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Abstract: Syngas, traditionally produced from fossil fuels and natural gases at high temperatures
and pressures, is an essential precursor for chemicals utilized in industry. Solar-driven syngas
production can provide an ideal pathway for reducing energy consumption through simultaneous
photoelectrochemical CO2 and water reduction at ambient temperatures and pressures. This study
performs photoelectrochemical syngas production using highly developed Al-doped ZnTe nanorod
photocathodes (Al:ZnTe), prepared via an all-solution process. The facile photo-generated electrons
are transferred by substitutional Al doping on Zn sites in one-dimensional arrays to increase the
photocurrent density to −1.1 mA/cm2 at −0.11 VRHE, which is 3.5 times higher than that for the
pristine ZnTe. The Al:ZnTe produces a minor CO (FE ≈ 12%) product by CO2 reduction and a
major product of H2 (FE ≈ 60%) by water reduction at −0.11 VRHE. Furthermore, the product
distribution is perfectly switched by simple modification of Au deposition on photocathodes. The
Au coupled Al:ZnTe exhibits dominant CO production (FE ≈ 60%), suppressing H2 evolution
(FE ≈ 15%). The strategies developed in this study, nanostructuring, doping, and surface modification
of photoelectrodes, can be applied to drive significant developments in solar-driven fuel production.
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1. Introduction

Synthetic gas (syngas), a mixture of carbon monoxide (CO) and hydrogen gas (H2),
is an essential precursor for the production of hydrocarbon fuels and value-added chemi-
cals, such as alcohols and acetic acid [1,2]. Industrial syngas is typically produced from
fossil fuels and natural gases at high temperatures and pressures [3,4]. However, employ-
ing photoelectrochemical (PEC) water and CO2 reduction at ambient temperatures and
pressures is a sustainable and environmentally friendly alternative to traditional syngas
production [5,6].

PEC cells comprising semiconductor photoelectrodes can harvest solar energy to per-
form electrochemical catalytic reactions [7–9]. The standard reduction potential of CO2 to
CO (CO2 + 2H+ + 3e−→CO + H2O, Eo = −0.11 VRHE) is slightly more negative than that of
water to H2 (2H+ + 2e−→H2, Eo = 0.0 VRHE). Therefore, ideally, any photocathode can be
used in photoelectrochemical CO2 reduction to produce H2 in a thermodynamic manner.
Moreover, CO2 to CO conversion is kinetically poorer than water-to-H2 conversion, primar-
ily because of the slow CO2 adsorption and intermediate formation [10–12]. This indicates
that direct syngas production can be achieved using a single photoelectrochemical CO2
reduction system. Furthermore, the ratio of H2/CO, which is the key factor determining
the upgraded product selectivity, is controllable by catalysts [13–15].

ZnTe semiconductors are an interesting and useful class of photoelectrocatalysts and
have received considerable attention owing to their narrow bandgap energy (2.26 eV) and
band alignment. This allows harvesting of visible light and a suitable band alignment for
syngas production. Specifically, the conduction band minimum (CBM) of ZnTe located at
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−1.63 VRHE, which is highly negative compared to CO2-to-CO reduction potential, can pro-
vide a strong driving force for photoexcited electron injection for syngas production [16–18].
However, ZnTe photocathodes typically exhibit poor photoexcited charge separation be-
cause of the rapid charge recombination and kinetically inactive catalytic reaction [16,19].

Therefore, this study proposes Al-doped ZnTe nanorod photocathodes for photoelec-
trochemical syngas production. The one-dimensional array ZnTes can provide a shortened
carrier transport distance, which can facilitate their separation. Furthermore, ZnTes with
substitutional Al dopants at Zn sites exhibit increased charges transport activity in the bulk
compared with pristine ZnTe. The difference in valence states between Al (Al3+ in lattice)
and Zn (Zn2+ in lattice) causes a significantly increasing major carrier concentration. In
addition, PEC syngas production is demonstrated, enabling a change of the H2:CO ratio
from 5:1 to 1:4, using surface-modified ZnTe-based photocathodes. The proposed method
results in a significant enhancement in syngas production and H2/CO ratio changes. The
photocathode preparation, results, and effects of catalyst modification are presented in
this paper.

