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A B S T R A C T

A new set of accurately measured frequencies of solar oscillations is used to infer the rotation

rate inside the Sun, as a function of radial distance as well as latitude. We have adopted a

regularized least-squares technique with iterative refinement for both 1.5D inversion, using the

splitting coefficients, and 2D inversion using individual m splittings. The inferred rotation rate

agrees well with earlier estimates showing a shear layer just below the surface and another one

around the base of the convection zone. The tachocline or the transition layer where the

rotation rate changes from differential rotation in the convection zone to an almost

latitudinally independent rotation rate in the radiative interior is studied in detail. No

compelling evidence for any latitudinal variation in the position and width of the tachocline

is found, although it appears that the tachocline probably shifts to a slightly larger radial

distance at higher latitudes and possibly also becomes thicker. However, these variations are

within the estimated errors and more accurate data would be needed to make a definitive

statement about latitudinal variations.

Key words: Sun: interior – Sun: oscillations – Sun: rotation.

1 I N T RO D U C T I O N

The measured splittings of solar oscillation frequencies offer us a

valuable tool for studying the rotation rate inside the Sun. It is

possible to obtain both radial and latitudinal variation in the rotation

rate (Schou, Christensen-Dalsgaard & Thompson 1994). Various

techniques have been employed for inverting the splitting coeffi-

cients or even individual splittings in a multiplet (Brown et al. 1989;

Gough & Thompson 1991; Pijpers & Thompson 1992; Sekii 1993;

Wilson & Burtonclay 1995; Corbard et al. 1997).

The results obtained so far suggest that the observed surface

differential rotation of the Sun persists through the convection zone

(CZ). The rotation rate is nearly constant along different latitudes in

most of the CZ, while in the radiative interior it is almost like rigid

body rotation with a value intermediate between that of the solar

equator and pole at the surface (cf. Thompson et al. 1996; Koso-

vichev et al. 1997). The transition occurs over a fairly thin layer,

which is referred to as the ‘tachocline’ (Spiegel & Zahn 1992). The

thickness of the transition layer seems to be smaller than the best

resolution that is currently achievable by inversion methods. This

layer contains a substantial radial gradient of rotation velocity, of

opposite signs in low and high latitudes. It is widely believed that

the tachocline, with its angular velocity gradients, could be the seat

of the dynamo responsible for the solar magnetic cycle (Weiss

1994; Gilman & Fox 1997). The introduction of a toroidal magnetic

field in this layer with latitudinal differential rotation is naturally

expected to lead to interesting consequences for the operation of the

dynamo and its resultant manifestation in the solar surface activity.

The strong gradient in the rotation rate is also expected to produce

turbulence which is likely to mix material just below the convection

zone – a phenomenon needed to match the structure of solar models

with the helioseismically determined structure of the Sun (Richard

et al. 1996; Basu 1997). The accurate measurement of solar internal

rotation rate also provides strong constraints on the theory of

angular momentum transport in the stellar interior (Rüdiger &

Kitchatinov 1996), which should contribute to our understanding of

the solar spin down over its lifetime.

In this work we investigate the internal rotation rate of the Sun,

with particular emphasis on the tachocline. We have adopted the

1.5D inversion technique for inverting the rotation rate from the

measured splitting coefficients (Ritzwoller & Lavely 1991; Schou

et al. 1994; Antia & Chitre 1996). We have also used a 2D inversion

of the individual frequency splittings themselves.

The location and structure of the tachocline is thus crucial in

many models of the solar dynamo and it has been the subject of

several detailed studies. Using a simple forward modelling,

Kosovichev (1996) found that the tachocline is centred at a radial

distance of ð0:692 6 0:005Þ R( and with a width of ð0:096

0:04Þ R(, while Charbonneau et al. (1997) found it to be centred

at ð0:704 6 0:003Þ R( and with a width of ð0:050 6 0:012Þ R(.

Similar results were also found by Basu (1997), who found that the

tachocline is centred at ð0:7050 6 0:0027Þ R( with a half-width

of ð0:0098 6 0:0026Þ R(, which is ð0:0480 6 0:0127Þ R( when
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scaled to the width as define by Kosovichev (1996) and Charbon-

neau et al. (1997) (see Section 3.1, below, for the definition of the

width). Wilson, Burtonclay & Li (1996) find the tachocline to be

somewhat deeper at r ¼ 0:68 6 0:01 R( and also slightly thicker

(0:12 R(). While all these results are roughly in agreement with one

another, the differences in thickness are quite significant from the

point of view both of dynamo models and of the hydrodynamical

stability. Similarly, the exact location of the tachocline with respect

to the base of the convection zone is also crucial. Further, all these

studies effectively assumed that the position and thickness of the

tachocline are independent of latitude. Recently, Corbard et

al. (1998), using a modified inversion technique which accounts

for sharp changes in the rotation rate, have estimated the equatorial

position of the tachocline to be ð0:695 6 0:005Þ R( with a half-

width of ð0:05 6 0:03Þ R(. In this work, we attempt to find

latitudinal variations in properties of the tachocline and also to

use improved data from the GONG network (see below) to obtain

better estimate for the tachocline properties. We use forward

modelling techniques to detect possible latitudinal variations in

properties of the tachocline. This includes the calibration method

used by Basu (1997) and another technique based on simulated

annealing.

For this work we have used a number of different data sets

obtained by the Global Oscillations Network Group (GONG)

project (Hill et al. 1996). These data are very precise and scan a

large range of frequency and degree of modes. Apart from this we

also use the data from the Big Bear Solar Observatory (BBSO)

(Woodard & Libbrecht 1993) combined with splitting coefficients

for low degree modes as measured by the Birmingham Solar

Observations Network (BiSON) (Elsworth et al. 1995).

The rest of the paper is organized as follows. In Section 2 we

outline the methods used to invert the data to obtain the solar

rotation rate, and describe the inversion results. Techniques for

determining whether there is any latitudinal variation in the

tachocline are summarized in Section 3. In Section 4 we discuss

the results of inversion when the contribution from the tachocline is

removed from the data before inversion. Our conclusions are stated

in Section 5.

2 I N V E R S I O N S T O D E T E R M I N E T H E

ROTAT I O N R AT E

The different modes of solar oscillations can be described by three

integers: the radial order n, the angular degree , and the azimuthal

order m. The integers , and m are the degree and order respectively

of the spherical harmonic function used to describe the angular

behaviour of the mode. In a spherically symmetric, non-rotating

star, the frequency qn;,;m of an eigenmode is independent of m and

the mode is ð2, þ 1Þ-fold degenerate. The spherical symmetry of

the Sun is broken by rotation, lifting the degeneracy of the modes.

The differences in frequency of modes with the same n and ,, but

different m, can be related to the rotation rate in the Sun by

Dn;,;m ¼
qn;,;m ¹ qn;,;¹m

2m

¼

� R(

0

�1

¹1

dr d cos v Kn;,;mðr; vÞQðr; vÞ; ð1Þ

where the kernels Kn;,;mðr; vÞ are defined by Pijpers (1997).

Most helioseismic data sets do not contain frequencies of

individual modes or the individual splittings Dn;,;m as defined by

equation (1), but rather frequencies of modes for a given ðn; ,Þ are

expressed as sum of polynomials in m, namely,

qn;,;m ¼ qn;, þ
X

smax

s¼1

c
ðn;,Þ
s P

ð,Þ
s ðmÞ; ð2Þ

where P
ð,Þ
s ðmÞ are suitable polynomials of degree s, and generally,

smax < 2,. For a proper choice of the polynomials, the individual

inversion problems for each splitting coefficient c
ðn;,Þ
s becomes

decoupled from the rest (Ritzwoller & Lavely 1991).

The data from the GONG instrument are available as frequencies

of all individual modes, as well as splitting coefficients for the

polynomials as defined by Ritzwoller & Lavely (1991). We adopt

both these forms of data, and use the so-called 1.5D inversion

method (described below) to invert the data in the form of splitting

coefficients. This method has the advantage of being efficient in

terms of computing resources. However, in order to exploit the full

potential of the data we need to invert the individual frequency

splittings directly using a 2D inversion method.

