
Solar energy development impacts on land cover
change and protected areas
Rebecca R. Hernandeza,b,1,2, Madison K. Hoffackerc, Michelle L. Murphy-Mariscalc, Grace C. Wud, and Michael F. Allenc,e,f

aDepartment of Global Ecology, Carnegie Institution for Science, Stanford, CA 94035; bDepartment of Earth System Science, Stanford University, Stanford,
CA 94305; cCenter for Conservation Biology, University of California, Riverside, CA 92521; dEnergy and Resources Group, University of California, Berkeley,
CA 94720; eDepartment of Biology, University of California, Riverside, CA 92521; and fDepartment of Plant Pathology, University of California, Riverside, CA
92521

Edited by B. L. Turner, Arizona State University, Tempe, AZ, and approved September 16, 2015 (received for review September 4, 2015)

Decisions determining the use of land for energy are of exigent

concern as land scarcity, the need for ecosystem services, and demands

for energy generation have concomitantly increased globally. Utility-

scale solar energy (USSE) [i.e., ≥1 megawatt (MW)] development re-

quires large quantities of space and land; however, studies quantifying

the effect of USSE on land cover change and protected areas are

limited. We assessed siting impacts of >160 USSE installations by

technology type [photovoltaic (PV) vs. concentrating solar power

(CSP)], area (in square kilometers), and capacity (in MW) within the

global solar hot spot of the state of California (United States). Addi-

tionally, we used the Carnegie Energy and Environmental Compatibil-

ity model, a multiple criteria model, to quantify each installation

according to environmental and technical compatibility. Last, we

evaluated installations according to their proximity to protected

areas, including inventoried roadless areas, endangered and threat-

ened species habitat, and federally protected areas. We found the

plurality of USSE (6,995 MW) in California is sited in shrublands and

scrublands, comprising 375 km2 of land cover change. Twenty-eight

percent of USSE installations are located in croplands and pastures,

comprising 155 km2 of change. Less than 15% of USSE installations

are sited in “Compatible” areas. The majority of “Incompatible”

USSE power plants are sited far from existing transmission infra-

structure, and all USSE installations average at most 7 and 5 km

from protected areas, for PV and CSP, respectively. Where energy,

food, and conservation goals intersect, environmental compatibility

can be achieved when resource opportunities, constraints, and

trade-offs are integrated into siting decisions.

concentrating solar power | conservation | greenhouse gas emissions |
land use | photovoltaics

The need to mitigate climate change, safeguard energy security,
and increase the sustainability of human activities is prompting

the need for a rapid transition from carbon-intensive fuels to
renewable energy (1). Among renewable energy systems, solar
energy has one of the greatest climate change mitigation po-
tentials with life cycle emissions as low as 14 g CO2-eq·kW·h−1

[compare this to 608 g CO2-eq·kW·h−1 for natural gas (2)]. Solar
energy embodies diverse technologies able to capture the sun’s
thermal energy, such as concentrating solar power (CSP) sys-
tems, and photons using photovoltaics (PV). In general, CSP is
economically optimal where direct normal irradiance (DNI) is 6
kW·h·m−2

·d−1 or greater, whereas PV, able to use both diffuse and
DNI, is economically optimal where such solar resources are 4
kW·h·m−2

·d−1 or greater. Solar energy systems are highly modular
ranging from small-scale deployments (≤1 MW; e.g., residential
rooftop modules, portable battlefield systems, solar water heaters)
to centralized, utility-scale solar energy (USSE) installations (≥1
MW) where a large economy of scale can meet greater energy
demands. Nonetheless, the diffuse nature of solar energy ne-
cessitates that large swaths of space or land be used to collect
and concentrate solar energy into forms usable for human con-
sumption, increasing concern over potential adverse impacts on
natural ecosystems, their services, and biodiversity therein (2–5).

