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ABSTRACT 

Hourly solar and photovoltaic (PV) forecasts for horizons between 0 and 48 hours ahead 

were developed using Environment Canada’s Global Environmental Multiscale (GEM) 

model. The motivation for this research was to explore PV forecasting in Ontario, Canada 

where feed-in tariffs are driving rapid growth in installed PV capacity. The solar and PV 

forecasts were compared to irradiance data from 10 North American ground stations and 

to AC power data from 3 Canadian PV systems. A one year period was used to train the 

forecasts and the following year was used for testing. Two post-processing methods were 

applied to the solar forecasts: spatial averaging and bias removal using a Kalman filter. 

On average, these two methods lead to a 43% reduction in RMSE over a persistence 

forecast (skill score = 0.67) and to a 15% reduction in RMSE over the GEM forecasts 

without post-processing (skill score = 0.28). Bias removal was primarily useful when 

considering a « regional » forecast for the average irradiance of the 10 ground stations, 

since bias was a more significant fraction of RMSE in this case. PV forecast accuracy 

was influenced mainly by the underlying (horizontal) solar forecast accuracy, with RMSE 

ranging from 6.4 to 9.2% of rated power for the individual PV systems. About 76% of the 

PV forecast errors were within +-5% of the rated power for the individual systems, but 

the largest errors reached up to 44 to 57% of rated power. 

 

1. INTRODUCTION 

In order to integrate large amounts of intermittent renewable generation reliably and cost-

effectively into electricity grids, system operators need both to understand the variability 

of these generators and to be able to forecast this variability at different spatial and 

temporal scales. While the timescales relevant for forecasting vary, most system 

operators use a day-ahead commitment process to commit generators to meet the next 

day’s forecasted load. Moving closer to real time, updated conditions and forecasts are 

used to dispatch generators, secure reserves and lock in imports and exports. Meanwhile, 

the geographic area of interest for forecasting can vary from a large area over which 
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electricity supply and demand must be balanced to a much smaller region where grid 

congestion must be managed. 

The motivation for the research presented here was the introduction of feed-in tariffs in 

the province of Ontario, Canada [1] which lead to a rapid increase in the contracted and 

installed capacity of photovoltaics and other renewables in Ontario. The Ontario 

Independent Electricity System Operator (IESO) recently put forward a call for proposals 

to develop centralized wind forecasting for the province, which has an installed wind 

capacity of over 1.1 GW and a peak load of about 27 GW. Meanwhile, contracts for over 

1 GW of PV systems have been offered under the Feed-In Tariff Program [1] and PV 

forecasting implementation should begin once installed PV capacity becomes comparable 

to the (current) installed wind capacity. 

While many system operators around the world have implemented wind forecasting, solar 

forecasting is comparatively recent. One interesting implementation is taking place in 

Germany: at the end of 2008, two German transmission system operators with (at the 

time) 2.9 GW of installed PV corresponding to over 200 000 systems across their 

balancing areas mandated different forecast providers to implement and test PV forecasts 

for their balancing areas. The University of Oldenburg and Meteocontrol GmbH have 

reported results from their ongoing forecast evaluations in [2]. As in the case of wind 

forecasting, research from the University of Oldenburg shows that solar and PV forecast 

accuracy improves significantly as the size of the geographic area under consideration 

increases, with a reduction in root mean square error (RMSE) of about 64% for a forecast 

over an area the size of Germany as compared to a point forecast [3]. This effect was 

modelled in detail by Focken et al. [4] in the case of wind.  They showed that both the 

size of the geographic area and the number of stations or systems considered contributed 

to error reduction, with the reduction from an increased number of stations saturating 

beyond a certain threshold for a given geographic area. For both PV and wind 

forecasting, the most appropriate approach depends on the forecast horizon: for forecast 

horizons of about 0 to 6 hours ahead, methods based primarily on observations (from 

ground stations or satellites) tend to perform best, while for forecast horizons of about 6 

hours to a few days ahead global numerical weather prediction models become more 

accurate [5]. 

The approach described in this paper focuses on 0-48h ahead forecasts based on post-

processing of a global numerical weather prediction model, namely Environment 

Canada’s Global Environmental Multiscale (GEM) model. The GEM forecasts and the 

solar and PV data used for comparisons are described in Section 2, along with the quality 

check procedures that were applied to the data. Section 3 presents the post-processing 

(spatial averaging and Kalman filter) that was performed to improve the forecast 

accuracy. Section 4 examines the accuracy of the forecasts and the distribution of forecast 

errors, as well as the increase in forecast skill through post-processing; this is followed by 

concluding comments in Section 5. 