2.1 The 1.5D inversion

The rotational splitting coefficients are sensitive only to the com-

ponent of rotation velocity that is symmetric about the equator and

we therefore assume the rotation velocity to be symmetric. In order

to determine the latitudinal dependence of the rotation rate, we

follow Ritzwoller & Lavely (1991) and express the rotation velocity

as

vrotðr; vÞ ¼ Qðr; vÞr sin v ¼ ¹
X

∞

s¼0

w2sþ1ðrÞ
∂
∂v

Y
0
2sþ1ðvÞ; ð3Þ

where v is the colatitude, Y
0
k ðvÞ are the spherical harmonics and

wsðrÞ are expansion coefficients which are related to the splitting

coefficients c
ðn;,Þ
s (cf. equation 2) by

c
ðn;,Þ
s ¼

�R(

0
wsðrÞK

ðn;,Þ
s ðrÞr

2
dr; ð4Þ

where the kernels K
ðn;,Þ
s ðrÞ are given by (Ritzwoller & Lavely 1991)

K
ðn;,Þ
s ¼ ¹

r0

r

½y
2
r þ ,ð, þ 1Þy

2
h ¹ 2yryh ¹ 1

2
sðs þ 1Þy

2
hÿ

� R(

0 r0½y2
r þ ,ð, þ 1Þy2

hÿr2 dr
: ð5Þ

Here, r0ðrÞ is the density in the equilibrium solar model, while yr

and yh are respectively, the radial and horizontal components of

displacement eigenfunctions. Using the splitting coefficients c
ðn;,Þ
s

from the GONG data, equation (4) can be inverted to obtain wsðrÞ.

The advantage of this choice for expansion is that the resulting

inverse problems for determining the individual components w1ðrÞ,

w3ðrÞ; . . . get decoupled and each component can be estimated

independently. The components wsðrÞ are calculated by solving

separate 1D inversion problems with the iterative refinement of the

regularized least-squares solution (Antia, Chitre & Thompson

1996). The rotation rate at any given radial distance and colatitude

can then be computed using equation (3).

We use cubic B-spline basis functions to represent the rotation

rate and the regularized least-squares inversion is performed using

the singular value decomposition. The B-splines are defined over a

set of 50 knots which are uniformly spaced in acoustic depth. We

have used only the first six terms of the expansion (3), as the higher

splitting coefficients in the GONG data appear to be dominated by

random noise. The observed rotational splitting coefficients from

GONG data for , # 150 and 1 # n # 3:5 mHz are used for inver-

sion. Further, in actual practice we directly find the individual
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components of rotation rate as defined by

QsðrÞ ¼

�������������

2s þ 1

4p

r

wsðrÞ

r
; ð6Þ

instead of wsðrÞ.

Since the inversion problem defined by equation (4) is in general

ill-conditioned, some regularization or smoothing is required to

obtain any meaningful solution in the presence of errors in observed

data sets. In order to study the sensitivity of inversion results on

smoothing prescription, we have tried three different prescriptions

for the regularized least-squares inversion.

(i) First derivative smoothing, where we minimize

X

n;,

ðj
ðn;,Þ
s Þ

¹2
c

ðn;,Þ
s ¹

� R(

0

K
ðn;,Þ
s ðrÞwsðrÞr

2 dr

� �2

þ l

� R(

0

1

r

dws

dr

� �2

dr: ð7Þ

Here c
ðn;,Þ
s are the observed splitting coefficients and j

ðn;,Þ
s the

corresponding error and l is the regularization parameter. For this

case, the rotation rate in the solar core – where the amount of

information is rather meager as the splitting data for low degree

modes have large errors – tends to a constant value when sufficient

smoothing is applied.

(ii) Second derivative smoothing, where we use the second

derivative instead of the first in the second term of equation (7).

In this case, the rotation rate in the solar core tends to a monotonic

linear profile, which is perhaps unrealistic as it may keep rising or

falling depending on the gradient. In order to overcome this

problem we apply the following boundary conditions at the centre:

dQi

dr
¼ 0;

Qið0Þ ¼ 0 ði > 1Þ:

ð8Þ

The second boundary condition may have some justification, as

there is no information available to allow us to determine the

higher-order coefficients QiðrÞ (i > 1) in the solar core from the

splitting data. This is because only the first splitting coefficient c1 is

known from observations for the low degree modes which sample

the solar core . This condition is also required to ensure regularity of

rotation velocity at the origin (Corbard et al. 1997).

(iii) This is the same as (ii), except that the boundary conditions

given by equation (8) are applied at a radial distance r ¼ 0:3 R( (or

r ¼ 0:1 R(). These boundary conditions essentially try to constrain

the rotation rate to become constant in the region inside the point at

which the boundary conditions are applied. This may be justified, as

we do not appear to have enough information to determine the

gradient in rotation rate in the core (cf. Chaplin et al. 1996).

In all of these cases, the method of iterative refinement effec-

tively chooses the regularization parameter l as explained by Antia

et al. (1996). It is found that the regularization parameter increases

with the order s of the splitting coefficient, which probably reflects

the fact that higher-order coefficients are dominated by noise in

most regions.

2.1.1 Results of 1.5D inversion

We use the 1.5D inversion technique outlined above to infer the

rotation rate in the solar interior using the GONG data for months

4–14, which consists of splitting coefficients for modes with

, # 150. The x
2 per degree of freedom is found to be close to

unity (between 1.1–1.2) in all cases. In order to study the influence

of smoothing on the inversion results, we perform inversion using

different smoothing prescriptions given in Section 2.1 and the

results are displayed in Fig. 1. This shows the rotation rate

corresponding to the first three splitting coefficients c1, c3 and c5.

From the figure it is clear that the results in the convection zone are

not very sensitive to the choice of smoothing or to the point at which

the boundary conditions given in equation (8) are applied. Notice-

able differences are seen only for those parts of the Sun where the

data have large errors. The maximum difference of about 10 nHz

occurs in the core in the latitudinally independent component Q1.

Similar differences are also seen for the component Q3. These

differences are comparable to the error estimate in the inversion

results arising from errors in observed splitting coefficients. It may

be noted that the error estimates shown in the figure for the second

derivative smoothing with the boundary conditions applied at

r ¼ 0:3 R( show a decrease in the core. This is artificial, and is

entirely the result of boundary conditions. In reality the errors

should increase rapidly as r decreases in the core. Some of the

differences in the core between the results using first and second

derivative smoothing are due to an absence of boundary condi-

tions in the first derivative case. However, a part of the difference

may also be the result of possible systematic errors in the splitting

coefficients of the low-degree modes. From this figure it is clear

that for r > 0:5 R(, the choice of smoothing or the point where the

boundary conditions are applied does not make a significant
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Figure 1. The first three components of the rotation rate obtained with

different prescriptions of smoothing. In all three panels the continuous line is

the result obtained with first derivative smoothing. The short-dashed, long-

dashed and dot-dashed lines are for second derivative smoothing with the

boundary conditions (equation 8) applied at r ¼ 0, 0:1 and 0:3 R( respec-

tively. The dotted lines show 1j errors on the solution obtained with the

second derivative smoothing and boundary conditions applied at 0:3 R(.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/2
9
8
/2

/5
4
3
/1

0
5
6
6
1
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



difference, and in most of the work we have confined ourselves to

this region. All the following results using 1.5D inversion have

been obtained using second derivative smoothing with the bound-

ary conditions applied at 0:3 R(.

