is
superfluous, but it serves as a reminder that an
acceptable convergence level must be chosen for
each problem.

C. Summary of Steps in a Calculational Cycle

The steps involved in completing one
calculational cycle are (1) computing guesses for the
new velocities for the entire mesh from Eqs. (4),
which involve only the previous time values for the
contributing pressures and velocities in the various
flux contributions (1000 section)* and (2) adjusting
these velocities iteratively to satisfy the continuity
equation, Eq. (3), by making appropriate changes in
the cell pressures (MOO section). In the iteration,
each cell is considered successively and is given a
pressure change that drives its instantaneous veloci-
ty divergence to zero. Finally, when convergence has
been achieved, the velocity and pressure fields are at
the advanced time level and may be used as starting
values for the next cycle.

tangential velocity, should have no normal gradient,
i.e..

for all j .

If the left boundary is a no-slip rigid wall, then the
tangential velocity component at the wall should
also be zero and the conditions imposed are.

for all j .

These conditions are imposed >m the velocities
resulting from applying Eqs. (41. and are imposed
after each pass through the mesh during the pressure
iteration.

Continuative or outflow boundaries always pose a
problem for low-speed calcula t ions , because
whatever prescription is chosen it can potentially
affect the entire (low field upstream. What is needed
is a prescription that permits fluid to flow out of the
mesh with a minimum of upstream influence. In this
code we have used a continuative boundary condi-
tion that involves setting, for the left wall, for exam-
ple.

U1.J
U2.J

for al l j .

D. Boundary Conditions

Up to this point, we have avoided applying boun-
dary conditions. However, they are easily imposed
by setting appropriate velocities in the fictitious
cells surrounding the mesh (2000 section). Consider,
for example, the left boundary of the computing
mesh. If this boundary is to be a rigid free-slip wall,
the normal velocity there must be zero and the

* Numbers refer to statements in the SOLA program
listed in Sec. G.

These conditions, however, are only imposed after
applying Eqs. (4) and not after each pass through
the mesh during the pressure iteration. During the
iteration the normal boundary velocities can vary
with the changes in pressure, as any interior velocity
component.

For periodic boundary conditions in the x-
direction. the left and right boundaries must be set
to reflect the periodicity. This is easiest when the
period length is chosen equal to (IBAR-l)<5x. Then
the boundary conditions for the fictitious cells on the
left are



for all j ,

for all j.

u l , j "IBAR.J

V l ,3 = VIBAR,j

and on the right

"1.J " "IBAR.J

P2,j " PIBAR +1,J

V2,j

V1,J " VIBAR,j

In this case these conditions are imposed after
applying Eqs. (4) and after each pressure iteration.

Boundary conditions similar to those for the left
wall are used at the right, top, and bottom boun-
daries of the mesh. Of course, the normal and
tangential velocities at the top and bottom boun-
daries are v and u, respectively.

For convenience the SOLA code has been written
so that any of the above boundary conditions can be
automatically imposed by setting input numbers.
The appropriate input number for the left wall is
designated WL, where

1, rigid free-slip left wall

2, rigid no-slip left wall

3, cuntinuative outflow left wall

4, periodic in x (provided WR = A) .

WL =

Similar input numbers are used for the right boun-
dary (WR), top boundary (WT), and bottom boun-
dary (WB). Clearly, when periodic conditions are
desired in a given direction, both boundaries in that
direction must be assigned wall numbers of 4.

To increase the usefulness of the basic code,
specified inflow and outflow boundaries and
obstacles inserted within the fluid region are
desirable. In the case of obstacles, if restricted to
those that can be constructed by blocking out cells of
the computing mesh, we can add to the existing
boundary conditions additional velocity prescrip-
tions for the interior and boundaries of the obstacles.
A place has been reserved for such special boundary
conditions (2500 section) at the end of the main
boundary condition section (2000 section). Several
examples are included in the sample problems in
Sec. F.

E. Numerical Stability Considerations

Numerical calculations often have computed
quantities that develop large, high-frequency os-
cillations in space, time, or both. This behavior is
usually referred to as a numerical instability, es-
pecially if the physical problem being studied is
known not to have unstable solutions. When the
physical problem does have unstable solutions and if
the calculated results exhibit significant variations
over distances comparable to a cell width or over
times comparable to the time increment, the ac-
curacy of the results cannot be relied on. To prevent
this type of numerical instability or inaccuracy, cer-
tain restrictions must be observed in defining the
mesh increments 5x and &y, the time increment 5t,
and the upstream differencing parameter a.

For accuracy, the mesh increments must be
chosen small enough to resolve the expected spatial
variations in all dependent variables. When impossi-
ble because of limitations imposed by computing
time or memory requirements, special care must be
exercised in interpreting cakulational results. For
example, in computing the flow in a large chamber it
is usually impossible to resolve thin boundary layers
along the confining wails. In many applications,
however, the presence of thin boundary layers is un-
important and free-slip boundary conditions can be
justified as a good approximation.

Once a mesh has been chosen, the choice of the
time increment necessary for stability is governed by
two restrictions. First, material cannot move
through more than one cell in one time step, because
the difference equations assume fluxes only between
adjacent cells. Therefore, the time increment must
satisfy the inequality

6t < min

where the minimum is with respect to every cell in
the mesh. Typically, 5t is chosen equal to one-fourth
to one-third of the minimum cell transit time. Se-
cond, when a nonzero value of kinematic viscosity is
used, momentum must not diffuse more than ap-
proximately one cell in one time step. A linear
stability analysis shows that this limitation implies

With <5t chosen to satisfy the ahove two ine-
qualities, the last parameter needed to insure



numerical stability is a. We have already noted in
Sec. B that the proper choice for « is

< V J

As a rule of thumb, an « approximalely 1.2 to 1.5
times larger than the right-hand member of the last
inequality is good choice. If a is too large an un-
necessary amount of numerical ; moothing
(diffusion-like truncation errors) may be
introduced.

F. Sample Applications

A cross section of calculations done with the
SOLA program are briefly described here. In each
case the basic code has been supplemented with
special boundary conditions to define the specific
problem being studied. These changes are inserted
into the code (2500 section) at the end of the main
boundary condition section.

