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The metal abundance of the hot plasma that permeates galaxy clusters represents the

accumulation of heavy elements produced by billions of supernovae1. Therefore, X-ray

spectroscopy of the intracluster medium provides an opportunity to investigate the nature

of supernova explosions integrated over cosmic time. In particular, the abundance of

the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding

how the progenitors of typical type Ia supernovae evolve and explode2–6. Recent X-ray

studies of the intracluster medium found that the abundance ratios of these elements differ

substantially from those seen in the Sun7–11, suggesting differences between the nature of type

Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition

lines of chromium and manganese are weak and those of iron and nickel are very close

in photon energy, high-resolution spectroscopy is required for an accurate determination

of the abundances of these elements. Here we report observations of the Perseus cluster,

with statistically significant detections of the resonance emission from chromium, manganese

and nickel. Our measurements, combined with the latest atomic models, reveal that these

elements have near-solar abundance ratios with respect to iron, in contrast to previous

claims. Comparison between our results and modern nucleosynthesis calculations12–14

disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs

with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun).

The observed abundance pattern of the iron-peak elements can be explained by taking into

account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems,

adding to the mounting evidence that both progenitor types make a substantial contribution

to cosmic chemical enrichment5, 15, 16.

The Soft X-ray Spectrometer (SXS) on board Hitomi achieved unprecedented spectral

resolution in orbit (∆E ≈ 5 eV in the 2–10 keV band)17. Fig. 1 shows the SXS spectrum of

the Perseus Cluster core (r . 2′ ≈ 40 kpc) in the 1.8–9.0 keV band. This was obtained from

the same series of observations as our previous work that constrained turbulent velocities in the

intracluster medium (ICM)17, but with 25% more exposure totaling 290 ks. The refined calibration

of the telescope effective area and the SXS aperture window transmission now allows the first flux

measurement of each individual line in the 1.8–9.0 keV band, encompassing the H- and He-like

transitions from Si through Ni.
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The excellent performance of the SXS also makes possible the detection of weak resonance

lines from He-like Cr, Mn, and Ni, with statistical significance of 6σ, 4σ, and 12σ, respectively

(Fig. 1b and 1c). Measurements of these line fluxes in celestial sources have been extremely

challenging with traditional non-dispersive X-ray detectors (e.g., charge coupled devices, or

CCDs), because such weak features readily blend into the bremsstrahlung continuum under lower

spectral resolution and the Ni XXVII Heα and Fe XXV Heβ lines cannot be resolved (see Fig. 1c).

The hot ICM, confined in the deep cluster gravitational potential well, contains the dominant

fraction (∼80%) of metals in the cluster1. Among these, the Fe-peak elements (Cr, Mn, Fe,

and Ni) are thought to be predominantly created by type Ia supernovae (SNe Ia) occurring over

a cosmological time period18, 19. Therefore, the abundance of these elements provides crucial

information about the integrated SN Ia nucleosynthesis and its relevant physics.

Despite the importance of SNe Ia as distance indicators in cosmology20, 21, many of their

fundamental aspects remain elusive. One important open question is whether the mass of an

exploding white dwarf (WD) is close to the Chandrasekhar limit (MCh ≈ 1.4M⊙), regardless

of whether it originates from a single WD accreting mass from a non-degenerate companion22

or a violent merger of two WDs23. Recent hydrodynamical simulations show that both so-called

delayed-detonation explosions of near-MCh WDs4, 12 and full detonations of sub-MCh WDs13, 14, 24

can reproduce the observed properties (such as optical light curves and spectra) of SNe Ia.

Therefore, it is difficult to distinguish the two scenarios from optical observations of individual

explosions alone.

From the point of view of SN Ia nucleosynthesis, the main difference between near-MCh and

sub-MCh explosions is whether the WD core is dense enough for electron capture (p+e− → n+νe)

to take place during the initial phase of the explosion. The threshold density for this reaction (ρc ≈

108 g cm−3) is only achieved when the WD mass is close to MCh. A distinguishing characteristic

of the two models is, therefore, the production efficiency of neutron-rich species, like Ni and Mn,

that is higher in the near-MCh scenario4–6. We may exploit this distinction to identify the dominant

type of SN Ia progenitors in galaxy clusters by measuring the abundance of the Fe-peak elements

in the ICM. The results may apply globally, since rich galaxy clusters represent a scale sufficiently

massive to be representative of the universe as a whole.

Here we model the SXS spectrum of the Perseus Cluster in the 1.8–9.0 keV band (Fig. 1a)

with an optically thin thermal plasma in collisional ionization equilibrium using the latest atomic
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codes (AtomDB v.3.0.8 and SPEX v.3.03). The emission from the active galactic nucleus (AGN)

of the cD galaxy NGC 1275 is taken into account by adding a power law and redshifted Fe I Kα1

and Kα2 lines. Details about the analysis and systematic uncertainty assessment are described in

the Methods section. Our constraints on the elemental abundances, with respect to Fe, are shown

in Fig. 2 (red circles). These are fully consistent with the solar abundance ratios25.

Fig. 2 also plots previously measured ICM abundances of the Perseus Cluster core as well

as the average of 44 objects including galaxy clusters, groups, and elliptical galaxies from

XMM-Newton observations (blue triangles and squares)11. This plot highlights some important

differences between the measurements. First, the SXS-measured abundances have statistical

uncertainties comparable to the XMM-Newton results from the combined data of the 44 objects,

despite a 15-times shorter exposure and a much smaller field of view. Second, while the

abundances of Si, S, Ar, and Ca are identical between the two studies, the earlier measurements

systematically obtained supersolar abundances of the Fe-peak element from both the Perseus

Cluster and the 44-object average.