In order to study the sensitivity of the inversion technique to

possible systematic errors in the input data sets, we have repeated

the inversion for various sets of GONG data: the results are shown in

Fig. 2. This figure also includes the results obtained using the

averaged BBSO data for the years 1986, 1988, 1989 and 1990

(Woodard & Libbrecht 1993), combined with the splittings for low-

degree modes from BiSON (Elsworth et al. 1995). It is clear that

there is some systematic difference between different data sets, but

the difference is comparable to the error estimates arising from

inversions. This difference is also comparable to that arising from

different smoothing prescriptions as displayed in Fig. 1. The spread

between various curves in Fig. 2 should give an estimate of expected

errors in inverted profiles, including those arising from systematic

errors in the input data. It may be noted that the data from GONG

month 10, GONG months 4–7 and BBSOþBiSON have larger

errors as compared to that in the GONG months 4–14 data: this is

reflected in the tachocline region, where the GONG months 4–14

data appear to have higher resolution and hence the tachocline is

sharper.

A contour diagram showing the rotation rate inside the Sun as

inferred using the GONG months 4–14 data is shown in Fig. 3. It

can be seen that the rotation rate is approximately constant along

radial lines in the convection zone. These results are similar to

earlier inversions for rotation rate (Thompson et al. 1996; Koso-

vichev et al. 1997). The tachocline is clearly visible in these contour

diagram. Apart from the tachocline, there is another shear layer near

the solar surface at which the rotation rate increases with depth.

This shear layer appears to extend to all latitudes and the rotation

rate increases by about 17 nHz in this layer at the equator, but the

change is lower at higher latitudes. The maximum value of rotation

rate occurs around r ¼ 0:95 R(. The maximum rotation rate at the

equator is 467:5 6 0:2 nHz at r ¼ 0:945 R(. The inverted rotation

rate at the solar surface is close to that inferred from Doppler

measurements (Snodgrass 1992). The rotation rate in the radiative

interior is more or less constant and some of the features seen in the

contour diagram do not appear to be significant. Although there is

considerable uncertainty in the estimate of the rotation rate in the

core, it still appears to be lower than the surface equatorial rotation

rate.

2.2 2D inversion

Although the 1.5D inversion technique described in Section 2.1 is

very efficient in terms of computing resources, it is not clear if the

expansion of rotation rate given by equation (3) imposes any

limitation on the solution. A possible drawback of 1.5D inversion

is the loss of information, since the number of splitting coefficients

is generally much smaller than the number of individual splittings,

but it is not clear if the individual splittings contain any more

information than the first few splitting coefficients. A more serious

problem occurs in the inversion of higher-order coefficients, which

546 H. M. Antia, S. Basu and S. M. Chitre
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Figure 2. Solar rotation rate at the equator, 308 and 608 latitudes obtained

using different data sets. In all three panels, the continuous lines are the

results obtained using the GONG months 4–14 data, with the dotted lines

showing the 1j error limits. The short-dashed, long-dashed and dot-short-

dashed lines are for GONG months 4–10, months 4–7 and month 10 data

respectively, while the dot-long-dashed line is for the BBSO+BiSON data

combination. Note that while for all the GONG data sets we have used a

splitting coefficient from c1 to c11, for the BBSO+BiSON set we have used

only the data up to c5.

Figure 3. A contour diagram of the solar rotation rate as obtained by the

1.5D inversion technique using GONG months 4–14 data. As a result of the

symmetry of the inversion results, the rotation rate has been shown for just

one quadrant. The dotted contours have been drawn at intervals of 5 nHz, and

the continuous ones at intervals of 20 nHz. The thick continuous line is the

contour at a level of 440 nHz. The x-axis represents the solar equator while

the y-axis represents the rotation axis.
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have useful information only in the outer part of the convection

zone and as a result the solution in most of the interior is essentially

determined by the applied smoothing and boundary conditions. A

2D representation of the rotation rate will hopefully be able to

overcome this problem. Another drawback of the 1.5D inversion is

that all components QsðrÞ make their maximum contribution at the

pole; further, this maximum value is much larger than that in other

regions. This is particularly true for the higher-order components.

As a result, the errors in the 1.5D inversions tend to get highly

magnified near the pole and may even give rise to spurious features

if very high-order terms are included. In order to overcome these

problems we attempt a 2D inversion technique which does not use

the expansion given by equation (3), but instead directly represents

the 2D function Qðr; vÞ in terms of suitable basis functions.

In order to solve the inversion problem defined by equation (1)

we represent the rotation rate in terms of B-spline basis functions in

r and v,

Qðr; vÞ ¼
X

nr

i¼1

X

nv

j¼1

bijfiðrÞwjðcos vÞ; ð9Þ

where bij are the coefficients of expansion, fiðrÞ are the B-spline

basis functions over r and wjðcos vÞ are those over cos v, and nr and

nv are the number of basis functions in r and cos v respectively. We

use a set of knots which are uniformly spaced in acoustic depth and

cos v respectively to define fiðrÞ and wjðcos vÞ.

This inversion problem is also solved using the regularized least-

squares technique with iterative refinement. In this case, we have

used only second derivative smoothing, which involves minimizing

X

n;,;m

j
¹2
n;,;m Dn;,;m ¹

� R(

0

dr

�1

¹1

d cos vKn;,;mðr; vÞQðr; vÞ

� �2

þ lr

� R(

0

dr

�1

¹1

d cos vr
¹1 ∂2

Q

∂r2

� �2

þ lv

� R(

0

dr

�1

¹1

d cos v sin2
v

∂2
Q

∂ cos v2

� �2

; ð10Þ

where lr and lv are the two regularization parameters controlling

the smoothing. No boundary conditions are applied in this case to

constrain the rotation rate in the core. We have used 50 knots in r

and 30 knots in cos v to represent the rotation rate.

It is also possible to perform 2D inversion for splitting coeffi-

cients (Schou et al. 1994; Pijpers 1997), where the rotation rate is

expressed in terms of 2D basis functions (equation 9) and appro-

priate combinations of individual splittings are constructed to relate

the corresponding splitting coefficients to the rotation rate. In order

to see whether the differences between the 1.5D and 2D results are a

result of the expansion of rotation rate or of the data, we have done a

2D inversion for the splitting coefficients also. Thus we have two

sets of results using 2D inversions, one for 2D inversion of

individual splittings Dn;,;m, and the other for 2D inversion of the

splitting coefficients c
ðn;,Þ
s .

2.2.1 Results of 2D inversion

A contour diagram of the rotation rate inferred by 2D inversion of

GONG months 4–14 data, consisting of about 85 000 splittings of

individual modes, is shown in Fig. 4. The x
2 per degree of freedom

in this case is around 1.3. Note that inside the CZ the results are

essentially similar to that obtained by the 1.5D method, despite

having a much larger number of splittings in 2D inversion. Thus it

appears that the data are well represented by the six splitting

coefficients. However, in the radiative interior the solutions

obtained using 1.5D and 2D inversions are significantly different.

A large part of the difference is a result of the boundary conditions

imposed in the 1.5D inversion, which along with the smoothing tend

to produce solid body rotation in the interior. In the absence of any

boundary condition, the 2D inversion technique attempts to fit the

splittings for low-degree modes which probably have some sys-

tematic errors, and produces a sharply decreasing rotation rate in the

radiative interior. This decrease may not be real as it could result

from second derivative smoothing coupled with errors in data.

It appears that the behaviour of the solutions in the polar regions

is also somewhat different. The 2D solution shows a rapid decrease

of the rotation rate towards the pole similar to that seen in the data

from the Michelson Doppler Imager (MDI) instrument on board the

SOHO spacecraft. The 1.5D result also shows a decrease in the

surface rotation rate at the pole, but the reduction is not as much as

in the 2D inversion of individual splittings. The errors in inversion

increase rapidly with latitude near the pole, and as a result it is

difficult to discern any features at high latitudes reliably. Thus the

differences at high latitudes may reflect our inability to obtain

reliable inversion results in that region. However, from the form of

expansion of the rotation rate (equation 3) in 1.5D inversion, it is

clear that the contribution of each component (Qi) has a strong

maximum at the pole and any error in these components will be

highly magnified there. This is particularly true of the higher-order

terms in the expansion. It thus appears that the 2D inversion of

individual splittings, which does not assume any particular expan-

sion of rotation rate, may be able to give better results near the pole,

though the errors will still be large and the smoothing will play a

dominant role in determining the solution near the poles.