1. Flow About a Cylindrical Can. To compute
the How about a cylindrical can moving at constant
speed in an axial direction, the SOLA program is set
for cylindrical coordinates (CYL = 1.0). Figure 3
shows the mesh arrangement, which consists of 20
cells in the radial, x-direction (IBAR = 20), and 40
cells in the axial, y-direction (JBAR = 40). The
cylindrical can is composed of 5 by 10 cells (2 £ i £ 6
and 12 i j S 21). In this region, and on its boundary,
the fluid velocity is maintained identically zero by
inserting the following statements into the special
boundary condition section:

u . = 0 for i = 1 6 and j = 1 2 , . . . , 21

= 0 for i = 1 , . . . , ft and j = 1 1 , . . . , 21 .

The mean flow field is generated by defining, in the
special boundary condition section, a constant axial
velocity VI across the bottom of the computing mesh
(WB = 1).

= VI for i = 2 , . IM1

where IM1 = IMAX-1. A continuative outflow-
boundary is used across the top (WT=3), and rigid
free-slip boundaries are used along the mesh sides
(WL = WR = 1). See Fig. 3 for a complete list of in-
put parameters. Definitions of all the code

1BAR =

JBAR =

DELX*
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NU =

CYL =

EPSI =

DZRO=

GX =

GY =
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vt =
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Fig. :i.
Initial velocity field and input parameter* for
calculating flow about a cylinder. Left edge of
mesh is axis of symmetry. Vectors plotted as
dots indicate centers of cells within the
cylinder.

parameters aie listed at the beginning of Sec. G,
which contains the SOLA FORTRAN listing.

Figure 4 shows the computed velocity field at time
t = 8.1 (81 cycles with <5t=0.1). Each vector
originates at the center of a computational cell and
is drawn with a direction and magnitude propor-
tional to the average of the velocity components
located at the cell sides.
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Fig. 4.
Velocity field generated by translating cylinder
at t = 8.1.

A steady state is not reached in this calculation,
because the recirculating wake region continues to
grow in length behind the cylinder. A periodic shed-
ding of vortexes (i.e., vortex street) does not develop
because of the imposed axial symmetry.

The first cycle of this calculation requires a large
number of iterations to achieve convergence,
because the initial condition V = VI everywhere out-
side the cylinder is a poor first guess. Convergence
can be improved by defining the outflow velocity at
j = JM1 (JM1 = JMAX-1) to be equal to VI for the
first few cvcles.

An interesting variation of this problem is to move
the right boundary nearer to the cylinder, to impose
periodic boundaries in the axial direction
(WB = \VT = 4). and to impose a constant pressure
drop across the flow. The resulting calculation then
simulates the transport of cans in a pneumatic
tube."1

2. Flow Over a Recessed Highway. Obstacles
with boundaries cutting diagonally across cells can
be represented by stepped obstacles. For example, to
compute the flow across a notch with sloping sides,
as shown in Fig. 5, the following boundary conditions
were inserted in the special boundary condition sec-
tion; for the left slope

u. . = v. . = 0 for

and for the right slope

u1 . = 0 for

i . J

v . = 0 for
i . J

i =

i *
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Fig. 5.
Initial velocity field and input parameters for
flow over cut highway.



These conditions approximate a no-slip boundary
cutting the diagonals of the obstacle cells adjacent to
the fluid cells. These same conditions also ap-
proximate a free-slip boundary cutting the diagonals
of the fluid cells adjacent to the obstacle cells. In the
latter case, however, the tangential stress is not zero;
therefore, this free-slip condition only works when
the viscous stress terms are omitted from the
equations of motion (e=0). Different slopes can be
obtained by appropriately adjusting the ratio &x/Ay.

The notched mesh described above has been used
to compute the wind field near a sunken highway. A
cross flew was generated by inserting into the special
boundary condition section.

•= UI for j = 12, JM1.

Boundary conditions input for the basic mesh were
rigid free-slip walls (WL = WT = WB = 1) except
on the right wail, which was a continuative boun-
dary (WT = 3). In all cases, the special boundary
conditions override the input conditions because
they are located at the end of the basic boundary
condition section. Figure 5 gives other input
parameters.

The resulting flow field at t = 20 is shown in Fig,
6. A large recirculating eddy is shown in the highway
notch. This type of flow structure has a significant
effect on the dispersal of automobile pollutants.

3. Water-Cooled Reactor Model. A model
simulating the core region of a pressurized water-
cooled reactor can be easily set up in the following
way. Axisymmetric coordinates are used
TYL = 1.0) with the mesh arrangement shown in
Fig. 7. An inflow collar is located at the upper right
corner, and is defined by assigning u22.29 = U22.:»
= U22..U = —1.0 in the special boundary condition

Fig. 6
Velocity field at t = 20.0 shows large rccircula-
tion in highway cut. Center of recirculating
eddy is shifted downstream from the center of
the cut.
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Initial velocity field and input parameters for

simulation nf reactor core and downcomer flow.

section. The top boundary of the mesh is defined as
an outflow boundary, except for the four outermost
cells. For these last cells, the conditions set in the
special boundary condition section are V;..IMI = 0.0
for i =18, • • •, IM1. The cylindrical collar
separating the central core region from the outside
boundary is defined by inserting into the special
boundary condition section,

U16,j = U17,j VI7,j
0.0 for j = 12, JM1

A frictional drag was used in the core region to repre-
sent the influence of control rods, supports, and
other plumbing. This drag was inserted in the region
2 < i < 16, 12 < j < JM1 by adding to the right side
of the Ui.j equation in the temporary velocity
calculation (1000 section) a term equal to -«5t u2j.;.
and adding to the VJ.J equation a term equal to
—Kth v;.i. Other drag expressions can just as easily
be used and can be defined as functions of space and
time. The initial velocity distribution was defined in
the setup as v = —1.0 in the outer collar and



v = +0.64 in the inner core, which gives the same
amount of mass moving upward as is moving
downward.

Figure 8 shows a comparison of two calculations,
one with the drag coefficient a equal to zero (A) and
the other with K equal to unity (B). With no drag
there is a long narrow recirculation region in the core
next to the outer wall. The addition of drag
eliminates this recirculation and forces the flow in
the core to be nearly uniform. In both cases there is a
small recirculation region iti the lower right corner of
the bottom plenum.

Many variations of this basic setup can be imagin-
ed. For example, the inflow and outflow can be
defined as arising from a fixed external pressure drop
raiher than a fixed inflow rate. Also, a rounded bot-
tom for the lower plenum might be approximated by
using a stepped boundary in the bottom right corner.

G. Details of the SOLA Program

A conceptual flow chart and FORTRAN listing of
'he SOLA Program is given in this section. The
numbers beside some of the boxes in the flow chart
refer to statement numbers in the main program
where those instructions appear.