 



2. SOLAR FORECASTS AND DATA USED FOR FORECAST EVALUATION 

2.1 GEM weather forecasts 

Environment Canada’s Canadian Meteorological Centre operates a global numerical 

weather prediction model known as the Global Environmental Multiscale (GEM) model 

(see [6]). The model is run in different configurations, including a configuration known 

as the “high resolution regional run” which generates forecasts for horizons between 0 

and 48 hours ahead at a 7.5 minute timestep over a variable spatial resolution grid, with a 

spatial resolution reaching about 15 km at the grid centre, in Canada. Model runs are 

initiated up to four times a day, at 0 UTC, 6 UTC, 12 UTC and 18 UTC, and a subset of 

model outputs are made available online at timesteps of 3 hours or more [7].  For the 

purpose of this analysis, the Canadian Meteorological Centre de-archived past forecasts 

from the high resolution regional run at an hourly timestep over the 2 year period 

between April 1, 2007 and March 31, 2009 for several weather variables, including 

downward shortwave radiation flux at the surface (DSWRF), temperature at 2m above 

the surface (TMP) and total cloud cover (TCDC) [7]. The de-archived forecasts cover 

North America and adjacent waters. 

Only forecasts originating at 12 UTC were considered here, since these are the most 

relevant for day-ahead PV forecasting in Ontario: currently, generators (of 20 MW or 

more) are asked by the Ontario Independent Electricity System Operator (IESO) to 

produce forecasts by 11AM for each hour of the following day, which means that 12 

UTC (7AM EST in Ontario) forecasts are the most recent forecasts available prior to the 

11AM deadline. The day-ahead IESO forecast period corresponds to forecast horizons of 

17 to 41 hours ahead in the GEM 12 UTC forecast. Forecasts were provided in Grib1 

format, and were extracted for the variables and grid points of interest using the open 

source program read_grid [8] in Matlab.  

2.2 Ground station irradiance data and data quality check procedure 

The stations shown on the map in Figure 1 were selected to test the accuracy of the GEM 

regional solar forecasts. In Canada, the three stations selected measure direct, sky diffuse 

and global horizontal irradiance (GHI) each second, with one minute averages and 

standard deviations being recorded. These stations are operated by Environment Canada 

and by Natural Resources Canada, with stations being maintained on a daily basis. 

Similarly, the seven U.S. stations selected measure global horizontal, sky diffuse and 

direct irradiance every three minutes up to January 2009, and every minute after that. The 

seven U.S. stations comprise the U.S. Surface Radiation Budget (SURFRAD) network 

[9]. Along with the station at Bratt’s Lake, these are part of the Baseline Surface 

Radiation Network (BSRN), a worldwide network of research grade radiation 

measurement stations. 

Since solar forecasts were obtained on an hourly basis, the 1-3 minute ground station data 

was averaged hourly as well, and quality check procedures were applied to the hourly 

averages.  The quality check procedures that were applied are a subset of those described 

in tables 1 and 2 of [10]. Global horizontal irradiance values were excluded from the 

analysis when these were outside a physically plausible range. Similarly, data was 



dismissed if diffuse irradiance measurements were greater than global horizontal 

irradiance measurements by more than 5 or 10 % (depending on the zenith angle).  
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Figure 1: Map showing the location of the 3 Canadian and 7 US meteorological  

ground stations used in this analysis. 

 

2.3 Photovoltaic system data and data quality check procedure 

Table 1 shows key properties of the three PV systems that were used to test the PV 

forecasts. For simplicity, forecasts were generated for the hourly average AC power 

output of a single inverter, so in the case of the Exhibition Place and Varennes PV 

systems the data considered is from a single sub-array that is part of a larger PV system. 

The extent and quality of the monitoring is different for each of these systems, but all of 

them include sub-hourly monitoring of AC (and DC) power, which was used to generate 

hourly averaged values against which to verify the PV forecasts.  

Various quality check procedures were applied to the data, including flags corresponding 

to specific situations of interest: 

 When the AC power dropped to zero (or less) for an extended period while 

irradiance was non-zero, this was flagged as an outage.  

 Using Environment Canada’s Climate Data Online [11], days surrounding 

significant snowfall events at the ground station nearest to each PV system were 

singled out for further study. Visual inspection of the data was used to assign a 



tentative snow cover flag, with snow cover being flagged when a noticeable drop 

in the daily performance ratio coincided with snowfall. 

Days flagged for snow cover were included in the testing period, but the snow flags were 

used to determine the impact of these events on forecast accuracy. Meanwhile, outages 

were excluded from the PV forecast evaluation, to reflect the expectation that outages for 

well-monitored Megawatt scale systems or over ensembles of smaller, independent 

systems should be quite rare, and taken into account in the forecasting process when they 

do occur. 

Table 1: Key properties of the three Canadian PV systems used to test PV forecasts. 