In order to see whether the differences between the 1.5D and 2D

results arise from the representation of the rotation rate or from the

data, we have also done a 2D inversion of the splitting coefficients.

For this we use the same splitting coefficients that were used in the

1.5D inversion but expand the rotation rate in terms of 2D basis

functions using equation (9). These results are also shown in Figs 5

Solar internal rotation rate and the latitudinal variation of the tachocline 547
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Figure 4. A contour diagram of the solar rotation rate as obtained by the 2D

inversion of individual splittings using GONG months 4–14 data. The

format is the same as that for Fig. 3.
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and 6. Note that in the outer layers of the Sun, the results of the

1.5D and 2D inversion of splitting coefficients are very close to

each other, but slightly different from the results of the 2D

inversion of the individual splittings. In the deeper layers how-

ever, the results of 1.5D inversion are quite different from both the

2D inversions. As already discussed, this is a result of the

boundary conditions (equation 8) that are applied in the 1.5D

inversion method.

3 T H E TAC H O C L I N E

It can be seen from the results of the inversions that there is a sharp

transition close to the base of the convection zone where the rotation

rate changes from differential rotation in the convection zone to a

rotation rate that is almost independent of latitude. Since the

inversions are not able to resolve the tachocline, other techniques

have been employed to study this shear layer. Even though inver-

sions indicate that the tachocline is slightly shallower and thicker at

high latitudes, it is not clear whether this represents a real variation

or is just an artefact of inversion technique caused by the fact that

the extent of jump increases with latitude and the resolution of

inversion techniques deteriorates with increasing latitude. For

an independent confirmation of this variation we construct com-

binations of rotational splitting coefficients c
ðn;,Þ
s , which

give the rotation velocity at some predefined co-latitude v0. Thus

multiplying equation (4) by dY
0
s =dvjv¼v0

and summing over s we get

X

∞

s¼0

c
ðn;,Þ
2sþ1

dY
0
2sþ1

dv

�

�

�

�

v¼v0

¼ ¹

� R(

0

vrotðr; v0ÞK
ðn;,Þ

ðrÞr
2 dr: ð11Þ

Here, in principle, the kernel K
ðn;,Þ

ðrÞ also depends on s, but for

simplicity we neglect the s dependence, since the s-dependent term

is in general very small, as can be seen from equation (5). With this

approximation, equation (11) reduces to a 1D inversion problem at

fixed latitude. Since inversion cannot resolve the tachocline, we use

a forward modelling technique to estimate the parameters defining

the tachocline.

We have first made the appropriate combinations of the splittings

data for different latitudes using the coefficients c1–c11. Fig. 7

shows the data, binned in groups of 15 modes, plotted as a function

of the lower turning point. We show the data at the equator, 45◦ and

60◦ latitudes. Note that the equator shows some hint of a jump,

while 45◦ and 60◦ latitudes show a clear jump. We concentrate on

the latitudes which show evidence of the transition and try to

determine the magnitude of the jump, position and thickness of

the transition at latitudes of 0◦
; 15◦

; 45◦
; 60◦ and 75◦. The data for

the 30◦ latitude does not give any clear indication of the transition,

which is consistent with inversion results. The latitudinal variation

of the magnitude of the jump is obvious from the figure, but the

changes in position and thickness are not clear. We use both the

calibration method used by Basu (1997) and another method based

on simulated annealing to study the tachocline at each latitude

separately.
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Figure 5. Comparison of the rotation inversion results at fixed latitude

obtained by the 1.5D and 2D inversion methods. The continuous line shows

the results obtained by the 1.5D inversion method with the dotted lines

showing the 1j error limits. The dashed line shows the results obtained by

the 2D inversion of the individual splittings, and the dot-dashed line shows

the results obtained by the 2D inversion of the splitting coefficients.

Figure 6. Comparison of the rotation inversion results at fixed radius. The

line styles are the same as in Fig. 5. In the top panel the heavy short-dashed–

long-dashed line shows the observed surface rotation rate as estimated by

Doppler measurements (Snodgrass 1992).
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Apart from this we have also tried a 2D fit with some assumed

form for the tachocline with latitudinal variation to simultaneously

fit all the splitting coefficients for obtaining the latitudinal variation

in the properties of the tachocline.

3.1 Calibrating the tachocline

The method followed here is the same as that used by Basu (1997).

Data on frequency splittings for modes trapped in the convection

zone and those with turning points around the CZ base are quite

precise. The exact position and thickness of the tachocline can be

determined by calibrating the difference in splittings between the

Sun and models with known position and thickness of the tacho-

cline. Basu (1997) assumed that the position and thickness of the

tachocline can be determined by the splitting coefficient c3 alone,

which automatically ensures that the position and thickness of

tachocline are independent of latitude. In this work, we explicitly

study the latitudinal variation by applying the same procedure to

data for each of the chosen latitudes.

In order to estimate the position, thickness and the jump in the

tachocline we construct a series of models with known properties.

We parametrize the calibration models with the rotation profile

Qcal ¼
dQ

1 þ exp½ðrd ¹ rÞ=wÿ
; ð12Þ

where dQ is the jump in the tachocline, w is the half-width of the

transition layer, and rd the mid-point of the transition region. Thus

the rotation rate increases from a factor 1=ð1 þ eÞ of its maximum

value to the factor 1 ¹ 1=ð1 þ eÞ of its maximum value in the range

r ¼ rd ¹ w to r ¼ rd þ w. The models described by equation (12)

have almost zero rotation rate in the core, which is, of course, not

true for the Sun. To take this into account we subtract the contribu-

tion of a uniform rotation rate Qc, the estimated value of rotation

rate in the interior as obtained from the inversion results, from the

observed splittings.

Note that our parametrization of the tachocline is different from

that of Kosovichev (1996) and Charbonneau et al. (1997). The

definition of the position and the jump remains the same, the

thickness of the tachocline as defined by them is roughly 4.9

times the half-width we have defined, i.e. a half-width of 0.01 R(

in our model corresponds to a thickness of 0:049 R( in their models.

Thus the tachocline thickness of ð0:050 6 0:012Þ R( as estimated

by Charbonneau et al. (1997) using their model will be equivalent to

a half-width of ð0:0102 6 0:0025Þ R( by our definition, which is

consistent with the value of ð0:0098 6 0:0026Þ R( determined by

Basu (1997). Of course, the form of variation in rotation rate inside

the tachocline can only be verified by inversions, which do not at

present have the required resolution. However, as long as the

thickness of the tachocline is small enough, the exact form of

variation within this layer may not be important, as maybe seen by

the similarity of the results obtained by Charbonneau et al. (1997)

and Basu (1997).

If cv be the combination of observed splitting coefficients for a

given latitude (after removing the contribution from Qc) and av that

of the calibration model, then to determine the jump, we make the

following fit by treating the splittings as a function of the lower

turning point, rt, of the mode

cvðrtÞ ¼ aavðrtÞ þ fðrtÞ; ð13Þ

where a is the factor which takes into account the difference in

jumps between the observations or test model and the calibration

model, while fðrtÞ is a low-degree polynomial which takes into

account any trend in the real rotation rate not taken into account by

the parametrization in equation . This function will also account for

differences in the position and width of the tachocline between the

test and calibration models. In practice we do the fit for all the

calibration models and choose the best-fitting result. The constant

term in the polynomial fðrtÞ will also take care of differences

arising as a result of the use of incorrect Qc while subtracting out the

contribution from the core rotation rate. A polynomial of degree 2 is

found to be sufficient. The fit is made between rt of 0.6 and 0.9 R(.

Modes with lower turning points are avoided because of large

observational errors in these modes. Modes with higher rt are not

used so that the shear layer known to exist just below the solar

surface does not affect the results. We perform a least-squares fit

with the weights for each mode being the inverse of the errors in the

corresponding splitting.