To set up a problem, program in whatever special
boundary conditions are desired, if any, in ihe 2500
section and define any special initial conditions in

Wl/l./l/://,

i l
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(A) (B)
Fig. 8.

Comparison of two calculations of /low in reac-
tor core: (A) with no core drag and (B) with
drag.

the 100 section. The basic input parameters that
must be defined for every problem r>re as follows:

IBAR = number of cells in the x-direction (ex-
cluding boundary cells)

•JBAR = number of cells in the y-direction (ex-
cluding boundary cells*

DELX ••= 5x = width of cell in x-directiors
DELY = oy = height of cell in y-direction
DELT = ot = time increment
JNJU = i/ = coefficient of kinematic viscosity
CYL = £ = geometry indicator (1.0 for cylindrical

coordinates. 0.0 for plane coordinates)
EPSI = i = pressure interation convergence

criterion
DZRO = Do scaling factor for convergence test
GX = gx = body acceleration in positive x-

direction
GY = gy = body

direction
UI = x-direction

acceleration in positive y-

velocity used for initializing
mesh and/or setting special boundary con-
ditions

VI = y-direction velocity used for initializing
mesh and/or setting special boundary con-
ditions

VELMX = maximum velocity expected in
problem, used to scale velocity vector
plot

TWFIN = problem time when calculation is to be
terminated

CWPRT = number of cycles between long prints
output on paper

CWPLT = number of cycles between plots and
listings to be output on film

OMG = u> = over-relaxation factor used in
pressure iteration

ALPHA = « = controls amount of donor cell flux-
ing (1.0 for full donor cell differencing
and 0.0 for centered differencing.)

WL = indicator for boundary condition to be used
along the left side of the mesh (1.0 = rigid
free-slip wall. 2.0 = rigid no-slip wall,
3.0 = cont inuat ive boundary, and
4.0 = periodic boundary)

WR = indicator for boundary condition along
right side of mesh (see WL)

WT = indicator for boundary condition along top
of mesh (see WL)

WB = indicator for boundary condition along bot-
tom of mesh (see WL).

The following listing of SOLA is for a CDC-7600
computer at the Los Alamos Scientific Laboratory
(LASL). The program, in FORTRAN IV, should be
compatible with other machines, except for some of



the control cards and some of the subroutine names
& i l for film output.

H. Sample Test Problem

To help debug new SOLA codes, ihis section con-
tains listings from a simple test problem. The
problem is to compute the flow generated in viscous
fluid in a square cavity when the top boundary of the
cavity is impulsively set into motion parallel to
itself.

The sample problem uses a crude 5 x 5 mesh, i.e.,
IBAR = JBAR = 5. Mesh increments are ox -
= oy = 0.2 corresponding to a cavity one unit
square . All boundaries aie no-slip walls
(WL = WR = WT = WB = 2.0).

The fluid is initially at rest (UI = VI = 0.0} and
has a coefficient of viscosity of v = 0.4. The sliding of
the top boundary is imposed by inserting into the
special boundary condition section (2500 section)

In this problem no velocities are expected to ex-
ceed the top boundary's. Therefore, the accuracy
and stability condition that fluid not convert more
than one ceil per cycle is

6t < 0 .2 .

The diffusion stability condition requires

, 2

6t < — - = 0.025 .
•'(V

Thus, this problem is controlled by diffusion. The
time step chosen for the calculation was oi = 0.02.

Table I lists the computed results after 1 cycle. 10
cycles, and 50 cycles. The flow field reaches steady
state by approximately the tenth cycle (t = 0.2).
The velocity field at t = 1.0 is shown in Fig. 9. The
total calculational time (CP lime) for 100 cycles of
calculation on a CDC - 7600 computer was ap-
proximately 6 s, including film output every 10
cycles.

"i.JMAX " 1 ' ° f O r * = 1 > I M A X -

Strictly speaking, the top boundary is located
midway between UUMAX and UUMAX-I SO that the
average of these two velocities should equal unity,
i.e..

i.JMAX
= 2 .0 - u . fo r i = 1.1MAX

However, for this test problem the less accurate but
simple expression was used. A complete list of input
parameters is included in Fig. 9.
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Fig. 9.
VvliH-ity field at t = 1.0 and input parameters
for sample test problem of viscous flow in a
cavity.
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(l
READ INPUT
PARAMETERS

COMPUTE PROBLEM
CONSTANTS

ICO
SET INITIAL

CONDITIONS FOR
PROBLEM

1000

6000

COMPUTE INITIAL
GUESS VELOCITIES

2000
SET BOUNDARY

CONDITIONS

HAVE PRESSURES
CONVERGED ?

3000

no

UPDATE CELL
PRESSURE AND
VELOCITIES

ADVANCE TIME
AND CYCLE

5000

PRINT a PLOT

no/ T I M E TO STOPPS

2500
S L T SPECIAL \

BOUNDARY
CONDITIONS J



LASL Identification: LP-0288

RUN-LC^<>7 0 17,a2,42 T39DNZZSNT PAGE NO, 1

22
33
U\
U7
b5
e>3
71
76

PROGRAM SOLAf INPfOljT, F ILM, FSfcT 10=1 NP,FSfcT9=0UT,FSF 112=1-ILM)
U C 1 5 2 , 3 2 ) , V U b«>, 32 ) » UN ( 1 5 2 , 32 ) , v r v ( i 5 2 , i J J f P C l 1 ! ^ , 3 2 ) ,

P » I N R 5 # MKE

«fcAL LONG,MU
I'MTEGfW C Y C L t , * L . * - < , K l , * u

RKAO Hb, NA^t J PRINT 3b

C * * RfcAU AND INITIAL INPUT DATA

121

125
127

2b
27 POHMATdH , 1 8 X , l a A a , l X , A i a , 2 ( l X , 4 6 : j
35 HJwMATdHl )

*lPt 1<?. 5,8X*T2=

HEAD 2S.NUI- ,
I l lA«sXPUT( l ) % Jt>A«sXPUT(2) * DE.IX5XPUT C3) $
UtLT=XPUT(5) $ NU=XPUT(6) J CYL=XPUT(7) * EPSlsXPUT(S)

GX = XPUT(1»5) i G y s X P U T ( U ) * U I = XPUT(12)
S VfcL^XsXPUICl«) $ TWUNSXP'JT ( I S ) i C*PH1 =XPU T ( 1 6 )

C«PLT=*PUT(17) S 0MG=XPUTC18) t AUPHAsXPuT(19) $ WL=XPUT(2M)
«iT = X P U H 2 2 ) $

C X P U T ( I ) .