Previous X-ray studies of clusters and elliptical galaxies often obtained a supersolar Ni/Fe

ratio, leading the study authors to argue for differences in the nature of SNe Ia between the

early-type galaxies and the Milky Way3, 7–10. By contrast, optical spectra of old stars in early-type

galaxies indicate that the relative abundances among the Fe-peak elements are consistent with the

solar value (see yellow stars in Fig. 2)26. Our new X-ray measurement relieves this discrepancy

and strongly suggests that the average nature of SNe Ia is independent of the star formation history

of their host galaxies. This robust result, unaffected by complicated radiative transfer that may

lend uncertainty to optical studies, is obtained by an accurate determination of the Ni abundance

primarily based on the intensity of its resonance emission line that is easily resolved from the Fe

Heβ line and other weak emission of Fe XXIV and Fe XXV.

Since Cr and Mn abundances of individual objects were not constrained by the previous

XMM-Newton observations11, we cannot exclude the possibility that sample variance leads at

least in part to the discrepancy between the two studies. Nevertheless, we demonstrate in Methods

that high resolution spectroscopy is essential for robust measurements of these abundances. In

short, only the SXS can clearly separate the weak resonance lines from the continuum component,

enabling abundance measurements much less subject to systematic uncertainties in spectral

modeling. The high-resolution SXS data have also stimulated the development of atomic models,

reducing the uncertainties in the modeled line emissivities and improving the accuracy of the
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abundances with respect to the previous work.

Fig. 3 compares the SXS-measured abundances of the Fe-peak elements (black data points)

with theoretical yields from the latest three-dimensional calculations of the near-MCh SN Ia12 (blue

region) and sub-MCh merger13 (green region). We also consider a one-dimensional explosion of

a single 1.0M⊙ WD14 (gray region) as an alternative example of a sub-MCh SN Ia model. All

of these models predict typical SN Ia brightness and a synthesized 56Ni mass of ∼ 0.6M⊙. In

addition, contributions of core-collapse (CC) SNe are accounted for in each model given in the

figure, utilizing mass-dependent yields27 averaged over the Salpeter initial mass function (IMF).

We allow a conservatively wide range for the CC SN fraction, fCC ≡ NCC/(NIa+NCC) = 0.6–0.9

(typical for cluster cores9, 19, 28, 29), instead of constraining an actual value from our observation

(see Methods for more details). As expected, the near-MCh model predicts higher abundances of

Mn and Ni owing to the efficient electron capture. The observed abundance pattern disfavors a

hypothesis that all SNe Ia involve sub-MCh WD, and prefers the combination of the near-MCh

and sub-MCh SNe Ia with roughly equal numbers (red region in the figure). We also find that

our result starkly contrasts with previous claims3, 7, where introduction of rather non-standard

full-deflagration SN Ia models was required to understand a Ni/Fe ratio that was estimated to

be much higher than our measurement. In Methods, we investigate other current SN Ia and CC

models and find that our main conclusion remains valid, although an exact ratio of near-MCh to

sub-MCh contributions may depend on the model details.

The Hitomi SXS observation has demonstrated the power of high-resolution X-ray

spectroscopy: through measurement of the chemical enrichment of a single object, new insight has

been gained into fundamental phenomena shaping the present-day universe. A common abundance

pattern between the solar neighborhood and the Perseus Cluster suggests that the Sun’s chemical

composition is likely to be a good indicator of the average SN Ia nature in the universe. It is

extremely important to scrutinize other environments like outskirts of galaxy clusters30 at high

spectral resolution, a task left for future X-ray observatories.
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2. Finoguenov, A., Matsushita, K., Böhringer, H., Ikebe, Y. & Arnaud, M. X-ray evidence for

spectroscopic diversity of type Ia supernovae:. XMM observation of the elemental abundance

pattern in M 87. Astron. Astrophys. 381, 21–31 (2002).

3. Mernier, F. et al. Origin of central abundances in the hot intra-cluster medium. II. Chemical

enrichment and supernova yield models. Astron. Astrophys. 595, A126 (2016).

4. Maeda, K. et al. Nebular Spectra and Explosion Asymmetry of Type Ia Supernovae.

Astrophys. J. 708, 1703–1715 (2010).

5. Seitenzahl, I. R., Cescutti, G., Röpke, F. K., Ruiter, A. J. & Pakmor, R. Solar abundance

of manganese: a case for near Chandrasekhar-mass Type Ia supernova progenitors. Astron.

Astrophys. 559, L5 (2013).

6. Yamaguchi, H. et al. A Chandrasekhar Mass Progenitor for the Type Ia Supernova Remnant

3C 397 from the Enhanced Abundances of Nickel and Manganese. Astrophys. J. Lett. 801,

L31 (2015).

7. Dupke, R. A. & White, R. E., III. Constraints on Type IA Supernova Models from X-Ray

Spectra of Galaxy Clusters. Astrophys. J. 528, 139–144 (2000).

8. Gastaldello, F. & Molendi, S. Ni Abundance in the Core of the Perseus Cluster: An Answer

to the Significance of Resonant Scattering. Astrophys. J. 600, 670–680 (2004).

9. de Plaa, J. et al. Constraining supernova models using the hot gas in clusters of galaxies.

Astron. Astrophys. 465, 345–355 (2007).

10. de Grandi, S. & Molendi, S. Metal abundances in the cool cores of galaxy clusters. Astron.

Astrophys. 508, 565–574 (2009).

11. Mernier, F. et al. Origin of central abundances in the hot intra-cluster medium. I. Individual

and average abundance ratios from XMM-Newton EPIC. Astron. Astrophys. 592, A157

(2016).