2. Materials and Methods
2.1. Materials

Fluorine doped tin oxide substrate was purchased from Pilkington, Lancashire, UK.
Zn(NO3)2·6H2O (99%), ammonia water (28–30%), Al(NO3)3·9H2O (98%), Na2TeO3 (99%),
NaBH4 (99%) were purchased from Aldrich, Burlington, MA, USA. KHCO3 (99.7%) was
purchased by Junsei chemicals, Tokyo, Japan. All chemicals used in this work were as
received, without further purification.

2.2. Synthesis of Al Doped ZnTe Nanorod Film

Al-doped ZnTe nanorods were prepared using the following two steps. First, the Al
doped ZnO nanorods were solvothermally grown on a ZnO (50 nm)-sputtered fluorine-
doped tin oxide substrate (FTO, PECTM 8/Pilkington, Lancashire, UK) in an aqueous
solution containing 10 mM Zn(NO3)2·6H2O (Aldrich, Burlington, MA, USA), ammonia
water (28–30%, Aldrich, Burlington, MA, USA), and Al(NO3)3·9H2O (Aldrich, Burlington,
MA, USA) at 95 ◦C for 2 h [19,20]. The concentration of Al precursors was adjusted to 0, 1,
3, and 5 atomic % against the concentration of Zn precursors, and the samples were named
as Al:ZnO x, where x = 0, 1, 3, and 5, respectively. Then, Al doped ZnTe nanorods were
prepared from Al-doped ZnO nanorods using the previously reported anion exchange
reaction in an aqueous solution containing 0.45 mM Na2TeO3 (Aldrich, Burlington, MA,
USA) and 26.5 mM NaBH4 at 95 ◦C for 2 h [16]. Because the Al dopant concentration
in ZnTe corresponds to the concentration in ZnO, Al-doped ZnTe nanorod samples were
named Al:ZnTe X, where X = 0, 1, 3, and 5, respectively.

2.3. Physico and Chemical Characterizations

The crystal structures of Al-doped ZnO and Al-doped ZnTe were examined using
X-ray diffraction (XRD) (Mac Science, Kanagawa, Japan, M18XHF using Cu Ka radiation,
λ = 0.15406 nm). The morphologies of the electrodes were investigated using field-emission
scanning electron microscopy (FESEM) (JEOL, Tokyo, Japan, JMS-7401F and Phillips Elec-
tron Optics B.V. XL30S FEG, operated at 10 keV) and high-resolution transmission electron
microscopy (HR-TEM) (JEOL, Tokyo, Japan, JEM-2200FS), combined with an energy dis-
persive X-ray spectrometer operated at 200 kV. The elemental compositions and their
oxidation states were investigated using X-ray photoelectron spectroscopy (XPS) (Thermo
Fisher Scientific, Waltham, MA, USA, ESCALAB 250Xi) and the binding energy of each
element was calibrated with respect to the carbon 1 s peak at 284.8 eV. The absorbance of
photoelectrodes was examined using UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS)
(Shimadzu, Kyoto, Japan, UV2501PC).
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2.4. Photoelectrochemical Measurements

All photoelectrochemical CO2 reduction experiments (J-V, J-t, and EIS) were conducted
in a three electrodes configuration with ZnTe-based working electrodes, a graphite rod
counter electrode, and an Ag/AgCl (4 M KCl) reference electrode, under simulated solar
illumination in an undivided gas-tight cell. Simulated solar illumination was generated
using a 300 W Xe lamp (Newport, CA, USA, Oriel, 91–160,) with an AM 1.5 G and an IR
filter. The light intensity of 100 mW/cm2 was calibrated using the guaranteed reference
by National Renewable Energy Laboratories, US. A potentiostat (Gramry, Warminster,
PA, USA, Reference 600TM) supplied bias to adjust the potential difference to electrodes
connected in a circuit. The exposed comparable illuminating area (0.25–0.3 cm2 for J-V
measurements and 1–1.2 cm2 for J-t measurements) of the photocathodes was masked with
insulating epoxy. CO2-saturated 0.5 M KHCO3 (Junsei chemicals, Tokyo, Japan) in water
was used as the electrolyte.