Name of 
system or 
sub-array 

Location 
Rated power 
(DC STC) (kW) 

Module type  Mounting Orientation 

Varennes 
Varennes, 
Québec 

6.72 
Monocrystalline 

silicon 
Rack-mounted 

on rooftop 
South-facing, 

45° tilt 

Queen’s 
Kingston, 
Ontario 

19.8 
Polycrystalline 

silicon 
Rack-mounted 

on façade 
5° West of 

South, 70° tilt 

Exhibition 
Place 

Toronto, 
Ontario 

45.6 
Polycrystalline 

silicon 
Rack-mounted 

on rooftop 
20° East of 

South, 20° tilt 

 

3. SOLAR AND PV FORECAST DEVELOPMENT AND TESTING 

3.1 Forecast accuracy measures 

The accuracy measures used to evaluate load, wind and solar forecasts vary. Along with 

variations in forecast accuracy depending on the region, forecast horizon and evaluation 

period, this makes comparisons between forecasting methods challenging. Benchmarking 

of solar forecasts has been examined by the IEA SHC Task 36 on “Solar Resource 

Knowledge Management” and its sister project MESoR on “Management and 

Exploitation of Solar Resource Knowledge”, which have suggested guidelines for 

benchmarking and conducted comparisons of different solar forecast models against sets 

of common ground station data [5, 12].  Following [12], solar and PV forecast accuracy 

was assessed in terms of root mean square error (RMSE), mean absolute error (MAE) 

and mean bias error (MBE or bias) which are defined here as: 
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where xpred,i and xobs,i represent the i
th

 valid forecast and observation pair, respectively, 

and where the sums are carried out over all n such pairs within the one year testing period 

from April 1, 2008 to March 31, 2009. Unless stated otherwise, these accuracy measures 

were computed over the entire 0 to 48 hour forecast period. For solar forecasts, 

evaluation was restricted to daylight hours since forecasting irradiance at night is trivial. 

Meanwhile, for PV forecasts, evaluation was conducted over all hours of the day since 

forecast operators require forecasting from generators at all times (and since some PV 

system inverters may consume small amounts of power from the grid at night).  

As the above definitions indicate, RMSE gives more weight to large errors, while MAE 

reveals the average magnitude of the error and bias indicates whether there is a 

significant (and corrigible) tendency to systematically over- or under-forecast. When 

comparing between different models in the training year, RMSE was used as the metric 

to minimize, i.e. forecasts were trained with the goal of reducing the largest errors.  

In order to facilitate comparisons, these different accuracy measures will be quoted in this 

paper both in terms of absolute values and as percentages of a reference value: the mean 

irradiance for solar forecasts, and the DC STC array rating for PV forecasts.  Finally, as 

detailed in 3.2.3 and 3.3.2, forecasts will also be benchmarked with respect to different 

reference models in terms of their MSE skill score, which is defined as: 

reference

forecastreference

MSE

MSEMSE
scoreskill


  (4) 

The skill score indicates the fractional improvement in the mean square error over a 

reference model: a skill score of 1 indicates a perfect forecast, a score of 0 indicates no 

improvement over the reference and a negative skill means that the forecast model tested 

performs worse than the reference.  

 

3.2 Post-processing and benchmarking of the irradiance forecasts 

3.2.1 Spatial averaging 

As mentioned in Section 2.1, 0-48 h ahead forecasts of instantaneous downward 

shortwave solar flux (DSWRF) were extracted for grid points around each location of 

interest. In order to generate forecasts of hourly averaged global horizontal irradiance 

(aka GHI or solar forecasts), the DSWRF forecasts at the beginning and end of each hour 

were simply averaged.  

Following Lorenz et al. [2], two types of post-processing were applied to the irradiance 

forecasts, namely spatial averaging and bias removal. As noted in [12], spatial averaging 

of irradiance forecasts can lead to improved forecast accuracy by smoothing the 

variations due to changing cloud cover which are difficult to pinpoint at the ~15 km scale 

associated with a single grid square. Spatial averaging was tested for each of the 10 

ground stations by considering the average of the irradiance forecasts over a square grid 



centered around each station and containing N by N grid squares with N = 1, …, 51 

during the one year « training » period
1
. 

As shown in Figure 2, the forecast root mean square error (RMSE) decreased with spatial 

averaging for all stations, with optimum values of N in the range of 25 to 35 for most 

stations, with the notable exception of Boulder, Colorado which is located in a 

mountainous area with strong microclimatic effects. These values of N correspond to 

regions of about 300 km by 300 km up to 600 km by 600 km, which is larger than the 

roughly 100 km by 100 km region that was found to be optimal by Lorenz et al. [2] in 

spatial averaging of ECMWF forecasts to derive irradiance forecasts. 

The spatially averaged forecasts with N optimized for each station were used as the 

starting point for the bias removal described in 3.2.2. They were also used to generate a 

« regional » irradiance forecast for the average irradiance over the 10 stations, which was 

simply obtained by taking an average of the individual, spatially averaged forecasts for 

each station. 
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Figure 2: Root mean square error of hourly forecasts over a one year period for each station vs. the 

size of the region (N by N grid squares) over which irradiance forecasts were averaged. 

 

3.2.2 Bias removal using a Kalman filter 

Lorenz et al. [2] developed a bias removal method for irradiance forecasts where the bias 

is a fourth order polynomial function of forecasted sky conditions (clear sky index) and 

solar position (cosine of the solar zenith angle, θz). They found that this approach has a 

                                                 
1 Note: For Goodwin Creek and Desert Rock, N could only go up to 14 and 3 respectively, since these 

stations are located near the edge of the grid over which forecasts were de-archived. 



greater impact and gives better results when the training is performed over a network of 

ground stations spread over a large area rather than for point forecasts. 