12. Seitenzahl, I. R. et al. Three-dimensional delayed-detonation models with nucleosynthesis for

Type Ia supernovae. Mon. Not. R. Astron. Soc. 429, 1156–1172 (2013).

5



13. Pakmor, R. et al. Normal Type Ia Supernovae from Violent Mergers of White Dwarf Binaries.

Astrophys. J. Lett. 747, L10 (2012).

14. Woosley, S. E. & Kasen, D. Sub-Chandrasekhar Mass Models for Supernovae. Astrophys. J.

734, 38 (2011).

15. Scalzo, R. A., Ruiter, A. J. & Sim, S. A. The ejected mass distribution of Type Ia supernovae:

a significant rate of non-Chandrasekhar-mass progenitors. Mon. Not. R. Astron. Soc. 445,

2535–2544 (2014).

16. Blondin, S., Dessart, L., Hillier, D. J. & Khokhlov, A. M. Evidence for

sub-Chandrasekhar-mass progenitors of Type Ia supernovae at the faint end of the

width-luminosity relation. Mon. Not. R. Astron. Soc. 470, 157–165 (2017).

17. Hitomi Collaboration. The quiescent intracluster medium in the core of the Perseus cluster.

Nature 535, 117–121 (2016).

18. Loewenstein, M. & Mushotzky, R. F. Measurement of the Elemental Abundances in Four

Rich Clusters of Galaxies. II. The Initial Mass Function and Mass Loss in Elliptical Galaxies,

Enrichment, and Energetics in the ICM. Astrophys. J. 466, 695 (1996).

19. Matsushita, K., Sakuma, E., Sasaki, T., Sato, K. & Simionescu, A. Metal-mass-to-light Ratios

of the Perseus Cluster Out to the Virial Radius. Astrophys. J. 764, 147 (2013).

20. Riess, A. G. et al. Observational Evidence from Supernovae for an Accelerating Universe and

a Cosmological Constant. Astron. J. 116, 1009–1038 (1998).

21. Perlmutter, S. et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys.

J. 517, 565–586 (1999).

22. Whelan, J. & Iben, I., Jr. Binaries and Supernovae of Type I. Astrophys. J. 186, 1007–1014

(1973).

23. Webbink, R. F. Double white dwarfs as progenitors of R Coronae Borealis stars and Type I

supernovae. Astrophys. J. 277, 355–360 (1984).

24. Sim, S. A. et al. Detonations in Sub-Chandrasekhar-mass C+O White Dwarfs. Astrophys. J.

Lett. 714, L52–L57 (2010).

25. Lodders, K., Palme, H. & Gail, H.-P. Abundances of the Elements in the Solar System. Landolt

Börnstein (2009).

6



26. Conroy, C., Graves, G. J. & van Dokkum, P. G. Early-type Galaxy Archeology: Ages,

Abundance Ratios, and Effective Temperatures from Full-spectrum Fitting. Astrophys. J. 780,

33 (2014).

27. Nomoto, K., Kobayashi, C. & Tominaga, N. Nucleosynthesis in Stars and the Chemical

Enrichment of Galaxies. Annual Rev. Astron. Astrophys. 51, 457–509 (2013).

28. Sato, K. et al. Type Ia and II Supernovae Contributions to Metal Enrichment in the Intracluster

Medium Observed with Suzaku. Astrophys. J. Lett. 667, L41–L44 (2007).

29. Bulbul, E., Smith, R. K. & Loewenstein, M. A New Method to Constrain Supernova Fractions

Using X-Ray Observations of Clusters of Galaxies. Astrophys. J. 753, 54 (2012).

30. Werner, N., Urban, O., Simionescu, A. & Allen, S. W. A uniform metal distribution in the

intergalactic medium of the Perseus cluster of galaxies. Nature 502, 656–658 (2013).

7



References for Methods

31. Eckart, M. E. et al. Ground calibration of the Astro-H (Hitomi) soft x-ray spectrometer. In

Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9905 of

Proc. SPIE, 99053W (2016).

32. Angelini, L. et al. Astro-H data analysis, processing and archive. In Space Telescopes and

Instrumentation 2016: Ultraviolet to Gamma Ray, vol. 9905 of Proc. SPIE, 990514 (2016).

33. Leutenegger, M. A. et al. In-flight verification of the calibration and performance of the

ASTRO-H (Hitomi) Soft X-Ray Spectrometer. In Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, vol. 9905 of Proc. SPIE, 99053U (2016).

34. Kelley, R. L. et al. The Astro-H high resolution soft x-ray spectrometer. In Society of

Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9905 of Proc. SPIE,

99050V (2016).

35. Porter, F. S. et al. In-flight performance of the Soft X-ray Spectrometer detector system on

Astro-H. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,

vol. 9905 of Proc. SPIE, 99050W (2016).
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Figure 1: The Hitomi/SXS spectra of the Perseus Cluster. (a) The spectrum (black) in the

1.8–9.0 keV band modeled with an optically thin thermal plasma based on the atomic code