15)

= * lPfc 12,5, t HX*CYCLE*
76x*0BARs *E12.5/6X*DELXs

= * t 12,b/SX*NU= * t 12.S/7X*CYl.s

12,S/6X*Gr= *fcl2,5/
/5X*TWM'M= * t l 2 . b /

= *t12.b/7X*QMG= *E12.5/5X*ALPHA= *t!12
T= *E12,5/BX**B= *E12.5)

ANf) INJTIALIZE NECESSARY VARIABLES

46
47
U8
<J9 f UW1AT(6X*ITE.W=
bf FO«MAT(1H ,5X* IBAK= *

lit
I t 7

1W7
1*7

C *
*

* COMPUTE. CfNiSfAMT

1" ]= IMAX-1

CALL GfcTU(<tLKJBN,JNM)

CALL OATEKOAT)

CALL CLOCKHCLK)

CYCLfcsK

C * * S»tCIAL INPUT DATA

14



HUN-ICM97 0 SOLA 17.«<»,«2 T3BDNZZ3NT PA&t NO,

1 '+3
143
113
161

C * * 5CT CUN>$TAiT Tt«•-!5 FOW PLOTTING
it

L'Jr.Ga FLOAr(I(3AR)*OtlX
MlGHr F-uOAT(JHAR)*dtUY
IYP=916

1 /c
173
1/3
173
173

GOTO
3 0 < ) X = t.O.'

I X|_ =
lXlvr

I Y I =

330

IMf
I\T
16

211
220
220

C * * 5tT INITIAL ^fcLOLITY fIELO INTO u ANO V
*

DU b60 1=2, 1^1
DO 560 J=£,JM1
U(I,J)s Ul
l/(I,J)= VI

bfcu
225

226
226
226
2M

232
233

253

AoSI&M
GU TO

C * * START CYCLb

CONTINUE

II) KHtT

FLG=1,
ASSIGN 3630^ TO KHhT

C * * COMfoTfe TEMPUKAfcY U AND V

OJ 1100 1=2*1*1
00 HB0 J=2rJMt

M,J)+UM(I,J))*(UN(I-1,J)+UN(I,J)
2)-ALPHA*A«S(UN<I-l,J)+UN(I,J))»(UN(I«l,J)-UM(I,J)))/(4,
FUY=((VN(I,

3-ALPHA*AQSCVN(I,J-1)+VN(I*1,J-l))*(UN(I,J-l)-UN(I,J)))/C«,*DELY)
FUC=CYI.*(CUNCI,J)+UNCI+1,J))*(UN(I,J)+UNCI+1#J))+(UN(I-1,JJ+UN(I,J
n)*CUNCI-l,JJtUNCl,J))

250
a/C8.*DtLX*FL0AT(X-l)J
F-VX.-CCUNCI, J)tUN(I,J+l))*CVNCI,J)»VN(Itl, J) ) • ALPHA*ABStUNUr J)+UN(
H,J+l))*(VN(I,J)-VNUtl,J))-CUNU-l#J)+UN<I-l,Jtl))*CVNCI-l,J) + VN(
2I,J))-AUPHA*ABStUN(I-l,JJ+UNCI»1,J+1))*CVNCI-1,J)-VM(I,J)))/(«,*0E

15



S O I A /5/02/U 17,42,42 T3«DN^Z4NT PAGh NO. 5

J ) ) t A L t J M A * A b 3 ( u 1 - ( I - l # J ) + U N ( I - i , J t l ) ) * C V N ( I - i , J ) - V N ( I

N>J*UUN(I+1* J W . * U N ( I , J ) + 0 N d » l , J)) /DtLX**2 +

1 (yNd,J+l)-i2,*uNd»J)+0Nd,J-J))/[)t.LY**2
^ +CVL*((ijNd + lf J)-ON (1-1, J5)/(a,*O£UX*OELX*fLOAId-l))
i

461

:ttJ,JJ-VNCI-1.J
461 J d , J J a uNd/J;*£>tLT*aP(I»J)"Pd*l/J))*t«DX •
461 V d> J)8
527 l i a ? Ci

C * * SET 4 0 U N D A H Y CONDITIONS

534 2Ui)i5 CO'
534 uti

536 UO
2^2v< ' J ( l , J ) = . ) t M

S55 CO TU

562 2ii40 0 C1» J)
562 v d » J )
564 GO TO 2t.J8
<3t>H 2 ( 5 6 0 U ( I T E W . C T . l i J J G O TO 2 1 B B
574 U d , J ) a U ( 2 , J )

574 t i l l J) = v/C2# J)
577 GO TO 21Ji)
6*!5 2 B 8 0 U ( 1 , J ) = U ( I M 2 , . J J $
6KS V ( 1 , J ) = V C I H 2 , J ) S P ( 2 » J ) = F ( I « 1 , J )
610 bU TU
611 2l3iJ GO TO
626 212:5
626 VCIMAX, J ) = V d M t , J)
63a GU TO £2i1il

643 Gfl TO 22*3

652 J(IMl,J)=
652 V(IMAX,J)=V
66k) GJ TO
670

672 22JB CONTINUE
675 DO 250B Z*lfI«AX
676 1.0TQ
713
715

16



SOLA 75 /02 /11 17 .42 ,42 T3BDMZZ3-MT PAfct MO. a

715
722
722
724
724
736
736
743
745
745
747
747
760
760
763
764
764
767
767
773
773
776
1W«2
10 H 2
Id l?5

laia
1011
1 P21
1.323
1026

1026
1327

Ills
1H35

1H37

1040
1042
1043

2340

2360

2380

2440
?.t 2 i1

2440

2460

2480

2530

c * •

2B8P

lift

A

c * *

• 5 0 ^

c * *
A

GO TO 2400
V(I,JMl)s0.u
UCI,JMAX)=-UCI,J11)
GO TO 2400
IF-(ITER.GT.rf) GOTO 2400
V( I,J*4)=V(I,JM2)
UCI,JMAX)S|JCI,JM1J
GO TO 24t"0
v(I,JMJ)sV(I» 2)
U(I,JMAX)SU(I,3)
(.0 TO 2430
GOTO (2420,244^,2463,2481!) WB
V(I,t)S0,0
UCI,1)=U(I,2)
CO TO 2500
V(I,1)=0.#
U(I,D=-U( 1/2J
G'1 TO 2530
1FUTEK.GT./J GO TO 25̂ iJ
w(I»l)=V(I,2)
J(1,1)=U(Ir2)
GO TO 2500
V(I,l)s V(I,JM2) S U(I,2)s U(l.JMl)
U(I#l)s U ( I , J M 2 ) $ P(I,2)= P(1,JM1)
CONTINUE