We follow exactly the same procedure as that of Basu (1997) for

determining the position and thickness of the tachocline. To

recapitulate briefly, the difference in the splitting coefficients

between one model and other similar models that have disconti-

nuities at different positions, has a well defined peak, and the height

of the peak is proportional to the difference in the positions of the

discontinuity. Thus the peak height can be calibrated to find the

position of the discontinuity. If the models are not similar, e.g. have

different trends in the convection zone or in the interior, or have a

different width of transition, the peak lies on a smooth function

which can be represented as a low-degree polynomial. A similar

calibration can be used to estimate the thickness over which the

transition of the rotation rate occurs. In this case the width of the

Solar internal rotation rate and the latitudinal variation of the tachocline 549
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Figure 7. The splitting coefficients for GONG months 4–14 combined to

obtain the data for different latitudes, which are marked in the figure. The

points represent the combinations binned in groups of 15 modes.
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peak between the two models is proportional to the thickness of the

wider transition, but a simple scaling of the radius around the peak

position can reduce the curves to similar widths.

We have constructed models with rd of 0:68, 0:69, 0:70, 0:71 and

0:72 R( and half-width w of 0, 0:005, 0:01, 0:015, 0:02 and 0:025

R(. We have used dQ of 20 nHz in the calibration models and

determined the actual jump from the splittings as outlined earlier.

The splittings in the calibration models are then scaled to the

required jump.

For the purpose of calibration, we consider the difference in the

splitting coefficients between neighbouring calibration models and

fit a spline through the points

FðrÞ ¼ adaðrÞ ¼
X

i

biwiðrÞ; ð14Þ

where the FðrÞ values are the calibration curves and contain only the

signal arising from the difference in position or width of the

tachocline, and wðrÞ are the cubic B-spline basis functions. Thus

we have four calibration curves from the five calibration models.

The difference in splittings between each calibration model and

the observed splittings can be fitted with the form

dcv ¼ cvðrÞ ¹ aavðrÞ ¼ bFðrÞ þ f ðrÞ: ð15Þ

Here a is the jump factor determined by the fit to equation (13), FðrÞ

is the calibration curve defined in equation (14) and f ðrÞ is a low-

degree polynomial used to take into account systematic effects

arising from differences in other parameters, like width etc.

between the observations. As in Basu (1997) we find that a

second- or third-degree polynomial is optimum. The constant b

and the coefficients of the polynomial f ðrÞ are obtained by a least-

squares fit to the data. In practice, we determine b for all five

calibration models and interpolate to find the points where b ¼ 0.

The four calibration curves give four results which are then

averaged.

Ideally, dQ, rd , and w should be determined simultaneously:

however, for simplicity in this work we determine these parameters

by independent fits. It has been shown by Basu (1997) that statistical

errors arising from uncertainties in observed splittings dominate

over the systematic errors, and therefore, such a procedure may not

introduce significant additional errors. To try and keep the para-

meters of the calibration models close to that of the actual

tachocline, the fit is done in two steps. We first determined the

positions and widths of the tachocline at the different latitudes using

the models with parameters found for the coefficient c3 by

Basu (1997). The process was repeated with calibration models

constructed with parameters closer to those determined in the first

round of fits.

Note that the models defined by equation (12) have a flat rotation

rate in the CZ, which is obviously not the case at all latitudes. This is

taken care of in our fitting process described above through the

smooth function, fðrÞ in equation (13) and f ðrÞ in equation (15).

However, in order to check how much difference the flat rotation

rate in the CZ makes, we have also constructed calibration models

in which the rotation rate in the CZ follows the trend revealed by the

inversions described in the previous section. In addition to the form

shown in equation (12), these models have latitude-dependent extra

terms, with the rotation rate defined as

Q ¼
Qcal þ Bðr ¹ 0:7Þ if r # 0.95

Qcal ¹ Cðr ¹ 0:95Þ þ 0:25B if r > 0.95.

(

ð16Þ

Here, the coefficients B and C are obtained from the inversion

results and the term Qcal is defined by equation (12). The models

described by equation (16) use an approximate value of the jump;

we still use the fit in equation (13) to find the exact magnitude of the

jump. The procedure to find the position and thickness of the

tachocline remains the same. It must be noted that for these

models, the polynomial f of equation (13) and f ðrÞ in equation

(15) are very small.

For all cases, the error estimates in the tachocline parameters are

obtained using Monte Carlo simulations. We have used two sets of

GONG data, those from GONG months 4–10 and GONG months

4–14, for the present work.

3.2 The method of simulated annealing

The calibration method described above suffers form the disadvan-

tage that each parameter defining the tachocline is determined

separately when the rest of the parameters are held fixed. We

therefore tried another forward modelling method, in which the

jump, position and width can be found simultaneously. Since this

will require a non-linear least-squares fit, we have resorted to the

method of simulated annealing, which has a better chance of finding

the global minimum. For this purpose the rotation rate at any given

latitude is parametrized by

QannðrÞ ¼

Qc þ Bðr ¹ 0:7Þ

þ dQ
1 þ exp½ðrd ¹ rÞ=wÿ

if r # 0.95

Qc þ 0:25B ¹ Cðr ¹ 0:95Þ

þ dQ
1 þ exp½ðrd ¹ rÞ=wÿ

if r > 0.95

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð17Þ

where Qc, B, C are the three parameters defining the smooth part of

the rotation rate while dQ, rd and w define the tachocline. Here B is

the average gradient in the lower part of the convection zone, while

C is the gradient in the near-surface shear layer. These six

parameters are determined by a non-linear least-squares fit to the

combinations of splitting coefficients, representing the rotation rate

at the required latitude. Once again we use only those modes which

have turning points in the range 0.6–0.9 R( in this fit. We use the

method of simulated annealing (Vanderbilt & Louie 1984; Press et

al. 1993) to minimize the x
2 function. Since there are likely to be

many local minima where the minimization tends to get trapped,

even with simulated annealing, we make 20 attempts using different

sequences of random numbers in the annealing procedure to find the

minimum and accept the one that gives the lowest x
2
.

Instead of fitting the rotation rate at each latitude separately and

then finding the variation in the tachocline properties, we can

directly fit a 2D form of rotation rate with the tachocline to obtain

this variation. The form fitted is the same as in the 1D case

(equation 17) with the following substitutions:

B ¼B1 þ B3P3ðvÞ þ B5P5ðvÞ;

dQ ¼dQ1 þ dQ3P3ðvÞ þ dQ5P5ðvÞ;

rd ¼rd1 þ rd3P3ðvÞ;

w ¼w1 þ w3P3ðvÞ;

ð18Þ

where

P3ðvÞ ¼ 5 cos2
v ¹ 1;

P5ðvÞ ¼ 21 cos
4

v ¹ 14 cos
2

v þ 1;
ð19Þ

are polynomials used to define the latitude dependence. We

have used these polynomials so as to ensure some degree of

separation between contributions to various splitting coefficients.

550 H. M. Antia, S. Basu and S. M. Chitre

q 1998 RAS, MNRAS 298, 543–556

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/2
9
8
/2

/5
4
3
/1

0
5
6
6
1
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



This introduces five parameters to define the smooth part and

another seven parameters to define the tachocline. It is not clear

whether all these parameters are required to explain the data, and we

have carried out experiments involving different combinations to

determine which of these parameters are required. Once again we

use the simulated annealing technique to simultaneously fit the first

three splitting coefficients c1–c5 for all modes with a lower turning

point, in the range 0.6–0.9 R(. The reason for using only the first

three splitting coefficients is that with the assumed form for the

tachocline model given by equation (18), we do not expect to fit

the higher coefficients properly. If these coefficients are to be

fitted then additional parameters will need to be introduced in dQ

and B in equation (18). We have tried this also but we do not think

that the fits with additional parameters and coefficients are any

better than the ones considered here, as the higher-order para-

meters turn out to be rather small. As a result, in this work we

present the results obtained by fitting only the first three splitting

coefficients.