AtomDB (red). The error bars are at a 1σ confidence level. The emission from NGC 1275 (AGN)

is indicated by the gray curve. The spectrum is rebinned by 4 eV for clarity, though 1-eV bins

were used for fitting. (b) The zoom-in spectrum in the 5.3–6.4 keV band, where the emission

from He-like Cr and Mn are detected. The red-shifted Fe I fluorescence from the AGN is resolved

as well. (c) The same in the 7.4–8.0 keV band, highlighting the Ni XXVII resonance (w) line

clearly separated from the stronger Fe XXV Heβ and other emission. This enables the first accurate

measurement of the Ni abundance in a galaxy cluster. For comparison, an XMM-Newton spectrum

extracted from the same spatial region is shown as the blue data points.
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Figure 2: Elemental abundances of the Perseus Cluster. The values are relative to the solar

abundances25 with respect to Fe. The red circles represent the SXS measurements with error bars

of typical statistical uncertainty at a 1σ confidence level (thick magenta) and systematic uncertainty

due to the model selection (thin black: see Methods for details). The blue triangles and squares

represent the XMM-Newton results from the Perseus Cluster core and the integrated data of 44

objects, respectively11. The yellow stars show the optical measurements of stellar abundances in

early-type galaxies from the Sloan Digital Sky Survey26, where velocity dispersion dependence

and systematic errors of 0.05 dex are taken into account in the error bars. Si is not shown because

its abundance is highly sensitive to the velocity dispersion. S and Ar abundances are unavailable

in the optical study.
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Figure 3: Comparison between the observed abundances and theoretical calculations for

the Fe-peak elements. The black data points are identical to the red circles in Fig. 2, the

SXS-measured abundance ratios relative to the solar abundances25. The error bars include

both statistical uncertainty at a 1σ confidence level and systematic uncertainty. The magenta

arrows indicate the 1σ lower limit of the XMM-Newton measurements for the 44 objects11.

The blue, green, and gray regions represent the theoretical predictions for SNe Ia from the

near-MCh delayed-detonation explosion12, sub-MCh violent merger13, and single sub-MCh WD14,

respectively. In each model, contributions from CC SNe27 are also taken into account (see text).

The red region assumes equal contributions of the near-MCh SNe Ia and sub-MCh violent mergers,

providing a reasonable fit to the data (although the exact ratio between the two SN Ia types is

subject to some uncertainties in the model details).
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Methods

Observations and Data Reduction: The Hitomi observations of the Perseus Cluster core were

performed using the SXS in the sequences summarized in Extended Data Table 1. The SXS field

of view (FoV) of each sequence is indicated in Extended Data Figure 1. The data from the first four

sequences, whose aim points were almost identical, were used in our previous work as well17. The

spacecraft attitude was slightly different for the last sequence, so that the nucleus of NGC 1275

was observed using the central pixels of the SXS. The aperture window consisting of a 262-µm

Be filter and several contaminant materials 31 was not opened before the loss of the mission. This

filter significantly attenuated the SXS effective area especially in the soft X-ray band, limiting the

SXS bandpass to above ∼ 1.8 keV.

The data reduction was made with public tools provided by NASA’s HEASARC. We used

cleaned event data of the latest release version with the standard screening for the post-pipeline

processes32. The spectral analysis was performed using only GRADE Hp (high-resolution

primary) events that have the best energy resolution. The redistribution matrix file (RMF) was

generated with the extra-large size option, which accounts for all components of the line spread

function, including the main peak, low-energy exponential tail, escape peaks, and electron-loss

continuum31, 33. The full width at half maximum (FWHM) of the main-peak component was

measured to be 4.9 eV for the 55Fe calibration source34, 35.

Additional Gain Correction: Because of the short life of the mission, opportunities for onboard

calibration were limited. This caused some uncertainty in the detector gain (pulse height–energy

conversion factors), particularly at the energies far from the Mn Kα calibration lines at 5.9 keV (in

a calibration pixel irradiated by a 55Fe source). We thus applied the following gain calibration and

correction using the Perseus data themselves.

First, we model the Fe Heα complex with an ionization equilibrium plasma for each pixel in

each sequence (combining the second through fourth sequences in Extended Data Table 1, since

these were parts of a continuous observation with almost identical instrumental conditions), and

scaled the spectrum with a linear function such that the Fe Heα energies match the theoretical

values at the redshift of NGC 1275 (z = 0.01756)36. We then merged the data of all the pixels

and measured the X-ray energies of detected lines. The differences between the measured and

theoretical energies are plotted in Extended Data Figure 2. The discrepancy, while small, increases

toward lower and higher energies with respect to the calibration source line (i.e., 5.9 keV). We

empirically fit these plots with a parabolic function, and then updated the pulse invariant spectral

channel of each detected event using the derived coefficients. Readers are cautioned that this
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empirical correction should not be used outside of the range of the fit; in particular, the actual

gain error must be almost zero at the energies near 0 eV. The data from all sequences were then

combined to increase the photon statistics. Hereafter, we use this merged, gain-corrected spectrum.

We also appropriately took into account the off-axis effective area of the Soft X-ray Telescope

(SXT) 37, when generating the telescope response for the merged data.

Spectral Analysis: We analyzed the SXS spectrum in the 1.8–9.0 keV band with an energy

bin size of 1 eV. The spectral fitting was made using the C statistic38 without subtracting any

background component, since its level is negligibly low (∼ 7 × 10−4 counts s−1 keV−1 for the

entire field of view), with even its strongest emission lines well below the source flux in the 1.8–9.0

keV energy band. In fact, no significant change in the spectral parameters is found, if we fit the

source spectrum by simultaneously modeling the instrumental background data extracted from

the night-Earth observations. The cosmic X-ray background is also negligible at this cluster core

region; well below 1% of the source emission over the entire energy band39.