Here, we investigated another approach to bias removal using a Kalman filter, to see if 

such an approach could be more suited to point forecasts. Kalman filters consist of a set 

of recursive equations designed to efficiently extract a signal from noisy data, and have 

been used extensively in a number of areas, including post-processing of numerical 

weather prediction model outputs. Recently, Louka et al. [13] and Galanis et al. [14] 

applied Kalman filtering to bias removal in wind speed forecasts and temperature 

forecasts. Following these authors, we investigated bias removal for irradiance forecasts 

by exploring different incarnations of their approach. The most satisfactory approach was 

found to be one where the bias depends linearly on the forecasted irradiance, and where 

this dependence and the associated set of Kalman filter equations are established 

separately for each forecast horizon. This is described by the observation equation
2
: 
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where Ht=[1, GHIforecast(t)/(1000 W/m
2
)] and where xt is a two-component column vector 

that evolves in time according to: 

ttt wxx   1  (6) 

The remainders vt and wt are assumed to be independent and to follow a Gaussian 

distribution  with covariance matrices Vt and Wt respectively given by: 
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where M is the number of days used to calculate the covariance matrices. 

The full set of variables used in the Kalman filter procedure are shown in Figure 3, as 

well as the equations used in the iterative “predict” and “update” algorithm, and the 

initial values selected. At any time t, the forecast bias can be estimated as: 

bias(t) = 1000 W/m
2
 y pred,t = 1000 W/m

2  
Ht · xpred,t (9) 

where the subscript “pred,t” is used to denote predictions for time t based on information 

available up to time (t-1). The initial values shown in Figure 3 were selected based on 

                                                 
2 The irradiances and bias were divided by 1000 W/m2 to yield values in the range of about 0 to 1, to 

facilitate transposition of the initial values used here to other weather variables. 



tests over the one year training period (April 2007 to March 2008) for the 30 hour ahead 

horizon for the Penn State University forecasts, which showed significant bias. They 

were chosen to yield substantial bias reduction while also reducing RMSE. Similarly, the 

number M of training days over which W and V were calculated was selected by looking 

at the trade-off between bias removal and RMSE reduction over the one year training 

period for all stations over all forecast horizons. A period of M=30 to 60 days was found 

to be optimal: for shorter periods, bias removal could be achieved but at the expense of 

RMSE, while for longer periods bias removal became less efficient (Note: This period is 

longer than the 7 day period adopted by Louka et al. [13], perhaps because of the extra 

emphasis placed here on RMSE reduction). 
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Figure 3: Recursive flow of information in the Kalman filter procedure along with initial values and 

equations used. The values in the “Predict” box are estimates for variables at time t based on 

information available up to time t-1, while the values in the “Update” box make use of the 

information available at time t. The intermediate variable Kt is the Kalman gain, while the variable 

Pt is the covariance matrix of the error in xt. 

 

3.2.3 Benchmarking of the irradiance forecasts 

In order to facilitate comparisons between the forecasts developed here and other solar 

forecasts, these were compared to reference forecasts serving as benchmarks and skill 

scores were calculated as described in equation (4). Three benchmarks were considered 

for the solar forecasts: 

 Persistence: First, the forecasts were compared to a persistence forecast where sky 

conditions are assumed to remain fixed over the forecast horizon. This is the 

simplest reference forecast and provides a basic yardstick against which to assess 

the skill of more complex forecast methods. The persistence forecast was based 

on persistence of the average clear sky index over daylight hours (with 



cos(θz)>0.01) within the 24 hour period preceding the forecast origin (t=0)
 3

. The 

clear sky index was computed using the ESRA clear sky model [15]. 

 GEM1 : The second benchmark used (hereafter “GEM1”) was the GEM forecast 

extracted at the grid point nearest to the station of interest, with no spatial 

averaging and no Kalman filter. In some cases, we also consider an intermediate 

model “GEM1 avg” where only spatial averaging is performed (no Kalman filter). 

Finally, the forecasts with spatial averaging and a Kalman filter will be referred to 

as the “GEM2” forecasts.  

 Lorenz et al.: The third benchmark (hereafter “Lorenz et al.”) was generated by 

applying a version of Lorenz et al.’s bias removal [2] to the spatially averaged 

GEM forecasts. The version used here computed the bias for each station as a 

function of forecasted cloud cover (TCDC, spatially averaged with the same N 

value as for the solar forecasts) and of the cosine of the solar zenith angle cos(θz) 

at the middle of each hour, with each of these divided into ten bins : 

TCDC = 0-10%, 10-20%, …, 90-100% 

cos(θz) = 0-0.1, 0.1-0.2, …, 0.9-1 

Bias was obtained using a moving 60-day window, and subtracted using a lookup 

table approach based on the 10×10=100 TCDC by cos(θz)  bins above. 