3.3 Results

In order to test the procedure outlined above we constructed a test

model with a prescribed rotation rate including a tachocline, and

have applied the techniques for determining the properties. The

rotation rate in the test model was chosen to be

Qðr; vÞ ¼ 430 þ 20 sinðpr=2Þ

þ 10ð1 ¹ 4 cos2
v ¹ cos4

vÞFjðrÞ;

FjðrÞ ¼

¹1 if r < rd ---- w

sinð0:5pðr ¹ rdÞ=wÞ if rd ---- w # r # rd + w

þ1 if r > rd + w

8

>

>

<

>

>

:

rd ¼ ð0:69 þ 0:02 cos2
vÞ R(;

w ¼ ð0:005 þ 0:02 cos2
vÞ R(:

ð20Þ

The splitting coefficients computed for this model were perturbed

by adding random errors with the same distribution as that specified

by quoted errors in the GONG months 4–14 data. The perturbed

data were then used to infer the characteristics of the tachocline, and

the results using the calibration and 1D annealing methods are

shown in Fig. 8. Since this model has a different form of variation

within the tachocline as compared to the models we are using for the

fits, we do not expect the thickness of the tachocline as determined

by our procedure to agree with the actual thickness. Comparing the

region in which the rotation rate varies from 1=ð1 þ eÞ to

1 ¹ 1=ð1 þ eÞ of the total jump, it appears that the effective width

in the test model is about 3:25 times less than that given by

equation (20), when models with the form given by equation (17)

are used. Thus the estimated values should be compared with this

scaled width, as has been done in Fig. 8. Apart from the form of

variation within the tachocline, the trend in the lower CZ in the test

model is also far from linear and hence may not be properly

modelled by the tachocline model used in the annealing fits. Note

that all the results are roughly within the error bars of the exact

values, even though the form of variation within the tachocline, as

well as the trend in the CZ in the test model, are different from those

in the calibration models. If we use a test model with the same form

for the tachocline as used in the calibration models, it is possible to

obtain much better results. This gives us confidence that we can

indeed determine the parameters of the solar tachocline.

The variation in the position and thickness of tachocline with

latitude is not totally clear from the estimated parameters, since

these variations were chosen to be comparable to the error estimates

(as happens to be the case for observed splittings also). It appears

that a variation of 0:02 R( in the position of the tachocline is barely

at the limits of detection with the present data. The variation in

thickness is not very evident, as the estimated thickness appears to

be too small at all latitudes.

Having tried out our techniques on a test model, we now apply

the same procedure to the GONG data for the months 4–10 and

4–14. Fig. 9 shows the process of determining the tachocline

parameters for the solar equator. The results obtained using the

calibration methods are listed in Table 1. A positive jump implies a

rotation rate which is higher in the CZ than in the radiative interior.

From Table 1 we note that the results for the two data sets are

consistent with each other within the estimated errors. However, the

GONG months 4–10 data have a larger error than that of the months

4–14 data and this is reflected in the larger errors in the tachocline

parameters. We thus focus our attention on results for data from

GONG months 4–14, which have also been used in the simulated

annealing method.

The change in the tachocline jump as a function of latitude is

very clear. This is not surprising since the change is large enough to

be seen by normal inversions also. The result obtained seems to

depend somewhat on the type of calibration model used, although at
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Figure 8. A summary of the tachocline results for the test model. Panels

(a),(b) and (c) show the results of the jump, position and half-width

respectively. In each panel the continuous line represents the exact value.

The circles show the results of the calibration method and the triangles are

the results obtained by 1D annealing. The symbols are displaced by 60:58

about the true latitude for the sake of clarity. In panel (c) the actual width has

been scaled down by a factor of 3.25 to account for the difference in the form

of variation within the tachocline.
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each latitude they are consistent within errors. It also appears that

the results are more sensitive to data errors when models with a flat

rotation rate in the CZ are used. This is perhaps not surprising as the

jump at each latitude is not assumed to be known beforehand, while

for the models that do not have a flat rotation rate in the CZ, a first

estimate of the jump is made from the inversion results and only a

correction factor is obtained by the fit in equation (13). The

estimated errors in position and thickness at all latitudes are

larger than the corresponding errors in mean values as estimated

by Basu (1997), who used only the splitting coefficient c3. This is

partly a result of the fact that the error estimates in splittings for

each latitude are larger than those in c3 alone. Further, a large part of

the variation in the tachocline is determined by c3, which shows a

clear jump around the tachocline, and at the same time has very

little variation in the CZ or in the radiative interior, thus making it

much easier to fit the tachocline parameters.

There appears to be a slight variation in the radial position of the

tachocline, with the tachocline moving outwards at higher latitudes.

The change is not very significant – only about 1j between the

equator and 60
◦

latitude. However, the results seem to indicate a

nearly systematic shift.

The question about variation in the thickness is less clear,

however. In fact, for all latitudes, it appears that the thickness is

very small and comparable to the error estimates. Thus better data

with reduced errors are required before the thickness can be

determined reliably. With this method, at the moment we can

only put an upper limit on the thickness of the tachocline at all

latitudes. Basu (1997) had shown that the thickness measurements

are somewhat sensitive to the calibration models used. Thus we

should try to check these results against those obtained by the

technique of simulated annealing.

In order to obtain an independent measure of variation in the

properties of the tachocline with latitude, we adopt the technique of

simulated annealing to fit the tachocline parameters to the GONG

months 4–14 data for different latitudes. Fig. 10 shows the 1D

annealing result for the equator. Note that we get a good fit and the

residuals are random and consistent with the error estimates. The

1D annealing results for various latitudes are listed in Table 2. As in

the case of the calibration technique, the jump shows a clear change

with latitude, although there appears to be some systematic differ-

ence between the value of the jump obtained by the two techniques.

All the values appear to be reduced in the annealing results, as

compared to the corresponding values obtained by the calibration

method, although for individual latitudes the results are generally

within error limits from those obtained using the calibration

method. The reason for this discrepancy is not altogether obvious,

but there may be some ambiguity in the definition of ‘jump’ because

a part of the variation across the tachocline may be accounted for by

the smooth trend, defined by the term involving B in equation (17).

Note from the last column (which gives the x2 per degree of

freedom) that it is clear that the fit is reasonably good as all the

values are close to unity.

The results at 308 latitude are not particularly reliable as the jump

is too small to define the tachocline properly and hence the errors

are very large. At high latitudes, although the splittings have a larger

error, the increase in the magnitude of the jump means that the

tachocline is better defined; in some cases the error estimate also

reduces, since the fits are more stable. At low latitudes, however,

there is some problem in finding a proper fit, as the estimated values

have a larger scatter, which is reflected in comparatively large errors

even though the errors in splitting coefficients is lowest for these

latitudes. This could be a result of the fact that the form of trend

assumed in the tachocline model defined by equation (17) is not

sufficient to model the variation in the rotation rate. As can be seen

from the contour diagram in Fig. 3, there is some variation at low

latitudes in the convection zone, which perhaps cannot be modelled

properly by a linear trend.

The annealing results also indicate that the thickness of the

tachocline is very small at low latitudes. The thickness appears to

increase at higher latitudes, though the estimated errors also

increase and it is not clear whether or not the increase is significant.

Similarly, it is not clear if the shift in the tachocline position with

latitude is also significant, though in general (once again) the

tachocline appears to shift to slightly larger radial distance at

higher latitudes.

We feel that there should be yet another independent test of

the significance of variation in tachocline position and thickness

with latitude. We have therefore tried a 2D annealing fit to
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Figure 9. (a) Calibration for determining the jump in the rotation rate in the

tachocline.Thepoints are the splitting coefficients combinations for the equator

with the contribution from Qc removed. The continuous line is the fit to the data,

which can be decomposed into two parts – the dotted line which is the term

fðrtÞ in equation (13), and the dashed linewhich is the calibration model scaled

to the fitted jump [term aavðrtÞ]. The data used are the GONG months 4–14

splittings. The dashed and continuous lines more or less coincide in this case.

(b) The spline representation of the difference between the data shown above

and the the five calibration models used to determine the tachocline position.