J-V measurements were performed while cathodically sweeping the potentials at a
scan rate of 10 mV/s. J-t measurements were recorded for 3 h at −0.11 V and −0.3 V with
respect to RHE. While performing J-t measurements, the produced gases were analyzed
using gas chromatography (Agilent, Santa Clara, CA, USA, Model 7890) with a Carboxen
1000 packed column and a thermal conductivity detector for gaseous products—H2, CO,
CO2, and CH4. Electrochemical impedance spectroscopy (EIS) measurements were taken
at a constant DC potential of −0.11 V vs RHE and an AC potential frequency range of
0.1–100,000 Hz with a 20 mV amplitude.

The faradaic efficiency (FE) is determined by dividing the number of charges used to
produce the detected number of products, H2 or CO, by the total charge passed during the
photoelectrochemical measurement using the following equation, where n is the number
of electrons required to produce one H2 or CO molecule, which is 2, and F is Faraday’s
constant (96485.33 C/mol).

FE (%) = (n ×mol of product × F)/(Total charge passed) × 100

3. Results and Discussion
3.1. Synthesis of Al:ZnTe Nanorod Photocathodes

The Al-doped ZnTe (Al:ZnTe) nanorod photocathodes used in this work were prepared
using a two-step, modified hydrothermal method and following the ion exchange reaction.
The preparation method is depicted in the schematic diagram (Scheme S1, SI). The Al-
doped ZnO (Al:ZnO) nanorods were hydrothermally grown on the FTO with Al-dopant
concentrations in the range of 0–5 at% compared with the concentration of Zn precursors.
The Al:ZnO nanorods served as an in situ template and precursors to prepare Al:ZnTe.
As the solubility product constant (Ksp) for ZnTe (5.0 × 10−34) is significantly lower than
that for ZnO (6.8 × 10−34), ZnO nanorods were transformed to ZnTe by spontaneous
anion exchange reactions and thus ZnO core-ZnTe shell heterojunction type electrode was
prepared [21].

ZnTe nanorods with different concentrations of Al dopants (Al:ZnTe X, where
X = 0, 1, 3, and 5 represent the at% of Al compared with Zn) were prepared and their
photoelectrochemical performance was investigated in Figure S1 in SI. Amo1ang the pho-
tocathodes, Al:ZnTe 3, containing 3 at% Al dopant, exhibited the highest photocurrent
densities. The optimized Al:ZnTe 3 photocathodes were named Al:ZnTe and their physico-
chemical characteristics and photoelectrochemical activities were compared with those of
pristine ZnTe photocathodes.

The XRD patterns of ZnTe and Al:ZnTe showed hexagonal wurtzite ZnO (JCPDS no.
01-089-0511) and zinc blend ZnTe (JCPDS no. 01-065-0385) (Figure 1a). All prepared photo-
cathodes showed two patterns of ZnTe and ZnO, regardless of the Al dopant concentration
(Figure S2, SI). Furthermore, neither peak splitting nor shifting was observed by Al doping.
Moreover, no crystal structure change occurred by Al doping.
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Figure 1. (a) XRD patterns, and XPS spectra for (b) Al 2p, (c) Zn 2p, and (d) Te 4f of Al:ZnTe and
ZnTe. * indicates XRD patterns of FTO substrates.

The presence of Al3+ in Al:ZnTe was confirmed by the XPS results for the Al 2p orbital
(Figure 1b). Additionally, the oxidation states of Zn and Te elements were analyzed to
investigate physicochemical changes for ZnTe by Al doping. In the core level of the Zn 2p
spectra, two peaks attributed to Zn2+ from ZnO and ZnTe slightly positive shifted 0.5 eV
by doping with the electron-deficient Al3+ relative to Zn2+. However, no significant peak
shifts were observed in the core level of the Te 3d results (Figure 1c,d) [22].