 

3.3 Photovoltaic forecast development and testing 

3.3.1 Generating PV forecasts 

An overview of the procedure used to generate PV forecasts from weather forecasts and 

PV system data is shown in Figure 4: We considered PV simulation models where output 

power is dependent on irradiance in the plane of the PV array and back-of-module 

temperature. The PV forecasts were based on the spatially averaged (or GEM1 avg) 

global horizontal irradiance forecasts, since the absence of quality global horizontal 

irradiance measurements for two of the 3 PV systems considered prevented the use of 

GHI bias removal techniques. In order to drive the models, the global horizontal 

irradiance forecasts were used to generate forecasts of irradiance in the plane of the PV 

arrays. This involves a two-step process where GHI is first broken down into its sky 

diffuse (Diffh) and direct normal (DNI) components, and where sky diffuse irradiance in 

the array plane (Diffi) is then modelled from horizontal sky diffuse irradiance.  

 

                                                 
3 Persistence forecasting could be made to outperform the GEM forecasts over a 0 to 2-3 hour ahead 

forecast horizon by using the most recent values of daytime irradiance measured instead of a 24h average, 

but such a benchmark becomes worse if used for the entire 48 h horizon. 
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Figure 4: Overview of methodology for generating PV power forecasts  

from weather forecasts and PV system data. 

 

Irradiance in the array plane, Gi, was then modelled following the standard equation: 

 GHI 
2

)cos-(1
 os DNI  Diff   G iii

  c  (10) 

where ρ is the albedo, θi is the incidence angle on the array and β is the slope of the array 

with respect to the horizontal. 

In order to test the influence of the models used on the PV forecasts, 12 model 

combinations were explored by combining each of the GHI→Diffh+DNIh models with 

each of the Diffh → Diffi models listed below: 

GHI→Diffh+DNIh : Orgill and Hollands [16], Erbs et al. [17], Reindl [18] 

Diffh → Diffi : Perez [19], isotropic [20], Hay and Davies [21] and Reindl [22] 

Different values for the seasonal dependence of the albedo were also examined, but this 

had very little impact on forecast accuracy, and a simple model with the albedo set at 0.2 

year-round for all locations was adopted. 

The PV models also require as input the temperature at the back of the PV modules. This 

was modelled starting from ambient temperature GEM forecasts (spatially averaged over 

the same area as the GHI forecasts). Back-of-module temperature can be modelled to a 

first approximation by: 

Tm = Ta + γ Gi  (11) 

with γ values depending primarily on the array mounting. γ was either taken from the 

PVSAT values [23] corresponding to the array mounting of the PV system, or else 



modelled directly from PV system data (Tm, Ta, Gi) when this was available and reliable 

during the one year training period. 

Finally, the Gi and Tm forecasts
4
 were used to generate (hourly average) AC output power 

forecasts. Again, a number of different approaches were explored, of which two are 

presented here. The first and simplest approach only requires historical, measured AC 

output power data as well as basic PV system information, namely array orientation 

(azimuth and tilt), array mounting (to estimate γ in equation (11)) and module type 

(manufacturer and model) to estimate the dependence of (DC) output power on module 

temperature. AC output power PAC in this first approach is simply given by: 

     OffsetCTP

m

W

G
DerateP mDCstc

i

AC  251

1000
,

2

  for Gi>0 or θi <90°    (12a) 

nightACAC PP ,         for Gi≤0 or θi ≥90°    (12b) 

where equation (12a) applies to daylight hours, while (12b) simply equates AC power 

during nighttime hours of the test period to the average nighttime AC « output » during 

the training period (this is typically 0 or slightly negative). In equation (12a), α is the DC 

power temperature coefficient which was extracted from the data when available and 

taken from manufacturer specifications when it was not. The Derate and Offset 

coefficients were obtained by doing a linear fit of equation (12a) during the training 

period using measured PAC on the left-hand side and forecasted Gi and Tm on the right-

hand side. In addition, the size of the region over which the GHI forecasts were averaged 

was varied to minimize the RMSE of the AC power forecasts during the training period. 

In what follows, the approach described by equations (12a) and (12b) will be referred to 

as the linear model. 

The second approach considered here is the PVSAT approach employed by Lorenz et al. 

[2], trained using historical data. This could only be applied to the Varennes and Queen’s 

systems, since no Gi measurements were available at Exhibition Place. In this approach, 

the DC power for daytime hours is given by: 

PDC = Gi (A + BGi + C ln Gi) (1 + D (Tm-25°C)) (13) 

(Note : For nighttime hours, equation (12b) was used instead as in the first approach).  

The parameters A, B, C and D were obtained by fitting equation (13) to measured PDC vs. 

Gi, Tm data over the training period, for hours with array incidence angles less than 60°. 

AC power was modelled as linear in DC power with measurements used to find the linear 

fit parameters. 

DC power forecasts were then obtained using equation (13) with Gi and Tm forecasts as 

inputs and converted to AC power forecasts using the linear fit parameters identified 

during the training period. In order to account for calibration issues with pyranometers at 

Queen’s, the Gi forecasts were scaled with a scale chosen to minimize PV forecast RMSE 

                                                 
4 As explained in Section 4.2.1, the Erbs with Hay and Davies transposition model was used to generate the 

Gi forecasts. 



during the training period. As in the first approach, the size of the region used for spatial 

averaging was tuned to minimize RMSE during the training period. 