SPECIAL BO U N U A K V CONDITIONS

I»2s IMAX-2
DO 261(5^ I* 1#I'^2
U C I, J M * X ) = 1 . k5
GO TO K«ET
CONTINUE

MAS COMVtRGFNCt BEEN REACHED

IK(F"tG.E>)«O«)GOTO 48ea
ITfcrtrITEK+1

IFCCYCLe.L7.Jlti) GU TU 40v;0
T= 1.E+1H
GOTO S000
FUG=e,fl

CCMPijTE UPDATE!) CELL PRESSURE AND VELOCITIES

00 35l"i.' J=2,JM1
00 350H 1=2,IM1
Ds«DX*CU(I,J)«U(I-l#J))+rtDV*(VCI,J)»VCI,J-l)

U 0 2 TELPs -BETA«t)

LKT,J)=U(I,
U(l-t»J)=U(I-l,J)-OELT*RDX*DELP

17



0 SCIA

V(l,J)sv(I,J)+OELT*ROY*DELP

17.«2,«2 T380N^Z3NT PA&E NO.

1115
1122
1122

1122
1122
1125
1153

1145
U<47
Ilb2
lisa
1154
1156
1162
1172

1202
12B3
1225

1232
1234
I2aa
1247
12b2
1254
127B
1272
1302
1304
1311
1311
1311
1311
1326
1332
1336
1342
1346
13S1

1356
1356
1360

3b«J«3 COMINUfc
GO TCi 2O?0

4kJ30 CO';TINut

C * * PRIÎ T AMD PLOT

WZl* CONTINUE
lf(T.GT,8.)GUrc Mid
wWITECl^/SuHXPUTtD.Isl^NUM)

5W3') CONTINUE

IF(CYCLE.Lt.rt) GOTO 51^0
UCT+l.E-6 ,LT. TWPLT) GO TO 560*!
frtPL!=TwPLT+Ci«iPLT*!)ELT

5130 CONTINUE
CALL AOVtD
C*LL LINCNT(l)
iKITEt^.i1?) ITt«#T, CYCLE
CALL LINCM13)

OU 525»' I = 1,IMAX
00 5250 J=lfJ«l
it4!Tb(12,aa) I,J.U(I,J),V(I,J),P(I,J)

525W CONTINUE

C * * VELOCITY VECTOR PLOT

CALL AOV(l)
CALL OGA(IXL,IXft,IyT,IYB,a.,L0NG.riIGH,B.)
CALL FRAMLCIXL>IXR,IYT,IYB)
CALL FKAl^EdXLf IXSrlYT, IYB)
CALL LlNCNT(66t)
MKlTt(12»27) NAME,JNM,OATtCLK
CALL LINCNTC62)
*^ITtn2#«6)T, CYCLE
DO 5b00 I=2#IM1
DU 5500 J=2,JMl
xr, C=DELX*(FLOAT(I)"1»5)
YCCSOELY*(FLOAT(J)-l.S)
UVECstU(I-l,J)tU(l«J))*0.5*VtLMXl*XCC
VVECs(V(IfJ"'l)tV(I#J))*0.5*vfcLMXl*YCC
CALL COMVBTCUVECflUVECfB.fLOXGiflXLjIXK)
CALL CONVKUVVEC.JVVEC.HIGH, ».,IYT,IYft)
CALL CONVKTUCC»IXCC.0,,LQNG,IXL,IXR>
CALL COMVRT(YCC,JYCC#HIGH,0,,IYT#IYB)
CALL DKVUXCC,JVCI.,IUVEC,JVVt.C)

553C CONTINUE

C * LIST VELOCITY AND PHtSSURE FIELDS
it

5600 CONTINUE
IKCYCtE.Lt.O) GO TO 5600
IF(T*1.E-6.LT,T*P«T) GO TO 6«>00

18



«UN»LCM<*7 0 SOLA 75//2/11 17.u2.42 Tif>L)N/£5NT PAtfc NO. b

1365
1365
1371

1417
1423
1425
1426

1457
1466
1466
1466

147'4
1475

15U2

154)5

597H"

(. * *

i b

p « I M a<}, ITf-H,T,CVC.Lfc
PKINT 47
0 0 5<>i?U 1 = 1 , 1 M A X

0 0 5 9 3 . 1 J = 1 , J M 1

P«INT 4fl, l,J,J{liJ),V(l,J),P(I,JJ
COMINUK

SET THE ADVANCE

CONTINUE
00 6l*tf 1 = 1,IMAX
DO 6100 J=1,JMAX
UM(l,J)=U(l,J)

VELOCITIES 0 ANO V 1MT0 THE UN ANU VN ARRAYS

it

C * *
*

6590

CONTINUE

ADVA'-CE T I M t TsT + OfcLT

T=T+OELT
IF(T,GT,T*"FIN
CYCLE=CYCLEtl

GOTO 6b0t'

STCP

PROGRAM LENGTH INCLUDING I/O REQUEST TABLES
61576

SOLA

STATEMENT NUMHER

LOCATIC)
151b
1522
1527
1531
154ri
1542
1547
1554
1563
1566
173
2*53
226
534
546
555
564
577

f>'Ef-ERE\CE5

« GEN TAG
C, 3t3012
C0I3016
C0^023
C?0025
C^0034
C0H036
C000ti
C0U0b3
CPli)0b4
C0'J06cl
1.00111
L0'2115
L8I3135
L00162
L00167
L0B172
LB017S
L00203

STMT NO
25
27
35
44
45
46
47
46
49
50
300
330
1030
2000
2020
2H4C4
2060
2080

RfcfEHENCES
23
138
11

NONE
3

1270
1172
12U0
1131
76
164
172

1477
?25
542
543
544
545

12i2
1363

15

1415
1423
1156
1122

1117

1367

1403

19



SOLA

bit.