Given the wide range of siting options for USSE projects,
maximizing land use efficiency and minimizing land cover change
is a growing environmental challenge (6–8). Land use efficiency
describes how much power or energy a system generates by area
(e.g., watts per square meter, watt-hours per square meter, re-
spectively). For example, USSE installations have an average
land use efficiency of 35 W·m−2 based on nameplate capacity
under ideal conditions (9). The ratio of the realized generation
of an installation to maximum generation under ideal conditions
over a period is the capacity factor. Using these two terms, we
can quantify land requirements for USSE at larger spatial scales.
If up to 500 GW of USSE may be required to meet United
States-wide reduction of 80% of 1990 greenhouse gas emissions
by 2050, 71,428 km2 of land may be required (roughly the land
area of the state of South Carolina) assuming a capacity factor of
0.20 (an average capacity factor for PV; Table S1). This underscores
the possible vast area requirements for meeting energy needs in
the United States and elsewhere. Increasing the land use effi-
ciency of each installation—e.g., decreasing space between rows
of PV modules or CSP mirrors—and prudent siting decisions
that incorporate the weighting of environmental trade-offs and
synergies can reduce land cover change impacts broadly (10).
Land cover change owing to solar energy has received in-

creasing attention over concerns related to conflicts with biodiversity
goals (2–4) and greenhouse gas emissions, which are released when
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biomass, including soil, is disturbed or removed during the lifetime
of a power plant (11, 12). Siting USSE installations in places
already impacted by humans (e.g., parking lots, rooftops) re-
duces the likelihood that adverse environmental impacts will
occur and can exceed generation demands for renewable energy
goals in places with moderate- to high-quality solar resources (8,
10, 13), including California. When sites within the built envi-
ronment are inaccessible, siting that minimizes land use and land
cover change within areas acting as carbon sinks, avoids extir-
pation of biodiversity, and does not obstruct the flow of eco-
system services to residents, firms, and communities, can serve to
mitigate adverse environmental impacts (2, 3, 9, 10, 14, 15).
Siting within the built environment also reduces the need for
complex decision making dictating the use of land for food or
energy (16).
Recent studies have underscored the role that proximity of

threats to protected areas plays in meeting conservation goals
(16–20). Protected areas may preclude habitat loss within bound-
aries; however, a prevailing cause of degradation within protected
areas is land use and land cover change in surrounding areas.
Specifically, protected areas are effective when land use nearby
does not obstruct corridor use, dispersion capabilities, nor
facilitate invasions of nonnative species through habitat loss,
fragmentation, and isolation—including those caused by renew-
able energy development. Quantifying both internal and external
threats is necessary for assessing vulnerability of individual pro-
tected areas to conversion and landscape sustainability overall.
Siting decisions can be optimized with decision support tools (10,
14) that differentiate areas where direct (e.g., land cover change)
and proximate effects (e.g., habitat fragmentation) are lowest on
the landscape.
Several studies have made predictions regarding which specific

land cover types may be impacted by solar energy development
(7, 21); however, few studies have evaluated actual siting de-
cisions and their potential or realized impact on land cover change
(9, 11). In this study, our objectives were to (i) evaluate potential
land cover change owing to development of utility-scale PV and
CSP within the state of California (United States) and describe
relationships among land cover type and the number of in-
stallations, capacity, and technology type of USSE; (ii) use the
decision support tool, the Carnegie Energy and Environmental
Compatibility (CEEC) model (10), to develop a three-tiered spatial
environmental and technical compatibility index (hereafter called
Compatibility Index; “Compatible,” “Potentially Compatible,” and
“Incompatible”) for California that identifies environmentally low-
conflict areas using resource constraints and opportunities; and (iii)
compare utility-scale PV and CSP installation locations with the
Compatibility Index and their proximity to protected areas to
quantify solar energy development decisions and their impact on
land cover change (see Supporting Information for details).
We selected the state of California as a model system owing to

its relatively early, rapid, and ambitious deployment of solar
energy systems, 400,000 km2 of land area (greater than Germany
and 188 other countries), large human population and energy
demands, diverse ecosystems comprising 90% of the California
Floristic Province biodiversity hot spot, and its long-standing use
in elucidating the interrelationship between land and energy
(9, 10, 22, 23).