We fit the spectrum of the Perseus Cluster with a single-temperature optically thin thermal

plasma model (bvvapec model in the XSPEC package) based on the latest version of the atomic

database, AtomDB v.3.0.840. The fitted parameters included the electron temperature (kTe),

redshift (z), turbulence velocity (vt), emission measure, and the elemental abundances of Si, S,

Ar, Ca, Cr, Mn, Fe, and Ni relative to the solar values (Extended Data Table 2)25. We included a

power-law component and redshifted lines of Fe I Kα fluorescence (6.4 keV at the rest frame) to

account for the emission from the AGN of NGC 127541. The photon index and flux of the power

law component were determined to be Γ ≈ 1.9 and F2−10 keV ≈ 3 × 10−11 erg s−1 cm−2 using an

AGN-dominated spectrum derived by SXS image analysis decomposing AGN and ICM emissions,

and fixed to these values in the analysis of the ICM spectrum (Fig. 1) that was extracted from the

entire SXS array. A foreground absorption column (NH) was fixed at 1.38 × 1021 cm−2 42. The

possible effect of resonance scattering (RS)17, 43 was accounted by adding a Gaussian at the energy

of the Fe XXV resonance line with a negative flux. Weak 55Fe calibration source leakage events

were taken into account by adding narrow Gaussians at the theoretical energies of the Mn Kα lines,

although this has no impact on our analysis results. With this model (hereafter “Model A1”), we

obtained best-fit values of kTe = 3.97 ± 0.02 keV and the absolute Fe abundance (i.e., the Fe/H

number ratio relative to the solar values) of 0.63 ± 0.01 solar, with a C-statistic and χ2 of 7483

and 7862, respectively (7180 degrees of freedom). The relative abundances of the other elements

(with respect to Fe) are shown in Extended Data Figure 3. Note that the uncertainty in our gain

correction is less than 1 eV at energies near the Mn Kα calibration lines (Extended Data Figure 2),

and thus its effect is negligible for the determination of the Fe-peak element abundances.
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We carefully estimated systematic uncertainties in the measured abundances by introducing

different models and assumptions. First, we excluded the RS correction, i.e., the negative-flux

Fe XXV line (Model A2). This did not substantially change the relative abundances, confirming

suggestions in previous work on this object39, 41. We also fit the spectrum with two-temperature

models, with and without the RS effect (Models A3 and A4, respectively). In these models,

the parameters other than the temperatures and emission measures were linked between the two

components. We obtained best-fit temperatures of kTe1 = 4.04 ± 0.05 keV and kTe2 = 1.60

± 0.27 keV with 2–10-keV flux ratio (F1/F2) of 33.5 for Model A3, and similar values for

Model A4. This indicates that the 4-keV component dominates over the entire SXS band and

that the one-temperature modeling is already a good approximation for the observed region in this

bandpass, although the presence of a multi-temperature plasma was previously inferred for this

cluster43, 44. already a good approximation for the observed region in this bandpass, although the

presence of a multi-temperature plasma was previously inferred for this cluster43, 44. We also treated

the absorption columns and the AGN spectral index and flux as free parameters, and confirmed

no significant change in the relative abundances among the Fe-peak elements. Finally, we used

the SPEX atomic code v.3.0345 to fit the same spectral data with the same model components

and assumptions (Models S1–S4, equivalent to Models A1–A4, respectively). The measured

abundance ratios for each model are summarized in Extended Data Figure 3. The ranges between

the minimum and maximum values among Models A1–A4 and S1–S4 are given in Fig. 2 as the

uncertainty for the abundance of each element. The systematic uncertainties owing to the different

atomic codes and assumptions are larger than the statistical errors but reasonably small for most

of the elements. All the metal abundances are found to be fairly consistent with the solar values25.

There are no significant differences in abundances derived from analysis of a region excluding the

2′ × 2′ box centered on the AGN of NGC 1275.

We have found that the abundance ratios of Cr/Fe, Mn/Fe, and Ni/Fe are systematically

lower than those determined in recent XMM-Newton studies11. Because an old plasma model

(SPEX v.2.05) was used in this previous work, we also fit the SXS spectrum using that model for

direct comparison. The results from one- and two-temperature modeling with the RS correction

are given in Extended Data Figure 3 (Models S′1 and S′3, respectively) and Extended Data Figure

4 (red diamonds) with the combined uncertainty ranges. Cr and Mn abundances are not presented,

because the SPEX v.2.05 atomic code does not contain emission from these elements — in the

previous work, abundances of these elements were calculated by referring to emissivity data in an

early development version of SPEX v.3. The Ni abundance determined from this old atomic model

is slightly higher than from the latest one (SPEX v.3.03), but still lower than the XMM-Newton

results. In fact, there is little difference in the Ni-Heα emissivity itself between SPEX v.2.05 and
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v.3.03. We find significant differences between the two SPEX versions in the line emissivities of Fe

XXIV and Fe XXV complex at the rest frame energies of 7.6–7.9 keV. Given that these emission

cannot be separated from the Ni resonance line in CCD spectra, the Ni abundance might have been

biased in the previous measurements.

Since Cr and Mn are rarely detected from individual objects with CCD observations, it is

not obvious whether the supersolar abundances derived from the integrated XMM-Newton data

of the 44 objects are real or biased. On the other hand, Suzaku observations (with similar CCDs)

detected these elements from the same Perseus core region as in this work39. The Suzaku-measured

abundances, converted to the same scale using the up-to-date solar abundance table25, are compared

with the Hitomi and XMM-Newton results in Extended Data Figure 4 (green squares). This earlier

measurement of the Mn/Fe ratio is significantly lower than ours, further motivating the following

demonstration of the robustness of our measurements compared to that of CCD observations.

Extended Data Figure 5(a) shows the SXS spectrum near the Cr and Mn emission lines, of

which equivalent widths are only a few electron volts. The red line indicates our best-fit model

(Model A1) but with Cr and Mn abundances set to zero. As shown in the bottom panel of the

figure, the photon count ratios between the line peak and the local continuum level is ∼ 1.2 for

these weak emission lines in this high-resolution spectrum. Extended Data Figure 5(b) is a similar

plot but the spectrum is convolved to the resolution of CCDs using a representative XMM-Newton

response function. Unlike the SXS spectrum, the peak-to-continuum level ratios for the Cr and

Mn emission are extremely low (only a few percent above unity). Moreover, the emission lines no

longer have a sharp profile, implying the difficulty in separating lines from continuum. In fact, if

we fit this simulated CCD spectrum with a model with 1% higher/lower continuum normalization,

the line components with their broad profiles ‘compensate’ for the excess/lack of continuum flux by

requiring∼ 50% lower/higher values of the Cr/Fe and Mn/Fe abundance ratios. The high resolution

SXS spectrum is much less subject to such systematic uncertainties, since the line and continuum

intensities are measured almost independently and hence a slight over- or under-estimation of the

continuum level has little effect on the abundance measurement. This point is more quantitatively

illustrated in Extended Data Figure 6, the result of our test analysis.