Another distinct difference in the morphologies for ZnO and ZnTe resulting from Al
doping was observed. The pristine ZnO had a cylindrical nanorod, whereas Al:ZnO had a
needle-shaped nanorod (Figure 2a,c). As the concentration of Al dopants increased, the
shape transition became more apparent (Figure S3 in SI). The Al:ZnO nanorods were formed
by hydrothermal growth of Zn hydroxyl anions with substitutional doping of Al hydroxyl
anions. The different valence states and sizes of the two anions induced unique needle
shapes for Al:ZnO [23]. Both ZnO and Al:ZnO nanorods were spontaneously transformed
to ZnTe and Al:ZnTe via Te2− anion exchange reactions. The radii of ZnTe and Al:ZnTe
became larger than those of ZnO and Al:ZnO, respectively, preserving the densities of
nanorods in each film (Figure 2b,d). HR-TEM revealed the formation of ZnTe with a lattice
spacing of 0.351 nm for zinc blend ZnTe(111) at the outer part of the nanorods (Figure 2e,f).
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3.2. Photoelectrocatalytic Syngas Production Using Al:ZnTe Nanorod Photocathode

Photoelectrochemical CO2 reductions were investigated in a conventional three-
electrode configuration, using the developed ZnTe-based electrode as a working electrode,
an Ag/AgCl reference electrode, and a graphite rod counter electrode, under simulated
solar illumination (AM 1.5 G, 100 mW/cm2). To estimate the activity under dark and
light conditions simultaneously, the photocurrent-potential (J-V) was measured under
chopped illumination in a CO2-saturated KHCO3 electrolyte (Figure 3a). The photovoltage
gain for CO2-to-CO reduction, the difference between the photocurrent onset potential of
photocathodes, and the thermodynamic CO2/CO redox potential (Eonset–E◦CO2/CO) were
clearly observed at more than 0.4 V for both ZnTe and Al:ZnTe. For the photocurrent
density at the theoretical CO2/CO redox potential (E◦CO2/CO), −0.11 VRHE of the Al:ZnTe
photocathode exhibited −1.1 mA/cm2, which was at least 3.5 times higher than that of the
ZnTe photocathode. In the potential range of −0.4 to 0.3 VRHE, the Al:ZnTe photocathode
exhibited enhanced photocurrent densities compared to the ZnTe photocathode.
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Figure 3. (a) J-V plot (scan rate of 5 mV/s), (b) absorbance, and (c) Nyquist plot of Al:ZnTe and
ZnTe. All photoelectrochemical measurements were performed in 0.5 M CO2-saturated KHCO3

under simulated solar illumination (AM 1.5 G, 100 mW/cm2). The Nyquist plots were prepared by
measuring electrochemical impedance spectroscopy at −0.11 VRHE.
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Let us consider the critical origin of the improvement of photocurrent densities due to
Al doping on ZnTe. The first possibility is the enhancement of the number of photo-excited
carriers resulting from the improvement of the light absorption properties of Al:ZnTe
compared to ZnTe [24–27]. However, the light absorbance of Al:ZnTe was approximately
similar (330–800 nm) to that of ZnTe. (Figure 3b) Considering the direct bandgap of Al:ZnTe
(2.26 ± 0.02 eV) and ZnTe (2.24 ± 0.03 eV) determined by Kubelka-Munk relation using
their absorbance, Al doping strategy had a negligible effect to increase the number of
photo-generated carriers.

Another possibility is the enhancement of photo-excited carrier separation due to Al
doping, resulting from the decrease of resistance to charge transfer [28–30]. The Nyquist
plots, prepared by measuring EIS, show that Al:ZnTe has a smaller semicircular radius than
ZnTe [31] (Figure 3c). As the radius in the Nyquist plots corresponds to the impedance
value, it indicates that Al:ZnTe has a relatively reduced impedance and improved charge
transfer ability compared to pristine ZnTe. Therefore, the increased majority carriers and
surface area by substitutional Al doping are considered to be the two main origins of
photocurrent enhancement.