Results

We identified 161 planned, under construction, and operating
USSE installations throughout 10 land cover types (Figs. 1 and 2)
among 16 total in the state of California (Table S2). Broadly, PV
installations are concentrated particularly in the Central
Valley and the interior of southern California, whereas CSP
power plants are sited exclusively in inland southern California
(Figs. 1 and 2). For all technology types, the plurality of capacity
(6,995 MW) is found in shrubland and scrubland land cover type,

necessitating 375 km2 of land (Table 1). This area is approxi-
mately two times greater than USSE development occurring
within cultivated croplands, representing 4,103 MW of capacity
within 118 km2. Over 2,000 MW of existing or proposed USSE
capacity is sited within the built environment, particularly within
relatively lower density areas.
PV power plants are found in 10 land cover types; the plurality

of capacity is sited within shrubland/scrublands (6,251 MW; Table
1), representing 26.0% of all PV installations (Fig. 2). Capacity for
utility-scale PV installations is also represented within cultivated
croplands (3,823 MW), barren land (2,102 MW), developed
(2,039 MW), and grassland/herbaceous (1,483 MW) land cover
types. Within the developed land cover types, open space is most
used (1,205 MW) for utility-scale PV capacity. For CSP, 1,000 MW
are located within 34 km2 of barren land land cover types, and con-
jointly within shrubland/scrublands (744 MW, 32 km2).
Using the decision support tool, CEEC (Fig. 3), we identified

22,028 and 77,761 km2 of Compatible and Potentially Compat-
ible area, respectively, in California for developing PV (Fig. S1).
Generation-based potential within Compatible areas—compris-
ing 5.4% of California’s area—is 8,565 TW·h·y−1 for fixed-tilt
modules and up to 11,744 TW·h·y−1 for dual-axis modules. For
CSP technologies, we found 6,274 and 33,489 km2 of Compatible
and Potentially Compatible area. Generation-based potential for
CSP within Compatible areas—comprising 1.5% of California’s
area—is 5,947 TW·h·y−1.
USSE installations vary in the environmental compatibility of

their actual or proposed site (Fig. 4 A and B). The majority
(71.7%) of PV USSE installations are in Potentially Compatible
areas, whereas 11.2% are located in Compatible areas. PV in-
stallations classified as Incompatible are due to distances from
existing transmission infrastructure exceeding 10 km (45.9%),
slope exceeding the recommended threshold (41.9%), and to a

Fig. 1. Map showing land cover types across California and the size and

location of USSE installations.
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lesser degree, owing to development on endangered and threat-
ened species habitat (9.7%) and federally preserved land (3.2%;
Fig. 4 A and B). For CSP installations, 55.5% are located in either
Compatible or Potentially Compatible areas. Siting incompatibilities
for CSP were either due to slope (25.0%) or distance from trans-
mission lines (75.0%). PV and CSP installations on Compatible
areas range in capacity between 20 and 200 MW, and are located
within the Central Valley and inland southern California regions,
excepting one PV facility in Yolo County (Fig. 4A). PV facilities
on Incompatible land are found throughout all of California
and, excepting one facility (250 MW; San Luis Obispo County),
are 200 MW in capacity or less.
PV and CSP USSE installations average 7.2 ± 0.9 and 5.3 ±

2.3 km, respectively, from the closest protected area (Fig. 5).
Federally protected areas are the nearest protected area type
(7.8 ± 1.0) to land use and land cover change for PV development,
whereas both endangered and threatened species habitat (5.7 ±

2.4) and federally protected areas (5.3 ± 2.3) are nearest for CSP
development. Of PV installations, 73.7% were less than 10 km and
47.4% were less than 5 km away from the nearest protected area.
Of CSP installations, 90.0% were less than 10 km away and 60.0%
were less than 5 km away from the nearest protected area.

Discussion

Evaluation of siting decisions for USSE is increasingly relevant in a
world of mounting land scarcity and in which siting decisions are as
diverse as their deployment worldwide. For example, China has
emphasized utility-scale, ground-mounted PV and residential,
small-scale solar water heating installations (24), whereas Germany
is notable for achieving up to 90% development within the built
environment (25). In California, a large portion of USSE in-
stallations is sited far from existing transmission infrastructure.
New transmission extensions are expensive, difficult to site due
to social and environmental concerns, and require many years of
planning and construction. Such transmission-related siting in-
compatibilities not only necessitate additional land cover change
but also stand in the way of cost-efficient and rapid renewable
energy deployment.
Environmental regulations and laws, which vary drastically