Comparison with SN Nucleosynthesis Models: The measured abundances of the Fe-peak

elements are compared with theoretical predictions to address the nature of SNe Ia that likely

contributed to the chemical enrichment in the Perseus Cluster. As prototype SN Ia models, we

select the latest three-dimensional calculations “N100”12 and “1.1 0.9”13. The former assumes

a delayed-detonation explosion of a near-MCh WD with 100 deflagration ignition sites. The

23



latter assumes the violent merger of two sub-MChWDs with masses of 1.1M⊙ and 0.9M⊙ and

subsequent full detonation of the primary (more massive) WD. Both models successfully replicate

typical observables of SNe Ia, including the average maximum brightness and synthesized 56Ni

mass of ∼ 0.6M⊙. The pre-explosion WD is composed of 47.5% 12C, 50% 16O, and 2.5% 22Ne

by mass, which corresponds to nearly solar metallicity for the progenitor. As another example of

a sub-MCh explosion, we choose the “10HC” model14, which assumes an explosion of a single

C–O WD with a mass of 1.0M⊙ accreting helium at a rate Ṁ = 4.0 × 10−8M⊙ yr−1. An initial

detonation ignited at the helium layer triggers a second detonation in the CO core, resulting in a

complete explosion of the WD with a kinetic energy of 1.2×1051 erg and 56Ni mass of ∼ 0.64M⊙,

as typically inferred for SNe Ia.

To account for the CC SN contributions, we consider mass-dependent yields27 weighted by

the Salpeter IMF (α = 2.35), with the assumption that 50% of ≥ 25M⊙ massive stars explode

as hypernovae. Since SNe Ia efficiently produce Fe, whereas SNe CC dominate α-element

production, the SXS spectra we extracted might be used to constrain the SN Ia/CC ratio in

the Perseus Cluster. However, we instead allow a conservatively wide range for the CC SN

fraction, fCC ≡ NCC/(NIa + NCC) = 0.6–0.92, 9, 19, 28, 29, 46, 47, rather than determining the actual

fCC value. This choice was made because (1) the lighter elements that are most sensitive to fCC

(i.e., O, Ne, Mg) were not detected due to the attenuation of soft X-rays by the closed aperture

window; (2) the measured abundances of the intermediate α-burning elements, unlike those of the

Fe-peak elements, are dominated by systematic, rather than the statistical, uncertainties (Extended

Data Figure 3); and (3) the primary origins of Ar and Ca is currently under debate3, 48. Future

high-resolution X-ray spectroscopy with sensitivity to softer X-rays will improve the accuracy of

the abundances of the lighter elements, as well as of the ICM spectral model, hence enabling

better constrains on the SN Ia/CC ratio. We emphasize that, in contrast to the intermediate

α-burning elements, the abundances of the Fe-peak elements are robustly determined with little

model dependency (Extended Data Figure 3). As a result, the main conclusions of this paper are

not affected by any of the issues described above.

The abundance ratios predicted by the model calculations are given in Fig. 3. Because of the

efficient electron capture as well as the low entropy freeze-out from nuclear statistical equilibrium5,

higher abundances of Mn and Ni are expected in the near-MCh SNe Ia. We also test other

combinations of SN models as well as different IMF slopes (for CC SNe). Extended Data Table

3 summarizes the mass ratios among the Fe-peak elements and Fe yields (in M⊙) predicted by

the various SN Ia models we investigated4, 6, 12–14, 49–53. Since this paper exclusively discusses the

products of electron capture, we consider only recent calculations that were based on up-to-date
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weak interaction rates54. For CC SN models, we use different IMF slopes (α = 2.0 and 2.7)

and assume that all 10–50M⊙ stars explode as normal SNe without any hypernova contribution.

These results are summarized in Extended Data Table 4. We reach essentially the same conclusion

described in the main text, i.e., higher mass ratios of Mn/Fe and Ni/Fe are always expected from

near-MCh SNe Ia (Extended Data Table 3), and a combination of near-MCh and sub-MCh SNe

Ia naturally explains the observed abundance pattern of the Fe-peak elements independently of

contributions from CC SNe (Extended Data Table 4).

Data and Code Availability: The observational data analysed during the current study are

available in NASA’s HEASARC repository (https://heasarc.gsfc.nasa.gov). The atomic codes

utilized in this study are also available online (AtomDB: http://www.atomdb.org/, SPEX:

https://www.sron.nl/astrophysics-spex).
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Extended Data Figure 1: The SXS FoV overlaid on a Chandra image. The corresponding

Sequence IDs of the Hitomi observations are given. Each side of the SXS has an angular size

of 3′ (≈ 64 kpc).
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Extended Data Figure 2: Additional gain correction. The data points indicate the difference

between the measured and theoretical energies (∆E = E ′ − E0, where E ′ and E0 are measured

and theoretical energies, respectively) of each detected line at the given X-ray energy. The best-fit

parabolic functions are given as the solid curves. The error bars correspond to the 1σ confidence

level. Panels (a), (b), and (c) are the results from Sequence 100040020, 100040030–50 (combined),

and 100040060, respectively.