 

3.3.2 PV forecast benchmarking 

As in the case of the irradiance forecasts, the PV forecasts were benchmarked against 

simpler reference models to determine the skill of the forecasts developed in this project: 

 Persistence: The first reference model is a simple persistence model. Following 

Lorenz et al. [2], PV power persistence forecasts for a given time of day h were 

simply obtained by setting the forecasted power equal to the most recent 

measured value of PV power at time h prior to the forecast (24 or 48 hours prior, 

depending on the forecast horizon). 

 GEM1: The second reference model was given by using the same approach as in 

3.3.1 but without any spatial averaging, i.e. using nearest neighbour irradiance 

and temperature forecasts from the GEM high resolution regional grid. 

The distribution of the PV forecast errors was examined to determine the frequency of 

occurrence of different error intervals (0 to ±5%, ±5% to ±10%, … ±95% to ±100% of 

rated power). Forecast errors were also compiled by month, hour of the day and forecast 

horizon to look for trends in the errors. 

  

4. RESULTS AND DISCUSSION 

4.1 Solar forecasts 

As shown in Figure 5, both the « raw » nearest neighbour output of the GEM model and 

the two methods based on spatial averaging and bias removal clearly outperform the 

trivial persistence forecast over the 48 hour forecast period. The two methods that include 

spatial averaging also show a notable drop in RMSE as compared to nearest neighbour 

GEM forecasts. The GEM2 forecasts developed here lead to a 43% decrease in RMSE on 

average (skill score=0.67) when compared to the persistence forecast and to a 15% 

decrease in RMSE on average (skill score=0.28) when compared to the GEM1 (nearest 

neighbour) forecast.  
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Figure 5: Benchmarking of four solar forecast models showing RMSE as a percent of the mean 

irradiance for 10 ground stations and for the average irradiance of the 10 stations (labelled 

“Region”). 

Moreover, a recent solar forecast benchmarking exercise evaluating 7 forecast models 

against SURFRAD ground station data in the U.S. also found that the spatially averaged 

GEM forecasts lead to substantially lower RMSE’s than most of the models evaluated 

[24], with the exception of the ECMWF-Lorenz et al. forecasts [2] which performed 

comparably. This is consistent with the findings of the benchmarking exercises in Europe 

[5] which showed that solar forecasts from post-processing of global numerical weather 

prediction models performed best over forecast horizons of 1 or more days ahead. 

As indicated in Table 2, RMSE reduction from bias removal is limited at the level of 

individual stations, since for these the bias tends to be small relative to the overall RMSE. 

However, in the case of stations where the bias is fairly significant (ex: the Penn State 

University station) bias removal can significantly reduce RMSE.  



Table 2: Accuracy of global horizontal irradiance forecasts as a percentage of the average irradiance 

for the 10 individual ground stations and for the average irradiance of the 10 stations (denoted by 

“Region”). Results are shown for the nearest neighbour GEM1 forecast, for the GEM1 avg forecast 

which includes spatial averaging, and for the GEM2 and Lorenz et al. forecasts which also include 

bias removal. 

Station  

Avg. 

GHI 

(W/m2) 

RMSE 

(%) 

GEM1 

RMSE 

(%) 

GEM1 

avg 

RMSE 

(%) 

Lorenz 

et al.  

RMSE 

(%) 

GEM2

Bias 

(%) 

GEM1

Bias 

(%) 

GEM1 

avg 

Bias 

(%) 

Lorenz 

et al.  

Bias 

(%) 

GEM2 

Bondville  369 32.5 28.4 29.0 27.9 5.97 5.37 -0.81 -0.26 

Fort Peck  350 30.8 26.8 27.2 26.2 3.87 3.13 -0.42 -0.44 

Sioux Falls  356 34.1 29.2 28.7 28.2 7.24 6.52 -0.60 -0.50 
Penn State 

University  
326 43.6 38.2 36.8 35.0 14.05 13.81 -0.50 0.07 

Boulder  402 34.4 31.8 31.3 30.4 10.97 7.62 0.62 -0.52 
Goodwin 

Creek  
386 36.1 32.3 32.5 31.4 8.05 7.83 -0.38 -0.34 

Desert 

Rock  
492 16.7 16.1 16.8 16.8 1.11 1.03 0.41 -0.14 

Egbert  325 38.8 34.8 34.4 33.6 7.13 7.51 0.41 0.67 
Bratt's 

Lake  
324 35.6 30.6 30.1 29.5 -0.27 0.47 -0.71 -0.40 

Varennes  308 39.8 32.6 33.7 32.6 4.81 0.97 0.43 0.58 

Region 476 11.4 10.0 8.8 8.8 5.57 4.81 -0.81 0 

 

At the level of individual stations, bias removal based on a Kalman filter outperforms the 

Lorenz et al. approach [2] as implemented here. Meanwhile, for the « regional » forecast 

where the average GHI for the 10 stations is forecasted, both bias removal approaches 

had skill with respect to spatial averaging only, and lead to a significant reduction in 

RMSE. Again, this is linked to the fact that the RMSE for the regional forecast is much 

smaller (by about 67%) than for individual stations, so that the bias makes a relatively 

greater contribution to the RMSE. It is also worth nothing that the ratio of 0.33 between 

the regional RMSE and the average RMSE for the individual stations is what we would 

expect when averaging forecast errors that are uncorrelated but of similar magnitude over 

ten stations, namely an RMSE reduction of about 1/sqrt(10) ~0.32. 