from one administrative area to the next, may also cause incon-
gruities in siting decisions. Inherent ambiguities of such policies
allows for further inconsistencies. A study in southern Italy (11)
found that two-thirds of authorizations for USSE were within
environmentally “unsuitable” areas as defined by municipal and
international criteria (e.g., United Nations Educational, Scien-
tific and Cultural Organization sites), with adverse implications
for land cover change-related CO2 emissions. Studies (7, 21)

including our own reveal that regulations and policies to date
have deemphasized USSE development in California, the United
States, and North America, respectively, within the built envi-
ronment and near population centers in favor of development
within shrublands and scrublands. California’s shrublands and
scrublands comprise, in part, the California Floristic Province, a
biodiversity hot spot known for high levels of species richness
and endemism and where 70% or more of the original extent of
vegetation has been lost due to global environmental change-
type threats, including land cover change (26, 27). In biologically
rich areas like this, land cover change has the potential to greatly
impact ecological value and function. Globally, the extent of
shrubland and scrubland is vast; therefore, in areas where bio-
diversity is low, goods and services of shrublands may include
diverse recreational opportunities, culturally and historically signif-
icant landscapes, movement corridors for wildlife, groundwater as a
drinking source, and carbon (sequestration), which may also be
adversely impacted by land cover conversion (28).
Proximity impacts result from the fragmentation and degradation

of land near and between protected areas, reducing ecological
flows of energy, organisms, and goods (16–20). In a study of 57

Table 1. USSE installations and land cover type

Nameplate capacity, MWdc Area, km2

Land cover type PV % CSP % PV % CSP %

Barren land (rock/sand/clay) 2,102 12 1,000 48 77 11 34 45

Cultivated crops 3,823 22 280 14 110 15 8 11

Developed (all) 2,039 12 50 2 70 10 1 1

Developed, high intensity 50 0 0 0 1 0 0 0

Developed, medium intensity 624 4 0 0 17 2 0 0

Developed, low intensity 160 1 0 0 9 1 0 0

Developed, open space 1,205 7 50 2 43 6 1 1

Emergent herbaceous wetlands 60 0 0 0 1 0 0 0

Grass/herbaceous 1,483 9 0 0 72 10 0 0

Pasture/hay 1,397 8 0 0 37 5 0 0

Shrubland/scrubland 6,251 36 744 36 343 48 32 43

The nameplate capacity [in megawatts (MWdc)], footprint (in square kilometers), and number of photovoltaic

(PV) and concentrating solar power (CSP) USSE installations (>20 MW) in California (in planning, under construc-

tion, operating) by land cover type. Bold data represent the greatest value among all land cover types.
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Fig. 2. Number of photovoltaic (PV) and concentrating solar power (CSP)

installations (planned, under construction, operating) by land cover type

in California; represented in order of most installations to least for both

technologies.
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US protected areas, Hansen et al. (16) found such zones extended
an average of 18 times (in area) beyond the park area (e.g., Mojave
National Preserve, three times protected area, i.e., ∼30 km radially

beyond preserve boundary). Additionally, Hamilton et al. (17)
used distances of 5, 25, and 75 km from all US protected area
boundaries to represent three spatial scales (i.e., buffers) of prox-
imity impacts owing to US land cover and land use change. Last,
the US Fish and Wildlife Service’s Partners for Fish and Wildlife
Program, seeks to reduce adverse proximity impacts by aug-
menting protected areas with private land restoration, targeting
land within a maximum distance of 75 km from existing pro-
tected areas. Thus, our results confirm USSE development in
California engenders important proximity impacts, for example,
encompassing all three spatial scales from Hamilton et al. (17)
and decreasing land available for US Fish and Wildlife Service
partner restoration programs.
Industrial sectors—including energy and agriculture—are in-

creasingly responsible for decisions affecting biodiversity. Con-
comitantly, target-driven conservation planning metrics (e.g.,
percentage of remaining extant habitat does not fall below 40%),
geospatial products (e.g., decision support tools), and the mon-
etization of carbon and ecosystem services are increasing and
may be effective in compensating for the lack of target-driven
regulation observed in policy (29).
Last, development decisions may overlook environmental re-