To investigate the product distributions, photoelectrochemical CO2 reduction was
performed on the photocathodes at −0.11 VRHE which is thermodynamic CO2/CO redox
potential. The ZnTe-based photocathodes produced H2 and CO via two-electron transfer
using protons or dissolved CO2 in the electrolyte, but no additional byproduct was detected
(Figure 4). The total product amounts, the sum of H2 and CO, of the Al:ZnTe photocathode
were at least three times higher than those for ZnTe, which perfectly corresponded to
increased photocurrents almost three times because of Al doping on ZnTe (Figure 3a).
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Furthermore, to investigate selectivity change resulting from Al doping, the ratio
of H2/CO was compared using data collected from product distributions at −0.11 VRHE
(Figure 4c). ZnTe had a ratio of 5.2, whereas Al:ZnTe had a ratio of 5.0. The close ratio
values indicate that the H2 production reaction is approximately five times more favorable
than the CO2-to-CO reduction reaction on the surface of photoelectrodes for both ZnTe and
Al:ZnTe as reported previously [16,17]. This suggests that both photoelectrodes provide an
identical catalytic nature for electrochemical reactions and that Al dopants were ineffective
in altering favorable catalytic reactions.

To further study the possibility of switching major products during photoelectrochem-
ical CO2 reduction, surface modification using Au electrocatalysts on Al:ZnTe (Al:ZnTe-Au)
was conducted. The Au nanoparticles were physically deposited using an E-Beam evapora-
tor and their atomic ratio was approximately 1% [13]. The J-V curve of Al:ZnTe-Au was
identical to that of Al:ZnTe, indicating that the electron transfer rate remained unchanged
after Au deposition (Figure 5a).
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Figure 5. (a) J-V plot (scan rate of 5 mW/s) of Al:ZnTe and Al:ZnTe-Au. (b) Time-profiled product
distribution. (c) Faradaic efficiency of each product of H2 and CO for ZnTe, Al:ZnTe, and Al:ZnTe/Au
photocathodes at −0.11 VRHE.

In addition, to investigate product distribution differences due to Au coupling, the
Al:ZnTe-Au photocathode underwent potential constant photoelectrolysis at −0.11 VRHE
and faradaic efficiencies for CO and H2 were determined based on the quantification results
(Figure 5b,c). The imperfect total faradaic efficiencies observed for all ZnTe based photo-
cathode are mainly due to the instability of ZnTe in an aqueous solution [16]. Al:ZnTe-Au
exhibited dominant CO production, with FECO = 60% and minor H2 production with
FEH2 = 15%. By contrast, Al:ZnTe showed limited CO production (FECO = 12%) with robust
H2 evolution (60%). The Au nanoparticles can provide active sites for CO production and
suppress H2 production owing to their intrinsically superior electronic nature for CO2
adsorption, CO2-to-CO conversion, and CO desorption using transferred protons and
electrons, resulting in the major product switch [32–34]. The results demonstrate the avail-
ability of photoelectrochemical syngas production. Furthermore, the composition of the
syngas—H2/CO—can be altered by modifying the light absorber using an electrocatalyst.

4. Conclusions

Photoelectrochemical systems can provide an ideal method for direct syngas produc-
tion via simultaneous CO2 and water reduction at ambient temperatures and pressures.
This provides an alternative to the conventional process, requiring fossil fuels and natu-
ral gases at high temperatures and pressures. In this study, highly advanced Al-doped
ZnTe nanorod photocathodes (Al:ZnTe) were developed for solar-energy-driven syngas
production. This system has the following advantages: (1) a cost-effective solution process
to prepare samples, (2) a nanorod array for facilitating photo-excited carrier separation,
and (3) substitutional in situ Al doping on the site Zn while hydrothermally growing ZnO
NW. Furthermore, a simple strategy was proposed for switching the major product to CO
by suppressing competitive H2 evolution. Au electrocatalyst coupling can provide active
sites for CO production. By the combination of all modifications, the advanced Al:ZnTe-Au
photocathode represented −1.1 mA/cm2 at −0.11 VRHE and the ratio of the H2:CO to
1:4, whereas pristine ZnTe exhibited −0.31 mA/cm2 with the syngas production ratio to
5:1. With further research advances, the developed system can be applied for solar-driven
value-added chemicals production in practical.
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