63.5
640
663
671
7^5
714
723
737
746
756
762
766
775

101)3
1324
1035

112J
1131
1152
1554
1363
1453

VARIABLE

LOCATION
1730

1731
1732
1735
173*
l 7 iS

1736

1 7 3 7
I7'4k5
1741

1742

1743

1744
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II . SOLA-SURF - BASIC SOLUTION
ALGORITHM FOR FLOWS BOUNDED BY
CURVED SURFACES

We can easily modify the SOLA code to permit
free or curved rigid surfaces across the top and bot-
tom of the computational mesh. The principal
restriction is that these surfaces must be definable
bv single-valued functions, for example, y = H(x,t)
for the top surface and v = HB(x,t) for the bottom
surface. Also, the slope of the surface must not ex-
ceed the cell aspect ratio Sy/Sx. Several examples il-
lustrating different combinations of the curved sur-
face options are described in Sec. B. The basic
modifications required in SOLA to permit these
more general boundary cond i t ions are
described next.

runs from the bottom boundary cell .IB, to the top
boundary cell JT,.

In the pressure iteration (3000 sect ion) the top and
bottom surface cells must be given special considera-
tion to reflect the new boundary conditions. At a free
surface the pressure must be zero (or at some
specified value), whereas at a rigid boundary the
normal fluid velocity must vanish.

First, consider the free surface condition for the
top boundary (TB = 1.0). The surface cell pressure
is chosen such that a linear interpolation between it
and the pressure in the fluid cell below yields zero or
an applied value psat the surface,* i.e..

A. Modifications to Basic SOLA

Let H, be the height of the top surface above the
bottom of the mesh, as measured up the center of the
ico lumn of cells, and let HBj be the corresponding
height of the bottom surface. Dimension statements
must be added to SOLA for Hi, HBi and for their
old time values HNi , HBNi . In addition, it is
convenient to dimension for storage the j index of the
cell containing the top surface JTi and the bottom
surface JBj . An input number TB is 1.0 if the top
surface is to be free and is 2.0 for a rigid curved boun-
dary. Likewise, for the bottom boundary the input
number BB is 1.0 for a free surface and 2.0 for a rigid
surface.

Initial values of Hi, HBj and corresponding JTi,
•JB, must be defined in the initial condition section
< 100 section) for each problem. Of course, if curved
boundaries are not wantsd H, can be set equal to the
height of the mesh and HBj to zero. The
corresponding input numbers TB and BB should
then be set to zero, which indicates that those sec-
tions of the code used to update these boundaries
can be omitted.

For some problems, when the bottom boundary is
rigid, it is best to start with a hydrostatic pressure
field. This is done in the setup after H, has been
defined.

All DO LOOPS sweeping the mesh are arranged to
run up columns starting with the far left and ending
with the iar right column. In each column the j index

p. ,_ = ( l - n )p . + i)p ,

where

'1 = <5y / | H £ - (JT-2.5)6y| .

When the bottom surface is free (BB =1.0) a
similar prescription is used for the surface cell
pressure pun, except the interpolation is with the
fluid cell above (j = JB+1) and Hi is replaced by
HBi,

= (1 - n)

where now

Sy H(JB-0.5) y - HB.

If the bottom boundary is a rigid surface
(BB = 2.0), the pressure in the surface cell is chosen
to make the normal velocity at the surface zero. In
difference form the outward normal velocity at HBi
is approximated by

*The applied pressure is generally a function of time
and location along the surface that must be defined
for each specific problem. In the code contained in
Sec. C, ps is assumed equal to zero and does not
appear there explicitly. Therefore, when a nonzero p.,
is desired the 7?ps term must be added to the surface
cell pressure in the 3000 section of the code.
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"„ - - ^ x ("i.JB
U i - 1 , J B ) (11Bm - H V i )

where

C = HB. -

In the code V,.JB has been replaced by its value
computed from Eq. (',]), which is the boundary, con-
dition used at the top surface and the farm needed to
derive <>u,,A>p below. The velocities appearing in this
expression are functions of the cell pressure so that
u,, = I) can be considered an implicit equation for
H.jh . A Newfon-Raphson type solution method is
used to obtain a new estimate for p,..m during each
iteration pass. Specifically, the change added to pun
in each iteration is

where the denominator is given by

Similar expressions are used in the top cell j = JT
for a rigid curved boundary (TB = 2.0).

For both the top and bottom surfaces, velocity
boundary conditions are set in the boundary condi-
tion section (2000 section), after the regular boun-
dary conditions but before the location reserved for
special boundary conditions. These conditions,
which are identical for both the free and rigid cases,
are set by proceeding from left (i = 2) to right
(i=IMl). For each top surface cell the u-velocity on
its right face is set equal to the u-velocity in the cell
below if the cell to the right is empty. Also, the u-
velocity in the cell above is set equal to the u-
velocity in the surface cell. The v-velocity at the top
of the surface cell is chosen to insure that the veloci-
ty divergence for the cell is zero. In difference form,
for cell JT(i) these conditions are:

U i . JT " i . J T - 1 *

i.JT+1 i,JT

if JT (i+1) < JT (i)

"i.JT = Vi,JT-l " fix (Ui,JT " V l . J T J

" 2fixU-l.1T (Ui,JT + "i-l .JT/ *

At the bottom surface cell JB(i) the corresponding
conditions are,

"i .JB " "i.JB+1- if J B d + l > > J B ( i )

U i , JB- l " U i ,JB

iv / _ \
' i , J B - l V i ,JB 6x \Ui,JB " i - l . J B /

• f ' 6 y
 ( + ^

^ 26x(i-1.5) \"i,JB Ui-1,JB/ '

The simplicity of these boundary conditions results
from the limitation that surface slopes not exceed
the cell aspect ratio <5vA>x.

In t he case of a free top surface, a new surface con-
figuration must be computed each cycle (4000 sec-
tion) according to the kinematic equation

3H ^ PH

St ox

but only after convergence of the pressure iteration
has been obtained. The difference equation used is.

where h is an interpolation length used to get the v-
velocity at the surface position,

h = [H. - (JT-2)iSyj/fty .

All quantities without superscripts are evaluated at
time n<5t. The constant 7 is used for upstream
differencing in analogy with a (it is often chosen
equal to iv).

When the bottom surface is free it is updated with
a similar equation.

HB'
6t j -
- HB,.,) -

25



HB.
l,JB

V i . JB- l

with

= JHB. - (JB-2)6yJ/<5y

If the surface configurations are changed, the
-JT(i) and JB(i) indexes and the surface velocity
boundary conditions must be reset in preparation for
the next cycle.

B. Sample Problems

With the above, relatively minor modifications
added to SOLA, many interesting problems can be
investigated. The following examples illustrate some
of the possibilities.