sources unprotected by policies but valued by interest groups [e.g.,
important bird areas, essential connectivity areas, vulnerability of
caliche (i.e., mineralized carbon) in desert soils, biodiversity hot
spots, percent habitat loss]. Several elements of the environment
providing ecosystem services that humans depend upon remain
widely unprotected by laws and regulations and vastly under-
studied. By integrating land conservation value earlier in the elec-
tricity procurement and planning process, preemptive transmission
upgrades or expansions to low-impact regions could improve the
incentive to develop in designated zones, avoiding future in-
compatible development. However, zones themselves must also
be carefully designated. The landscape-scale Desert Renewable
Energy Conservation Plan initially provided a siting framework—
including incidental take authorizations of endangered and threat-
ened species—for streamlining solar energy development within the
91,000 km2 of mostly desert habitat in public and private lands and
designated as the Development Focus Area (DFA). After ac-
counting for unprotected environmental attributes like biodiversity,
Cameron et al. (14) identified ∼7,400 km2 of relatively low-value
conservation land within the Mojave Desert Ecoregion (United
States) that can meet California’s 33% renewable portfolio stan-
dard for electricity sales seven times over. Since this publication,
the Desert Renewable Energy Conservation Plan’s DFA has now
been restricted to only public lands, which some argue to be more
intact, and to the ire of certain local interest groups and govern-
ment agencies. Hernandez et al. (10) developed a satellite-based
decision support tool, the CEEC model, that showed that genera-
tion-based technical potential of PV and CSP within the built en-
vironment could meet California’s total energy demand 4.8 and 2.7
times over, respectively. Development decisions may also overlook
synergistic environmental cobenefit opportunities. Environmental
cobenefit opportunities include the utilization of degraded or con-
taminated lands, colocation of solar and agriculture, hybrid power
systems, and building-integrated PV (2).
This study found that nearly 30% of all USSE installations are

sited in croplands and pastures; signifying perhaps an increasing
affinity for using agricultural lands for renewable energy, specifi-
cally within the Central Valley of California, renowned for agri-
cultural productivity globally. The growing demand for food,
affordable housing, water, and electricity puts considerable pres-
sure on available land resources, making recent land use decisions
in this region a noteworthy case study for understanding the food–
energy–water nexus that should be explored. Opportunities to
minimize land use change include colocating renewable energy
systems with food production and converting degraded and
salt-contaminated lands, unsuitable for agriculture, to sites for

U
S

S
E

 
fe

a
si

b
le

P
a

rc
e

l 
si

ze

In
co

m
p

a
ti

b
le

Po
te

n
tia

lly
 

co
m

p
at

ib
le

C
o

m
p

at
ib

le

O
u

tp
u

t

Po
te

n
tia

lly
 

co
m

p
at

ib
le

C
o

m
p

at
ib

le

C
o

m
p

a
ti

b
ili

ty
 in

d
e

x

Po
te

n
tia

lly
 

co
m

p
at

ib
le

C
o

m
p

at
ib

le

In
co

m
p

a
ti

b
le

Po
te

n
tia

lly
 

co
m

p
at

ib
le

C
o

m
p

at
ib

le

O
u

tp
u

t

Parcel size

CSP PV

Model feature input (e.g., California)

H
yd

ro
lo

g
y

En
er

g
y 

 
in

fr
as

tr
u

ct
u

re
S

o
ci

o
e

co
n

o
m

ic

T
h

e
o

re
ti

ca
l 

p
o

te
n

ti
a

l
E

n
v

ir
o

n
m

e
n

ta
l a

n
d

 T
e

ch
n

ic
a

l P
o

te
n

ti
a

l

E
co

lo
g

ic
a

l

Transmission 

Roadless areas

Roads 

Endangered species habitat

Federally protected areas

Perennial snow/ice, bodies of water

Ir
ra

d
ia

n
ce

In
p

u
t

Slope

To
p

o
g

ra
p

h
ic

al
DNI

Built-
environment

H
ig

h

Lo
w

M
e

d
iu

m

O
p

e
n

 s
p

a
ce

Built-
environment

Lo
w

O
p

e
n

 s
p

a
ce

Fig. 3. Workflow of the Carnegie Energy and Environmental Compatibility
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renewable energy production. Using unoccupied spaces such as
adjacent to and on top of barns, parking lots, and distribution
centers in agricultural areas is another win–win scenario. In
sub-Saharan Africa, integrating solar energy into a drip irriga-
tion system has enhanced food security by conserving water,
enhancing reliability of power, and conserving land and space
(30). As the development of renewable energy and the production
of food are expected to grow, so will the need to understand and
evaluate their interactions with the land supporting this expansion
in other landscapes.