 

4.2 Photovoltaic forecast 

4.2.1 Impact of transposition model and PV model selection 

As described in 3.3.1, 12 different model combinations for generating forecasts of 

irradiance in the plane of the arrays from GHI forecasts were tested, as well as two 

different models of PV power dependence on in-plane irradiance and back-of-module 

temperature. The choice of the GHI → Gi transposition model had little impact on the PV 

forecast accuracy, as indicated by the results of Table 3. RMSE in particular is not 

affected much by model selection, presumably because the largest errors (that contribute 



most to RMSE) are dominated by GHI (horizontal) forecast errors. MAE is a bit more 

sensitive to transposition model selection, but even here the difference between the 

models is at most 5.8%.  

Similarly, the PVSAT and linear PV models also performed comparably as shown in 

Table 4, with the linear model performing slightly better in terms of RMSE. While it is 

not clear whether this would generalize to a larger set of PV systems, this result is 

interesting since the linear approach is simpler to train (less intensive quality-check and 

fewer monitoring requirements). In what follows, all results will refer to PV forecasts 

generated using the Erbs with Hay and Davies transposition model and the linear PV 

model. 

Table 3: Accuracy measures (RMSE, MAE and bias) averaged over the three PV systems tested for 

12 different combinations of transposition models to model in-plane irradiance forecasts from 

horizontal spatially averaged (GEM1 avg) GEM irradiance forecasts. The linear PV model was used 

in all cases. 

Transposition model 

GHI→Diffh+DNIh 

Transposition 

model 

Diffh→Diffi 

RMSE  

(% of rated 

power) 

MAE  

(% of rated 

power) 

Bias  

(% of rated 

power) 

Orgill and Hollands Perez 7.62 3.70 0.37 

Orgill and Hollands isotropic 7.72 3.89 -0.17 

Orgill and Hollands Hay-Davies 7.61 3.73 0.29 

Orgill and Hollands Reindl 7.62 3.75 0.36 

Reindl Perez 7.62 3.70 0.46 

Reindl isotropic 7.70 3.89 -0.11 

Reindl Hay-Davies 7.62 3.74 0.35 

Reindl Reindl 7.64 3.76 0.43 

Erbs et al. Perez 7.63 3.69 0.38 

Erbs et al. isotropic 7.70 3.86 -0.16 

Erbs et al. Hay-Davies 7.61 3.71 0.28 

Erbs et al. Reindl 7.62 3.73 0.34 

 



Table 4: Accuracy of the PV forecasts as a percentage of rated power for the three PV systems, and 

comparison of the PVSAT and linear PV model performance for the Queen’s and Varennes PV 

systems. The forecasts were generated using the spatially averaged (GEM1 avg) global horizontal 

irradiance forecasts and the Erbs with Hay and Davies transposition model. 

PV system and PV 

model used 

RMSE 

(% of rated 

power) 

MAE  

(% of rated 

power) 

Bias 

(% of  rated 

power) 

Average 

AC power 

output (W) 

Rated 

power (W) 

(DC STC) 

Varennes, linear 6.38 3.14 0.24 777 6720 

Varennes, PVSAT 6.44 3.02 0.38 777 6720 

Queens, linear 7.27 3.44 0.07 2253 19800 

Queens, PVSAT 7.50 3.43 0.43 2253 19800 

Exhibition Place, 

linear 
9.17 4.55 0.52 5729 45600 

 

4.2.2 PV forecast accuracy and benchmarking against reference models 

Figure 6 shows the outcome of the PV forecast benchmarking: PV forecasts developed 

here (GEM1 avg) clearly outperform persistence forecasts and GEM1 (nearest neighbour) 

forecasts, with (MSE) skill scores with respect to these two reference models of 0.75 and 

0.19 respectively. Therefore, only GEM1 avg forecasts are discussed in the remainder of 

this section. More detailed results and accuracy metrics for the GEM1 avg PV forecasts 

are presented in Table 4. Results are reported as percentages of the DC, STC rated power 

of the arrays, following previous reporting on PV and wind forecasts. As a reference, the 

average AC power and the rated power of each array are given so that these values can be 

converted to absolute values or percentages of mean AC power. The RMSE, MAE and 

bias as a percentage of rated power range from 6.4 to 9.2%, 3.1 to 4.6% and 0 to 0.5% 

respectively. To put these numbers into perspective, the average AC power output of 

these PV systems is of the order of 11 to 12% of the rated power. These accuracies can be 

compared to those obtained by Lorenz et al. [2] for roughly 380 PV systems in two 

control areas of Germany where they found day-ahead forecast RMSE’s in the range of 4 

to 5% of rated power and biases of about 1%. Given that error reduction occurs as the 

number of stations and the geographical area over which they are spread increase, it is 

reasonable to expect comparable results for Ontario when centralized PV forecasting is 

implemented.  
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Figure 6: Benchmarking of three PV forecast models showing RMSE as a percent of rated power for 