1. Interaction of Two Solitary Waves. A solitary
wave is a single, finite amplitude wave that
propagates without a change in shape. According to
approximate analytic theories,u two solitary waves
can interact nonlinearly without losing their identi-
ty. To study this phenomenon with a direct
numerical simulation, two solitary waves moving
toward one another were set up as initial conditions,
as shown in Fig. 10. The mesh consisted of 150 cells
in the x-direction and 10 cells in the y-direction
(IBAR = 150, JBAR = 10). The top surface is to be
free (TB = 1.0) with an undisturbed depth of 1.0.
The bottom surface is flat and rigid (BB = 0.0 and
HBj = 0.0). The initial wave profiles and velocity
distributions were generated using the second-order
theory of Laitone.12 The left wave has an initial
amplitude of 0.25 and is moving to the right, whereas
the right wave has an amplitude of 0.5 and is moving
to the left. Figure 10 gives the remaining input
parameters for this calculation.

Subsequent times in the evolution of the two
waves are shown in Fig. 11. In the last frame the two
waves have separated, are moving apart, and are
closely approximating the original two waves, as
predicted analytically. Some low-level fluctuation is
caused by dispersive errors in the numerical ap-
proximations and by the fact that the initial con-
ditions are from an approximate theory. There is
also a slight amplitude fluctuation and change after
interaction; the parting waves have average heights
of 0.241 and 0.522. This change may be the result of
nonlinear effects not included in the theoretica)
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Fig. W.
Initial free surface profile and input
parameters used for interaction of ttro solitary

analysis. However, more careful and more extensive
calculations must be undertaken before this conclu-
sion can be established.

2. Flow Over a Corrugated Bottom. To il-
lustrate the curved wall boundary condition in
SOLA-SURF we performed a calculation for a fluid
with a free surface flowing over a wavy bottom. For
small-amplitude bottom perturbations a linear solu-
tion for steady flow conditions can be found in Sec.
246 of Lamb's Hydrodynamics.

13 This problem,
therefore, serves as a good test case. The
calculational mesh was set up as follows: the mesh is
41 cells wide (5x=0.15) and 15 cells high (6y=0.1).
The top boundary is a free surface (TB = 1.0) and'
the bottom boundary is rigid BB = 2.0 with a
sinusoidal variation in height.

HB± = H [ l + cos (kx) ] ,

where k = 2n/K is the perturbation wave number,
corresponding to the wave length X = (IBAR-l)5x,
and H = 0.05. The left and right boundaries of the
mesh are periodic (WL = WR = 4). The mean
depth of fluid relative to the mean bottom height is
0.90, and the fluid is initially moving with velocity
UI = U,, to the right. Gravity is down, gv = -1.0.
The surface profiles at t=10 and remaining input
parameters are shown in Fig. 12.

When the flow is subcritical, Uo k/f-gy)< 1, the
surface develops corrugations inverted with respect
to those of the bottom, but for supercritical flow, Uo
kA—g>)> 1, the corrugations are in phase with those
of the bottom.
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Fig. //.
Sequence of surface profiles showing the interaction of two solitary waves. Left to right the
times of each frame are 0.0, 13.0. ,'7.0, 20.0, 25.0, and 45.0.
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Steady-state top and bottom surface profiles
and input parameters used in calculation of
jh>w over a corrugated bottom.

The first calculation we attempted used a flat free
surface and a uniform horizontal velocity Uo = + 2.0
for supercritical flow as initial conditions. The
resulting flow developed free surface corrugations
that periodically oscillated in phase and amplitude
around the correct steady-state values. We believe
that these results are reasonable, because any per-
turbation of the steady flow in an infinitely periodic
system without dissipation has no mechanism to
return it to the steady state. To check this, the
calculation was repeated with the theoretical free
surface profile, velocity, and pressure fields input as
initial conditions. In this case, the calculated free
surface amplitude remained steady at the
theoretical value to within 3% of the surface
amplitude shown in Fig. 12.

3. Flow About a Planing Surface. An in-
teresting and useful variation of the curved surface
treatment in SOLA-SURF is to let only portions of
the surface be a rigid boundary. For example, the
fluid flowing about a planing body like a surfboard
or hydrofoil is confined only underneath the body,
but is free elsewhere. To model this type of flow we
must introduce a test in the pressure iteration (3000
section) to decide where to apply the free boundary
condition (zero pressure) or the confined boundary
condition (zero normal velocity at the body).

For a flat planing surface we know that a forward
moving jet or splash is usually produced at the
leading edge of the flow. 14This cannot be modeled in
SOLA-SURF because of the restriction that the sur-
face must remain a single-valued function of the
horizontal coordinate. However, in gravity-

dominated situations the principal fluid resistance
experienced by a planing body is due to the genera-
tion of a train of trailing waves and is not significant-
ly influenced by the forward jet.

A calculation in which the forward jet is ignored
can be set up as follows. To avoid a sudden transi-
tion in boundary conditions at the free surface, the
surface cell pressure conditicn is modified to be a
linear combination of the rigid and free condition;
i.e., the pressure is chosen to make the following ex-
pression zero.

. - <)
•'t

where h = [Hi - (JT-2) <5y] Ihy and unisthe normal
velocity at the surface. The minus sign for the se-
cond term was chosen to insure that F would be a
monotonic function of the surface cell pressure.
When K is unity, F=0 is the free-surface boundary
condition, and when K is zero, F=0 corresponds to
the u&ual rigid boundary condition, un =0. In this
problem the interpolation factor a was chosen to be

i- H. if 0 <

0, if <

1. if <o > 1 .

where / / is the height of the planing body at the
center of the i th column of cells. If this transition
between the two kinds of surface boundary con-
ditions is not used, the fluid at the leading edge of
the body will periodically bounce off the rigid sur-
face, because of large forward pressure gradients
produced even' few cycles when the fluid passes from
a free surface region with approximately zero
prersure to a confined fluid region with large positive
pressure.