Conclusion

A growing body of studies underscores the vast potential of solar
energy development in places that minimize adverse environmental
impacts and confer environmental cobenefits (2, 10, 14, 15, 21).
Our study of California reveals that USSE development is a source
of land cover change and, based on its proximity to protected areas,
may exacerbate habitat fragmentation resulting in direct and
indirect ecological consequences. These impacts may include
increased isolation and nonnative species invasions, and com-
promised movement potential of species tracking habitat shifts
in response to environmental disturbances, such as climate
change. Furthermore, we have shown that USSE development
within California comprises siting decisions that lead to the

alteration of natural ecosystems within and close to protected
areas in lieu of land already impacted by humans (7, 21). Land
use policies and electricity planning that emphasizes the use of
human-impacted places, complies with existing environmental
regulations at the federal, state, and municipal level, and con-
siders environmental concerns over local resource constraints and
opportunities, including those of communities, firms, and residents,
may prove an effective approach for avoiding deleterious land cover
change. Empirical analyses using decision support tools, like CEEC,
can help guide development practices toward greater environ-
mental compatibility through improved understanding of the impacts
of policy and regulatory processes to date.

Methods

To achieve our objectives, we (i) created a multiinstitution dataset of 161

USSE installations in the state of California and compared these data to land

cover data; (ii) developed a spatial Compatibility Index (i.e., Compatible,

Potentially Compatible, and Incompatible) for California using the CEEC

model that identifies environmentally low-conflict areas for development,

integrating environmental and technical resource constraints and opportu-

nities; (iii) compared USSE installation locations with the Compatibility Index

to enumerate the number of installations sited within each area type; and

(iv) compared USSE installation locations with their proximity to protected

areas, including Inventoried Roadless Areas, Endangered and Threatened

Species Habitat, and Federally Protected Areas (Supporting Information). All

analyses were conducted using ArcGIS (10.x) and R (R: A Language and En-

vironment for Statistical Computing).

To evaluate land cover change owing to USSE development, we collected

data on PV and CSP USSE installations in California that vary in development

stage (i.e., planned, under construction, operating) and range in nameplate

capacity, selecting a subset of all USSE that range from 20 to 873 MW, 20MW

being a legislative capacity threshold for transmission connection affecting

development action. Data for each installation included nameplate capacity

under standard test conditions (in megawatts), land footprint (in square

kilometers), technology type, and point location (latitude, longitude). Data

were collected exclusively from official government documents and records

(see Supporting Information for details). We define the land footprint as the

area directly affected during the construction, operation, and decommissioning

phases of the entire power plant facility, excluding existing transmission corri-

dors, land needed for raw material acquisition, and land for generation of en-

ergy required for manufacturing. Installations that did not meet data quality

criteria (e.g., lacking exact location) were excluded, resulting in a total of 161

USSE installations (see Supporting Information for details). Data were collected

beginning in 2010 and updated until May 2014. Installations in our dataset vary

in their development stage and therefore include installations that may change

in attribute or may never reach full operation. Given that we are interested in

decisions regarding siting, we included siting data for planned installations,

despite their potential uncertainty, as these reflect the most current siting

practices that may not be fully represented in decisions for installations that are

already under construction or operating.

A B

Fig. 4. (A) Map of California showing utility-scale solar energy (USSE) (planned,

under construction, operating) installations’ compatibility by technology

[i.e., photovoltaic (PV), concentrating solar power (CSP)], site, and capacity

(in megawatts). (B) Percentage of USSE installations sited in Compatible, Po-

tentially Compatible, and Incompatible areas. For USSE installations in incom-

patible sites, we provide the percentage of each incompatibility type.

Fig. 5. Proximity of PV and CSP USSE installations to Endangered and Threatened Species Habitat, Federally Protected Areas, Inventoried Roadless Areas, and

the closest for all protected area types. Circles are to scale, relatively (with the exception of Inventoried Roadless Areas for CSP), showing 95% confidence

intervals (shaded area).