3 Canadian PV systems. 

 

Figure 7 shows the frequency distribution of errors for the PV systems. For each system, 

about 76% of the errors are within ±5% of rated power (partly because of the inclusion of 

nighttime errors). However, the largest errors reach up to 44 to 57% of rated power. For 

all three systems, a majority of the largest errors is associated with over-forecasting, even 

though errors are fairly evenly distributed into over-forecasting and under-forecasting as 

a whole. For the Exhibition Place array, the largest errors come from over-forecasting in 

winter due to failing to account for snow cover on the arrays. For the Varennes and 

Queens arrays, the largest errors tend to be associated either with variable cloud 

situations or with overcast days where forecasts significantly underestimated cloud cover. 



0

5

10

15

20

25

30

35

40

45

50

 -
5

0
 t
o

 -
4

5

 -
4

5
 t
o

 -
4

0

 -
4

0
 t
o

 -
3

5

 -
3

5
 t
o

 -
3

0

 -
3

0
 t
o

 -
2

5

 -
2

5
 t
o

 -
2

0

 -
2

0
 t
o

 -
1

5

 -
1

5
 t
o

 -
1

0

 -
1

0
 t
o

 -
5

 -
5

 t
o

 0

0
 t
o

 5

5
 t
o

 1
0

1
0

 t
o

 1
5

1
5

 t
o

 2
0

2
0

 t
o

 2
5

2
5

 t
o

 3
0

3
0

 t
o

 3
5

3
5

 t
o

 4
0

4
0

 t
o

 4
5

4
5

 t
o

 5
0

5
0

 t
o

 5
5

5
5

 t
o

 6
0

Error intervals (% of rated power)

F
re

q
u

e
n

c
y

 (
%

)

Queens Varennes Exhibition Place

 

Figure 7: Frequency distribution of PV forecast error intervals.  

As would be expected, forecast errors depend strongly on the time of day and 

approximately follow the daily course of irradiance in the array plane, as shown in Figure 

8. The evolution of errors with forecast horizons reflects both this daily trend as well as 

the decrease in forecast accuracy as forecast horizon increases. For instance, looking at 

the PV forecasts for horizons between 17 and 41 hours ahead, which correspond to the 

“day ahead” forecast period of the Ontario IESO, the average RMSE of the PV forecasts 

is 7.8% instead of 7.6% when the entire 0-48 hour ahead period is considered, reflecting 

the fact that forecasts for the second day (24-48h) are less accurate than for the first (0-

24h). 
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Figure 8: PV forecast accuracy as a function of time of day. 

The monthly evolution of forecast accuracy was fairly system specific as can be seen in 

Figure 9, where monthly RMSE is shown alongside monthly average AC power for each 

system. Unlike the trend noted for error vs. time of day, the monthly accuracy curves do 

not follow the monthly average power curves for these systems. This is due in part to 

forecasting becoming more difficult as irradiances and solar elevations decrease. The 

Exhibition Place forecasts show a significant drop in accuracy during winter months, and 

even perform worse than the persistence forecasts in January. This is most probably due 

to this system’s low (20°) tilt which exacerbates issues due to snow cover and high 

incidence angles in the winter. In order to examine the impact of snow cover events, 

forecast evaluations were repeated with days flagged for snow excluded. For the 

Exhibition Place array, results were much better when snow cover days were excluded, 

with yearly RMSE dropping from 9.2% to 7.8%. This is similar to what was observed in 

Germany, where persistence also outperformed the forecasts being tested during months 

with significant snow cover [2]. However, excluding snow cover days did not 

substantially alter results for the Varennes and Queen’s arrays, so it’s not clear to what 

extent this will be an issue for PV forecasting in Ontario. 
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Figure 9: Monthly evolution of PV forecast accuracy (RMSE, in % of rated power) alongside the 

monthly evolution of the average AC power delivered by the PV systems. 

 

CONCLUSION  

The solar and PV forecasting methods developed through post-processing of the GEM 

model outputs for 0 to 48 hours ahead were shown to have significant skill with respect to 

simpler reference models, notably persistence forecasts and forecasts without spatial 

averaging of GEM outputs.  The PV forecasting approach developed is fairly simple and 

requires only basic PV system information and historical AC output power data. Such an 

approach could be used as a starting point to develop PV forecasting in Ontario, Canada. 

While this paper focused on RMSE reduction looking at a 0-48 h ahead forecast horizon, 

other approaches could be used to improve forecasts for the shortest horizons (0-6h 

ahead) and to tune the forecasts to reduce errors in specific situations (ex: winter snow 

cover, high ramp rate events). Forecasts could also be tuned to optimize their accuracy 

with respect to specific metrics judged to be most relevant by the Ontario Independent 

Electricity System Operator.  
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