The continuous, dotted, small-dashed, long-dashedand dot-dashed lines are the

differences with calibration models for rd ¼ 0:68, 0:69, 0:70, 0:71 and 0:72 R(

respectively. All these calibration models have w ¼ 0:005 R(. (c) The spline

representationof the differencebetween thedata and thefive calibrationmodels

used to determine the tachocline width. The continuous, dotted, small-dashed,

long-dashed and dot-dashed lines are the differences with calibration models

for w ¼ 0:005, 0:01, 0:015, 0:02 and 0:025 R( respectively. These calibration

models have rd ¼ 0:69 R(.
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simultaneously determine all the parameters at all latitudes. Since

this fit involves 12 parameters as defined by equations (17) and (18),

it is not clear if all of them are required. To verify this we start with

the simplest situation, in which the position and width of the

tachocline are independent of latitude (i.e., rd3 ¼ 0, w3 ¼ 0). This

fit yields the mean position of the tachocline as 0:7038 R( and a

half-width of 0:0187 R(, and the fit is shown in Fig. 11. These

values are consistent with the results obtained by Basu (1997),

though the half-width is slightly higher than the value found by

Basu (1997). Some of the differences may arise because while

Basu (1997) used only the splitting coefficient c3 to determine the

tachocline parameters, in this work we are using the first three

splitting coefficients. If this difference is significant it may imply a

latitudinal variation in tachocline position or width. Further, this fit

has a x
2

¼ 1:108 per degree of freedom and the fit appears to be

reasonably good. When all 12 parameters are included in the fit, the

minimum x
2

per degree of freedom reduces to 1.088. Thus the

reduction in x
2 is only marginal, and it is tempting to conclude that

the GONG months 4–14 data are consistent with no latitudinal

variation in the position or width of the tachocline. Of course, we

cannot rule out a small variation in the tachocline properties with

latitude. A Monte Carlo simulation with 12 parameters yields the

following results for the tachocline:

rd ¼ ½ð0:6991 6 0:0099Þ þ ð0:0030 6 0:0061ÞP3ðvÞÿ R(;

w ¼ ½ð0:0084 6 0:0072Þ þ ð0:0047 6 0:0042ÞP3ðvÞÿ R(;

dQ ¼ ð¹1:83 6 2:18Þ ¹ ð22:71 6 1:01ÞP3ðvÞ

¹ ð3:88 6 0:45ÞP5ðvÞ nHz;

Qc ¼ 436:6 6 2:2 nHz;

B ¼ ð54:8 6 7:8Þ þ ð0:86 6 4:58ÞP3ðvÞ

þ ð0:11 6 2:22ÞP5ðvÞ nHz= R(

C ¼ 217:2 6 76:8 nHz= R(

ð21Þ

It is clear that the variation in position is at a level of ð1=2Þj only,

while the thickness at all latitudes is comparable to the error

estimates and as such it is not clear whether or not the variation

in thickness is significant. Similarly, the first component of dQ is

also not significant. In fact, we find that if this parameter is set to

zero, the fit is more stable in the sense that the x
2 reduces to an

acceptable level in most of the attempts with simulated annealing,

and as such we prefer to use that fit. The minimum value of x
2

per
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Table 1. Solar tachocline parameters as determined by calibration.

Calibration models with flat CZ Calibration models with trend in CZ

Lat. Jump Position Half-width Jump Position Half-width

(◦) (nHz) (R() (R() (nHz) (R() (R()

GONG months 4–10 data

0 21.66 6 2.57 0.6921 6 0.0142 0.0134 6 0.0120 20.92 6 2.46 0.6954 6 0.0113 0.0029 6 0.0120

15 18.52 6 1.91 0.6941 6 0.0111 0.0124 6 0.0137 18.11 6 0.92 0.6891 6 0.0115 0.0190 6 0.0131

45 ¹27.81 6 2.30 0.6863 6 0.0277 0.0215 6 0.0173 ¹27.17 6 2.06 0.6903 6 0.0263 0.0170 6 0.0172

60 ¹60.47 6 3.52 0.7025 6 0.0117 0.0070 6 0.0075 ¹60.08 6 1.33 0.6990 6 0.0099 0.0050 6 0.0077

75 ¹86.41 6 9.99 0.6968 6 0.0224 0.0094 6 0.0129 ¹89.04 6 2.56 0.6974 6 0.0238 0.0123 6 0.0135

GONG months 4–14 data

0 19.39 6 2.00 0.6944 6 0.0096 0.0079 6 0.0130 21.52 6 0.82 0.6851 6 0.0077 0.0047 6 0.0083

15 18.13 6 1.55 0.6996 6 0.0091 0.0083 6 0.0106 18.29 6 0.89 0.6922 6 0.0097 0.0043 6 0.0087

45 ¹28.89 6 2.66 0.7077 6 0.0137 0.0047 6 0.0061 ¹29.87 6 2.22 0.7048 6 0.0148 0.0059 6 0.0067

60 ¹57.18 6 4.11 0.7058 6 0.0098 0.0031 6 0.0055 ¹57.10 6 1.51 0.7082 6 0.0072 0.0051 6 0.0062

75 ¹88.21 6 6.70 0.7204 6 0.0183 0.0154 6 0.0235 ¹87.15 6 1.78 0.7162 6 0.0178 0.0141 6 0.0136

Figure 10. The 1D simulated annealing results for the solar equator. In panel

(a) the crosses are the observed splitting combinations and the circles are

those obtained by the fit. Panel (b) shows the normalized residuals.

Table 2. Tachocline parameters from 1D annealing.

Lat. Jump Position Half-width x
2

(8) (nHz) (R() (R()

0 17.20 6 4.96 0.6843 6 0.0112 0.0020 6 0.0019 1.0401

15 14.84 6 1.52 0.7146 6 0.0050 0.0028 6 0.0022 1.1271

30 ¹7.46 6 1.71 0.7193 6 0.0196 0.0242 6 0.0136 0.9860

45 ¹33.83 6 3.90 0.7160 6 0.0072 0.0122 6 0.0073 0.9276

60 ¹59.86 6 6.19 0.7045 6 0.0061 0.0089 6 0.0078 1.0712

75 ¹91.19 6 3.36 0.6878 6 0.0089 0.0216 6 0.0095 1.1762
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degree of freedom in this case is 1.105 and the resulting parameters

of the tachocline are

rd ¼ ð0:6947 þ 0:0035P3ðvÞÞ R(;

w ¼ ð0:0067 þ 0:0014P3ðvÞÞ R(;

dQ ¼ ¹21:11P3ðvÞ ¹ 2:96P5ðvÞ nHz;

ð22Þ

while the resulting fit and residuals are very similar to those shown

in Fig. 11 and hence are not shown explicitly. We adopt these values

for the tachocline model for use in the next section and for

comparison with other estimates. It is clear that the addition of

two parameters determining the variation in properties with latitude

does not improve the fit significantly and hence there is no

compelling reason to believe that there is any variation in the

position or thickness of the tachocline with latitude. Nevertheless,

all the results which attempt to determine the variation find an

increase in thickness with latitude and a shift outwards in the mean

position of tachocline with increasing latitude. Although this

variation does not appear to be significant in terms of the expected

errors, a small variation in properties of the tachocline with latitude

cannot be ruled out.

Fig. 12 summarizes the results from all the techniques. This

figure shows the variations in jump, position and thickness of the

tachocline as obtained by different techniques from the GONG

months 4–14 data. We have chosen the results from the calibration

method, using the models with trend for this purpose. It is clear that

there is general agreement between the three independent results at

most latitudes and that all these results point to an increase in

thickness with latitude as well as an outward radial shift in the

position of the tachocline with latitude. This figure also shows the

mean position and width of the tachocline as determined by

Basu (1997), and it appears that all the results are also consistent

with no latitudinal variation in the position or width of the

tachocline. Clearly, better data is required to find any possible

variation in tachocline properties with latitude.