Hernandez et al. PNAS Early Edition | 5 of 6

E
C
O
L
O
G
Y

S
U
S
T
A
IN
A
B
IL
IT
Y

S
C
IE
N
C
E

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517656112/-/DCSupplemental/pnas.201517656SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517656112/-/DCSupplemental/pnas.201517656SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517656112/-/DCSupplemental/pnas.201517656SI.pdf?targetid=nameddest=STXT


To evaluate land cover change by USSE development, we compared the

point location of each USSE power plant from our dataset (by their latitude

and longitude) to the land cover type according to the National Land Cover

Dataset (NLCD) (30-m resolution) and allocated the reported total footprint

of the installation as land cover changewithin this land cover type. All 16 land

cover types, as described by the NLCD, are represented in California, including

developed areas within the built environment (Table S3). Developed areas

are further classified according to imperviousness of surfaces: open-space

developed (<20% disturbed surface cover; e.g., large-lot single-family housing

units, golf courses, parks), low-intensity developed (20–49% disturbed cover),

medium-intensity developed (50–79% disturbed cover), and high-intensity de-

veloped (80–100% disturbed cover; e.g., apartment complexes, row houses,

commercial and industrial facilities).

The CEEC model (10) is a decision support tool used to calculate the

technical potential of solar electricity generation and characterize site suit-

ability by incorporating user-specified resource opportunities and constraints (Fig.

3 and Tables S2–S5). The CEEC model uses the National Renewable Energy Lab-

oratory’s satellite-based diffuse/direct normal radiation and direct normal radia-

tionmodels, which estimate average daily insolation (in kilowatt-hours per square

meter per day) over 0.1° surface cells (∼10 km in size), to identify areas with

annual average solar resources adequate for PV (≥4 kW·h·m−2
·d−1) and CSP (≥6

kW·h·m−2
·d−1) technologies, respectively (Table S1).

Among these areas, bodies of openwater and perennial ice and snowwere

excluded as potential sites. We indexed the resulting area for solar energy

infrastructure—independently for PV and CSP—as follows: Compatible, Po-

tentially Compatible, and Incompatible (Supporting Information). Because

solar energy potential within California’s developed areas can meet the

state’s current energy consumptive demand 2.7 times over, decrease or

eliminate land cover change, and reduce environmental impacts (10), we

defined all four developed land cover classes as Compatible, excepting CSP

in high and medium intensity as, to date, CSP technologies have not been

deployed there owing to the relatively lower modularity of CSP.

Potentially Compatible areas augment site selections beyond Compatible

areas. As slopes of 3% and 5% or less are most suitable for CSP and PV in-

stallations, respectively—owing to reduced costs and impact associated with

surface grading—we used the National Elevation Dataset (varies from 3- to

30-m resolution; US Geological Survey) to exclude areas without these cri-

teria. To minimize costs and impacts linked to new construction activities

and materials, Potentially Compatible areas were also restricted to areas

within 10 and 5 km of transmission lines (California Energy Commission) and

roads (TIGER), respectively (Supporting Information, Fig. 3, and Table S4).

We excluded areas where road construction is prohibited (“Federal Roadless

Areas”; US Department of Forest and Agriculture), critical habitat of threatened

and endangered species (US Fish and Wildlife Service), and federally protected

areas (i.e., GAP Statuses 1 and 2, Protected Areas Database of the United States,

US Geological Survey; Table S1). We reported generation-based potential for PV

and CSP at the utility-scale, i.e., within areas identified as Compatible and Po-

tentially Compatible and within areas meeting a minimum parcel size as needed

for a 1-MW installation. Incompatible areas are not classified as Compatible and

Potentially Compatible areas. To quantify impacts of solar energy development

decisions, we spatially characterized the number, capacity, technology type, and

footprint of USSE power plants dataset within the Compatibility Index and an-

alyzed the reasons for incompatibility.

To quantify impact of proximity to protected areas from USSE development,

we calculated the distance between each USSE facility data point (by technology

type) to the nearest protected area by type (i.e., inventoried roadless areas, critical

habitat of threatened and endangered species, and federally protected areas)

using the “Near (Analysis)” in ArcGIS, and subsequently calculated the average of

all distances (by protected area type) and 95% confidence intervals. For “all”

protected area types, we used the shortest distance between each USSE facility

data point and the three protected area types, and subsequently calculated the

average of these shortest distances and 95% confidence intervals.
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