26



0
.6

0
.8

1
1

.2
1

.4

a
b

u
n

d
a

n
c
e

 r
a

ti
o

 (
X

/F
e

)

model number

Si/Fe S/Fe

A1 A2 A3 A4 S1 S2 S3 S’1 S’3S4 A1 A2 A3 A4 S1 S2 S3 S4

A1 A2 A3 A4 S1 S2 S3 S4 A1 A2 A3 A4 S1 S2 S3 S4

A1 A2 A3 A4 S1 S2 S3 S4 A1 A2 A3 A4 S1 S2 S3 S4 A1 A2 A3 A4 S1 S2 S3 S4

Ar/Fe Ca/Fe

Cr/Fe Mn/Fe Ni/Fe

S’1 S’3

S’1 S’3 S’1 S’3

S’1 S’3

0
.6

0
.8

1
1

.2
1

.4

a
b

u
n

d
a

n
c
e

 r
a

ti
o

 (
X

/F
e

)

0
.6

0
.8

1
1

.2
1

.4

a
b

u
n

d
a

n
c
e

 r
a

ti
o

 (
X

/F
e

)

Extended Data Figure 3: Elemental abundances measured with different model assumptions.

“A” and “S” indicate the results for the atomic codes AtomDB v.3.0.8 and SPEX v.3.03,

respectively; “S′” an old atomic model (SPEX v.2.05 that does not contain Cr and Mn line

data). Numerical designations are as follows. 1: one-temperature fit with the Fe XXV RS

effect. 2: one-temperature fit without the RS effect. 3: two-temperature fit with the RS effect.

4: two-temperature fit without the RS effect. The error bars are at a 1σ confidence level.
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Extended Data Figure 4: Elemental abundances of the Perseus Cluster core compared among

X-ray measurements. The values are relative to the solar abundances25 with respect to Fe. The

red circles are identical to those in Fig. 2 (in main body), representing the SXS measurements

with error bars including both 1σ statistical uncertainty and systematic uncertainty. The red

diamonds are the SXS measurement with an outdated atomic model that was used in the previous

XMM-Newton results. The blue triangles represent the XMM-Newton results11, identical to those

in Fig. 2. The green squares are abundances obtained by Suzaku observations of the innermost 2′

region of the Perseus Cluster39 but are converted relative to the updated solar abundance table25 for

direct comparison with the other measurements. The error bars are also converted to the statistical

uncertainty at a 1σ confidence level.
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Extended Data Figure 5: Weak emission lines at different energy resolutions. (a) SXS spectrum

of the Perseus Cluster around the Cr and Mn emission. The red line is the best-fit model (Model

A1) but the Cr and Mn abundances are set to zero. The bottom panel shows the ratio between the

data and model. The error bars correspond to the 1σ confidence level. (b) Simulated spectrum at

the energy resolution of the XMM-Newton MOS1 detector (representative of CCD data), where

the best-fit model for the SXS data and sufficiently long exposure time (4 Ms) are assumed. This

comparison demonstrates the robustness of our measurements of the weak emission lines with high

resolution spectroscopy (see Methods for details).
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Extended Data Figure 6: Effect of potential bias in the continuum level estimate on the

abundance measurement using weak emission lines. (a) Abundances of Cr (red), Mn (blue), and

Fe (black) determined by intentionally giving a small offset to the continuum normalization (within

± 3% of the measured value). The solid and dashed lines are obtained from our test analysis of

the simulated CCD spectrum (Extended Data Figure 5(b)) and the Hitomi spectrum, respectively.

This illustrates that the CCD measurement of Cr and Mn abundances is sensitive to the accuracy

of the continuum level determination because of the weakness of the emission and the low spectral

resolution. The Fe abundance is less subject to such uncertainty even in the CCD measurement

owing to the much larger equivalent width of the emission. (b) Abundance ratios of Cr/Fe (red)

and Mn/Fe (blue) calculated using the values in panel (a) as a function of offset in the continuum

level.
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Sequence ID Observation Start Time Pointing R.A. 

(deg) 

Pointing Dec. 

(deg) 

Exposure 

Time (ks) 

100040020 2016-02-25 02:14:12 49.9316 41.5194 97.44 

100040030 2016-03-04 02:17:32 49.9324 41.5201 72.51 

100040040 2016-03-05 12:00:15 49.9321 41.5199 68.13 

100040050 2016-03-06 19:37:59 49.9323 41.5215 5.45 

100040060 2016-03-06 22:56:19 49.9510 41.5123 45.79 

Total    289.32 

Extended Data Table 1: Summary of the observations. Sequences 100040030, 40, and 50 are

continuous observations, and separated just for the data processing reason.

Element Relative Number 

H 1.00 

He 9.71  10
-2

 

Si 3.85  10
-5

 

S 1.62  10
-5

 

Ar 3.57  10
-6

 

Ca 2.33  10
-6

 

Cr 5.05  10
-6

 

Mn 3.56  10
-6

 

Fe 3.27  10
-5

 

Ni 1.89  10
-6

 

Extended Data Table 2: Solar abundance table25 referred in this work.
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Model Cr/Fe Mn/Fe Ni/Fe Fe mass 

(M ) 