When inserting the condition F = 0 in the
pressure iteration scheme, the surface cell pressure is
computed using a Newton-Raphson type ap-
proximation in which the pressure change 5p in the
given iteration pass is given by

6p

with

- K ) (1 + 2h
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When the top surface profile is advanced in time
for this problem,a special test must also be inserted
into the 4000 section to prevent H, from exceeding
the height of the planing body. Using the above
modified boundary condition,we constructed a mesh
with IBAR = 60, JBAR = 15, 6x=0.1. and 5y=0.1.
The initial undisturbed fluid height was 1.15 in front
of the body. Behind the body, where a Hat plate
tilted 9.5° with respect to the horizontal, the initial
height wa,i 0.95, corresponding to the elevation of the
trailing edge of the plate. With respect to the .plate
the fluid is initially moving uniformly to the left with
speed 0.6.364. The mesh boundary conditions are
WL = 3. WT = WB = WR = 1. Uniform inflow
along the right mesh boundary was specified in the
special boundary condition section (2500 section).
Because of this special right-wall velocity condition
we must reset the free-surface-velocity boundary
conditions for the last cell (IMI. -IT) next to the
wall. This had been set in the 2000 section assum-
ing a zero horizontal velocity at the right wall.
Calculational parameters are listed in Fig. 13, which
also shows the initial top surface profile (ex-
aggerated by a factor of 4 in the vertical direction).
Figure 14 shows the development of the surface
profile in time. At the plate's leading edge the free
surface initially climbs upward, but eventually
reaches the steady profile shown in Fig. 14's last
frame. The free surface behind the plate also settles
down to a steady profile, in this case, without waves.
The lack of a trailing wave pattern may be the result
of not having a long enough mesh or possibly a result
of the continuative outflow condition used at the left
boundary.

This example shows how simple methods can
often be built up in easy steps to perform increasing-
ly complex problems. Many other variations and
modifications can also be imagined. In the next
problem, for example, this partially rigid and par-
tially free top-boundary method is used to compute
the wave field generated by a floating body.

4. Waves Generated by a Floating Body in
Forced Heave. In contrast to the previous problem,
the partially confined, partially free top-boundary
condition is here used in connection with a rigid
boundary (the floating body) moving relative to the
computing mesh. The principal, new modification
required is that the normal velocity at the confining
top surface be allowed to assume nonzero values.

The floating body used is a right circular cylinder,
with axis oriented vertically, undergoing forced
heave. Axisymmetric coordinates are used
(CYL= 1.0) with the mesh and cylinder arrangement
as shown in Fig. 15.

In the SOLA-SURF boundary treatment, surface
slopes are not to exceed Ay/iix. We eliminate this
restraint at the side of the cylinder, however, by
aligning the vertical side with an i = constant mesh
line and by adding boundary conditions that set to
zero all u-velocities along the side of the cylinder.
This is done by adding to the special boundary con-
dition section (2500 section) the statement.

u . = 0 . 0 for i = J R , JMAX ,
I K . J

where IR corresponds to the interior cell along the
side of the cylinder and JR = JT,+ 1 for i = IR. The
forced heaving of the body is periodic and defined by
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Fig. 13.
Initial top surface profile and input parameters
for calculation of flow about a planing surface.

in which H is the height of the bottom of the body
above the mesh floor. Ho = 0.75. A = 0.10. and
u.- = 27T/T with r = 2.0.

In the pressure iteration <:!()()() section) the boun-
dary conditions for the (op surface are that ihe sur-
face pressure be zero (free surface condition) for i > (i
and that un be equal to the body velocity given by

• u
— = - Au> oos(u)t)
a t

for i < 6.
Figure 15 list* the remaining parameters used for

!he calculation shown in Fig. lfi, Note that vorlicity
is generated at the bottom corner of the body;
therefore, this problem could not be solved
analytically with a potential flow calculation, even
for low-amplitude displacements.
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Fif>. 14.

Sequence of surface profiles as flow develops about a planing surface. Left to right profiles aw

ot times <>.<>. 1.025. 1.525, and 10.025. The flow has reached steady state by the last frame.
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Initial free surface profile around cylinder and
input parameters for the calculation of a
floating cylinder in forced heave. Side of
cylinder is vertical but appears sloping because
line is drawn hcttreen surface height values at
neighboring cell centers.

Waves radiating out from the body rapidly lose
amplitude because of their radial expansion. In ad-
dition to the wave field, calculations of this sort can
be used to obtain added mass and damping coef-
ficients for floating bodies.

5. Free-Floating Body. Instead of forcing a
periodic body motion, we now wish to have the body
dynamically interact with the fluid. The body is to
be initially raised above its equilibrium position and
allowed to fall, starting from rest. Its subsequent
motion will consist of damped oscillations as waves
are generated and radiated away. The only
difference between this calculation and the previous
one is that the velocity of the body is not prescribed
a priori but. determined from the equation of motion

—2 = a + f/M

where f is the total force exerted on the base of the
body by the instantaneous fluid pressure and M is
the mass of the body. Thus, it seems that we need
only replace the previously specified body velocity
with that calculated by the above ordinary differen-
tial equation. There is. however, one difficulty with
this procedure. The pressures computed in the code,
when used to accelerate the body, lead to an un-
stable body motion. To correct this, the body equa-
tion of motion must be implicitly coupled with the

pressure iteration. This is done by computing a new
V« , for use in the pressure iteration, at the end of

nmi

Fig. 16.

Surface profile at t = 8.0 and velocity fields at
quarter periods as generated by cylinder un-
dergoing forced heart:



each iteration pass using the most updated pressure
values available. If the VB calculation is inserted into
the special boundary condition section (2500 sec-
tion) this will be done automatically. Because of the
dependence of VB on the new pressures, however, we
must also modify the relaxation factor DFfop describ-
ed in subsection 3 to have for each cell (i.-JT) under
the cylinder the additional term

^ - ix2(i-1.5)[H-(JT-2.5)iy] .

Figure 17 shows body height as a function of time
computed in this way. The pressures used to
accelerate the body may also be used to compute
added mass and damping coefficients. Unfortunate-
ly, we know of no theoretical or experimental data
for this or the previous problem to make com-
parisons.

C. Details of the SOLA-SURF Program

A conceptual flow chart and FORTRAN listing of
the SOLA-SURF code is included here. Comparing
this flow chart with SOLA's shows that the only
significant differerence is section 4000, which is used
to update the free surface position. All input
parameters are identical in the two codes, except
SOLA-SURF has some additional parameters
associated with the surface options. The parameters
are defined as:

00 1.0 2.0 3.0 40 5.0 6.0 70 8.0 9.0 10.0

Fig. 17.
Elevation of free-floating cylinder vs time,
shows damping of motion as waves are radiated

GAMMA = 7 = controls the amount of donor cell
fluxing in kinematic equations
for free surface position (1.0 for
full donor cell differencing and
0.0 for centered differencing),

TB = top boundary definition (0.0 for top boun-
dary coincident with the top mesh boun-
dary, 1.0 for a free surface, and 2.0 for a
rigid boundary), and

BB = bottom boundary definition (0.0 for bottom
boundary coincident with the bottom mesh
boundary, 1.0 for a free surface, and 2.0 for
a rigid boundary).
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