4 I N V E R S I O N A F T E R R E M OV I N G T H E

TAC H O C L I N E S I G NA L

The smoothing used in our inversion procedure tends to smooth out

the steep variation in rotation rate in the tachocline. Apart from this,

it may also introduce some ripples away from the position of

tachocline, a feature that is reminiscent of the Gibbs phenomenon

in Fourier transform. In order to overcome this limitation and to use

the tachocline parameters determined in the earlier section for

improving the results of inversion, we attempt an inversion after

removing the tachocline signal. For this purpose we adopt tacho-

cline parameters given by equation (22), leaving aside the smooth

part and performing a forward calculation to obtain the splitting

coefficients for this model. These splittings are then subtracted from

the observed splittings before inverting the data. The rotation rate in

the tachocline model is then added to the inverted profile to obtain

the actual rotation rate in the Sun.

The results in Fig. 13 display the contour diagram for the rotation

rate obtained using 1.5D inversion, while Fig. 14 shows the rotation
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Figure 11. The fit to the first three splitting coefficients and the normalized

residuals of the fits obtained by the 2D simulated annealing method,

assuming that there is no latitudinal variation in the position and thickness

of the tachocline.
Figure 12. A summary of the tachocline results obtained using the GONG

months 4–14 data. Panels (a),(b) and (c) show the results of the jump,

position and thickness respectively. In each panel the continuous line is the

results of the 2D annealing (equation 18) with the 1j error bounds, shown as

dotted lines. The circles show the results of the calibration method and the

triangles are the results obtained by 1D annealing. The symbols are

displaced by 60:5◦ about the true latitude for the sake of clarity. The

dashed line in panels (b) and (c) mark the mean values found by Basu (1997),

while the 1j error bounds are shown as dot-dashed lines.
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rate as a function of radial distance at selected latitudes for the

inversions with and without removal of the tachocline. From this

figure, it appears that at 308 latitude the results obtained using the

2D inversion after removing the tachocline signal are different from

other results. The reason for this difference are not altogether clear,

though it appears to manifest at latitudes around the region where

the radial gradient in the tachocline changes sign. The results

obtained after removing the tachocline appear to be smoother in

general, which is of course not surprising. Also, the fact that the

simulated annealing was able to obtain a good fit over a large

fraction of radial distance using only 12 parameters suggests that

there is probably not much structure in the rotation rate as a function

of latitude or radial distance (apart from the tachocline itself) in the

region 0:6 < r= R( < 0:9. However, from the 2D annealing fits there

are reasons to believe that these 12 parameters are not completely

adequate to represent the trends at all latitudes adequately. Never-

theless, it is likely that some features seen in the lower part of the CZ

in certain inversion results (e.g. Figs 3 and 4) are a result of the

influence of the tachocline magnified by errors in the data.

5 C O N C L U S I O N S

In this work we have attempted to infer the rotation rate inside the

Sun using observed p-mode frequency splittings. We have used a

1.5D inversion technique to invert the data in the form of splitting

coefficients based on a regularized least-squares method with

iterative refinement. We have investigated the influence of using

different prescriptions for smoothing, to find that the differences are

comparable to expected errors in inversion results. Similarly, an

adoption of different sets of observed splitting coefficients shows

that the difference in various results is again roughly consistent with

error estimates based on quoted errors in observed splittings. Apart

from the 1.5D inversion technique, we have also attempted 2D

inversion for both the individual splittings Dn;,;m and the splitting

coefficients c
ðn;,Þ
s . All these results agree reasonably well inside the

convection zone, although in the deep interior there are some

differences between different inversion results. We believe these

reflect our inability to obtain a reliable estimate of the rotation rate

in the core because of possible systematic errors in splittings for

low-degree modes.

It is clear from our results that the surface differential rotation

persists through the solar CZ, while below the base of the CZ the

rotation rate appears to be relatively independent of latitude. The

transition around the base of the CZ may not be resolved by the

inversion results. The core appears to be rotating more slowly than

the surface equatorial rotation rate, as also found by Tomczyk,

Schou & Thompson (1995) and Elsworth et al. (1995). The rotation

rate in the solar core has been recently discussed by Gizon et

al. (1997) and Rabello-Soares et al. (1997), and it appears that there

is significant variation in the inferred rotation rate in the solar core

from different helioseismic data. The constraints on the rotation rate

in the core, in the form of the boundary conditions (8) in the 1.5D

inversion, make the core rotate essentially as a rigid body and

reduce the discrepancy in rotation rate implied by different data

sets. This may be artificial, but unfortunately we do not have enough

data to resolve any variation in rotation rate in the core and this is

probably the simplest assumption that we can make (Chaplin et

al. 1996). Even a small error in splittings for low-degree modes can

change the inverted rotation rate in the core significantly if no

constraints are applied. Further, as can be seen from Fig. 1, the

results outside the core are not too sensitive to the point at which

Solar internal rotation rate and the latitudinal variation of the tachocline 555

q 1998 RAS, MNRAS 298, 543–556

Figure 13. A contour diagram of the solar rotation rate as obtained by 1.5D

inversion of the GONG months 4–14 data after removal of the tachocline.

The format is the same as that for Fig. 3.

Figure 14. A comparison of the inversion results with and without removal

of the tachocline signal. The continuous line shows the results obtained

using a 1.5D inversion after removing the tachocline contribution; the dotted

line is the 1.5D result of normal inversion. Similarly, the dashed line shows

the results of 2D inversion of individual splittings after removing the

tachocline, while the dot-dashed line shows the results from normal 2D

inversion.
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these boundary conditions are applied or to the form of smoothing

used. The main problem with reliable inversion of rotation rate in

the core is that the low-degree modes that penetrate into the core

have large errors in the splitting coefficients (possibly including

some systematic errors), and this allows for a wide range of rotation

profiles in the core. It is clear that better quality data are required to

make any reliable estimate of rotation rate in the solar core.

Further, there is a distinct shear layer just underneath the solar

surface where the rotation rate increases with depth. There is also a

hint of this shear layer becoming less pronounced with latitude, in

the sense that the radial variation of the rotation rate tends to

diminish with increasing latitude. The rotation rate has a maximum

around r ¼ 0:95 R( at most latitudes, except possibly close to the

poles. This feature can also be seen in the raw splitting data (Fig. 7).

The inferred rotation rate at the solar surface agrees reasonably well

with that obtained from Doppler measurements (Snodgrass 1992).

Some differences between the Doppler measurement and the

inverted profile (Fig. 6) at higher latitudes could be a result of the

fact that the Doppler measurements determine only terms up to

cos4
v in the expansion of rotation rate. The higher-order terms

included in inversions will contribute significantly at high latitudes.

The tachocline, or the shear layer near the base of the CZ, has

been studied in detail using forward techniques to ascertain possible

latitudinal variation in its properties. Since the tachocline cannot be

resolved by inversions, we have used a number of forward model-

ling techniques to study the tachocline. With the present data, we do

not find any compelling evidence for any variation in the position or

thickness of the tachocline with latitude. The mean position and

thickness of the tachocline is found to be consistent with the values

found by Basu (1997). Our results suggest that the thickness

increases marginally with latitude and the location of the tachocline

also appears to shift outwards with increasing latitude, but the

difference between the position and thickness of the tachocline at

the solar equator and that at a latitude of 60◦ is comparable to the

estimated errors. It is therefore not clear if the variation is really

significant. Similarly, the 2D annealing results also show that the

variations in the position and thickness are less than the respective

error bars. Further, there is no significant reduction in the x
2 for the

fit when the variation of position and width with latitude is included

in the 2D fits. Taking the errors into account, we believe that we get

an upper limit of 0.03 R( for the variation in the position of the

tachocline and about 0.02 R( for the variation of the thickness.

Clearly, more precise data are needed to make a better estimate of

the parameters reliably.

From our results it appears that the tachocline is centred at a

depth which is below the base of the solar CZ at all latitudes. If the

latitudinal variation shown by our results is real, then at low

latitudes most of the variation in rotation rate within the tachocline

occurs below the CZ base, while at high latitudes part of the

tachocline may extend into the convection zone.
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