Reference 

Near-MCh SN Ia models 

N40 0.012 0.016 0.095 0.78 12 

N100 0.014 0.018 0.10 0.74 12 

N150 0.015 0.020 0.11 0.71 12 

N40def 0.0092 0.022 0.14 0.44 49 

N100def 0.0094 0.022 0.14 0.47 49 

N150def 0.0094 0.022 0.14 0.50 49 

W7 0.0069 0.0088 0.16 0.76 4 

CDEF 0.0092 0.019 0.22 0.39 4 

CDDT 0.0098 0.017 0.21 0.36 4 

ODDT 0.016 0.011 0.12 0.65 4 

c3_2d_512 0.0078 0.018 0.22 0.32 50 

c3_2d_256 0.0084 0.015 0.21 0.41 50 

c3_3d_256 0.0082 0.013 0.20 0.41 50 

b5_3d_256 0.011 0.011 0.16 0.40 50 

b30_3d_768 0.0060 0.012 0.20 0.53 50 

DDTa 0.019 0.020 0.099 0.72 51 

Sub-MCh SN Ia models 

1.1_0.9 0.011 0.0059 0.050 0.65 13 

10HC 0.012 0.0023 0.032 0.63 14 

10HCD 0.028 0.0034 0.037 0.61 14 

10HD 0.018 0.0025 0.041 0.65 14 

11HD 0.0076 0.0014 0.038 0.76 14 

10B 0.017 0.0022 0.039 0.73 14 

10C 0.014 0.0021 0.044 0.69 14 

10D 0.0098 0.0017 0.046 0.74 14 

9B 0.026 0.0034 0.050 0.61 14 

9C 0.021 0.0028 0.040 0.64 14 

9D 0.018 0.0024 0.044 0.66 14 

1.06M  0.031 0.0059 0.059 0.76 6 (52) 

0.97M  0.013 0.0092 0.051 0.58 6 (52) 

0.8M  + 0.6M  0.017 0.0027 0.019 0.41 53 

Extended Data Table 3: Mass ratios among the Fe-peak elements in SN Ia models.
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Near-MCh  Sub-MCh  CC IMF fCC fMCh
 fFe,Ia Cr/Fe Mn/Fe Ni/Fe 

Near-MCh SNe Ia only 

N100 –  SN+HN 2.35 0.60 1.0 0.85 0.98 1.51 1.54 

N100 –  SN+HN 2.35 0.90 1.0 0.49 1.00 1.08 1.23 

N100 –  SN+HN 2.0 0.60 1.0 0.84 0.99 1.50 1.54 

N100 –  SN+HN 2.0 0.90 1.0 0.47 1.04 1.07 1.23 

N100 –  SN+HN 2.7 0.60 1.0 0.86 0.97 1.52 1.55 

N100 –  SN+HN 2.7 0.90 1.0 0.50 0.98 1.10 1.24 

N100 –  SN only 2.35 0.60 1.0 0.87 1.01 1.54 1.54 

N100 –  SN only 2.35 0.90 1.0 0.52 1.14 1.17 1.21 

Sub-MCh SNe Ia only 

–  1.1_0.9 SN+HN 2.35 0.60 0.0 0.83 0.81 0.55 0.83 

–  1.1_0.9 SN+HN 2.35 0.90 0.0 0.45 0.92 0.53 0.83 

–  1.1_0.9 SN+HN 2.0 0.60 0.0 0.82 0.82 0.55 0.84 

–  1.1_0.9 SN+HN 2.0 0.90 0.0 0.44 0.95 0.54 0.84 

–  1.1_0.9 SN+HN 2.7 0.60 0.0 0.84 0.80 0.54 0.83 

–  1.1_0.9 SN+HN 2.7 0.90 0.0 0.47 0.89 0.53 0.82 

–  1.1_0.9 SN only 2.35 0.60 0.0 0.85 0.85 0.56 0.82 

–  1.1_0.9 SN only 2.35 0.90 0.0 0.48 1.05 0.59 0.77 

–  10HC SN+HN 2.35 0.60 0.0 0.83 0.86 0.27 0.59 

–  10HC SN+HN 2.35 0.90 0.0 0.45 0.95 0.38 0.69 

–  10HC SN+HN 2.0 0.60 0.0 0.82 0.88 0.27 0.59 

–  10HC SN+HN 2.0 0.90 0.0 0.43 0.98 0.39 0.71 

–  10HC SN+HN 2.7 0.60 0.0 0.84 0.85 0.26 0.58 

–  10HC SN+HN 2.7 0.90 0.0 0.46 0.92 0.37 0.68 

–  10HC SN only 2.35 0.60 0.0 0.85 0.90 0.28 0.57 

–  10HC SN only 2.35 0.90 0.0 0.48 1.09 0.43 0.63 

Both contributions of near- and sub-MCh SNe Ia 

N100 1.1_0.9 SN+HN 2.35 0.60 0.5 0.84 0.90 1.05 1.21 

N100 1.1_0.9 SN+HN 2.35 0.90 0.5 0.47 0.96 0.81 1.04 

N100 1.1_0.9 SN only 2.35 0.60 0.5 0.86 0.94 1.08 1.20 

N100 1.1_0.9 SN only 2.35 0.90 0.5 0.50 1.10 0.89 1.00 

N100 10HC SN+HN 2.35 0.60 0.5 0.84 0.92 0.93 1.10 

N100 10HC SN+HN 2.35 0.90 0.5 0.47 0.98 0.74 0.97 

N100 10HC SN only 2.35 0.60 0.5 0.86 0.96 0.95 1.09 

N100 10HC SN only 2.35 0.90 0.5 0.50 1.11 0.81 0.93 

Extended Data Table 4: Example calculations of SN nucleosynthesis models for comparison

with the observation. The first three columns indicate the name and/or combination of SN

models, and the fourth column the assumed index of the IMF. fCC, fMch
, are fFe,Ia the number

fraction of CC SNe: NCC/(NIa +NCC), the number fraction of near-MCh SNe Ia among the total

number of SNe Ia: NMch
/NIa, and the mass fraction of Fe originating from SNe Ia, respectively.

The remaining columns indicate abundance ratios relative to the solar values25.
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