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The rapid penetration of photovoltaic generation reduces power grid inertia and increases

the need for intelligent energy resources that can cope in real time with the imbalance

between power generation and consumption. Virtual power plants are a technology for

coordinating such resources and monetizing them, for example on electricity markets with

real-time pricing or on frequency reserves markets. Accurate short-term photovoltaic

generation forecasts are essential for such virtual power plants. Although significant

research has been done on medium- and long-term photovoltaic generation

forecasting, the short-term forecasting problem requires special attention to sudden

fluctuations due to the high variability of cloud cover and related weather events. Solar

irradiance nowcasting aims to resolve this variability by providing reliable short-term

forecasts of the expected power generation capacity. Sky images captured in

proximity to the photovoltaic panels are used to determine cloud behavior and solar

intensity. This is a computationally challenging task for conventional computer vision

techniques and only a handful of Artificial Intelligence (AI) methods have been proposed. In

this paper, a novel multimodal approach is proposed based on two Long Short-Term

Memory Networks (LSTM) that receives a temporal image modality of a stream of sky

images, a temporal numerical modality of a time-series of past solar irradiance readings

and cloud cover readings as inputs for irradiance nowcasting. The proposed nowcasting

pipeline consists of a preprocessing module and an irradiance augmentation module that

implements methods for cloud detection, Sun localization and mask generation. The

complete approach was empirically evaluated on a real-world solar irradiance case study

across the four seasons of the northern hemisphere, resulting in a mean improvement of

39% for multimodality.

Keywords: solar irradiance nowcasting, virtual power plants, multimodal data streams, long short-term memory
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INTRODUCTION

VPP (Virtual Power Plants) are emerging as a key solution for power grid decarbonization and the
integration of photovoltaic and wind power generation. Yet the inclusion of these renewable
generation resources to VPPs remains limited, partly due to the uncertainties involved in their
production (Liu et al., 2021). Mahmud et al. (2020) emphasize the need for VPPs to have a capability
to cope with sudden weather changes impacting PV production as well as other energy consuming
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assets under the same VPP. Yu et al. (2019) review the major
categories of uncertainty that a VPP needs to manage. They
identify market prices and consumption demand as uncertainties
that are interdependent with renewable generation uncertainty. A

common way to manage the uncertainty of photovoltaic
generation is to invest in significant battery storage capacity
Liu et al. (2019), but such resource intensive investments
could be reduced by better predictions of the photovoltaic
generation. A VPP must have a capacity to operate in real-
time and to adjust plans that were made earlier based on
forecasts of PV generation and other assets (Fan et al., 2020).
The adjustments can be made either to ensure compliance with
bids that were made ahead of time, or to allow the VPP to perform
a second round of trading on real-time markets (Qiu et al., 2017).
In either case, an accurate short-term photovoltaic generation

forecast is needed to support the real-time operations of a VPP.
Generation and consumption in a power grid must be

balanced at all times in order to maintain the grid frequency
close to a rated frequency. Excess generation causes over-
frequency and excess consumption causes under-frequency.
Frequency reserves are services purchased by the grid operator
to react to such situations. Providers of reserve resources commit
to increasing production or decreasing consumption in
underfrequency situations, and to decrease production or
increase consumption in over-frequency situations. An
example of photovoltaic participation in frequency reserves is

curtailing the production in over-frequency situations.
Subramanya et al. (2021) report of such a commercially
operational installation, managed by a VPP and participating
in Finnish frequency reserve markets. Thus, frequency reserves
are another category of applications benefitting from
photovoltaic generation forecasts. Subramanya et al. address
the problem with day-ahead forecasts for the purpose of
bidding on the day-ahead frequency reserve markets. However,
there is a need for further work on more accurate real-time
forecasts that allow the VPP to address actual frequency
deviations as they occur. Such forecasts would be applicable to

work on dynamic planning of a VPP participating on frequency
reserves (Javadi et al., 2019).

This paper is motivated by the need for development of real-
time capabilities to VPPs, for example to participate on real-time
electricity markets, to react to frequency deviations when
participating on frequency reserves markets, or simply to cope
with commitments that were made ahead of time based on
uncertain photovoltaic generation predictions. A capability for
real-time forecasting of photovoltaic generation, “nowcasting,” is
developed for these purposes. Artificial Intelligence (AI)
techniques such as classic neural networks Al-Dahidi et al.

(2019) and more recently Long Short-Term Memory Networks
(LSTM) Li et al. (2020), Stüber et al. (2021) have performed well
for medium-term solar forecasting. These applications of LSTM
are based on time-series data, but the short-term forecasting
context could significantly benefit from the additional
consideration sky image data. The processing of diverse kinds
of inputs by a machine learning model is known as the
multimodal approach Baltrusaitis et al. (2019), which is
applied in this paper to consider time-series data alongside sky

image data. In this paper, following research contributions are
reported to advance the state-of-the-art on photovoltaic
nowcasting:

1 An AI pipeline for nowcasting that receives a temporal image
modality of a stream of sky images, a temporal numerical
modality of a time-series of past solar irradiance readings and
cloud cover readings as inputs, followed by a data
preprocessing module and an irradiance augmentation
module leading up to the irradiance nowcasting module.
2 A novel method for cloud detection, Sun localization and
mask generation in the irradiance augmentation module that
computes the impact of cloud cover on irradiance intensity.
3 A multimodal approach based on two LSTMs for the image
and time-series modalities in the irradiance nowcasting

module that can deliver real-time capabilities to VPP.
4 Finally, the complete pipeline study is evaluated across the
four seasons of the northern hemisphere, using a real-world
solar irradiance case study conducted by the NREL SRRL labs.

RELATED WORK

Nowcasting for VPP With Photovoltaic
Generation
A resource intensive way to manage photovoltaic integration is to

invest in large-scale battery resources to complement the
photovoltaic generation capacity, and one line of research is to
investigate the optimal sizing of battery storages for this purpose
e.g., (Kong et al., 2019; Kosmadakis et al., 2021; Muñoz-
Rodríguez et al., 2021). A more intelligent and less resource
intensive approach is to employ a VPP Thavlov and Bindner
(2015) to coordinate diverse energy resources such as
photovoltaic generation, smart loads and electric vehicles. A
typical planning horizon for a VPP is day-ahead, in which
case the VPP requires forecasts of its photovoltaic generation
as well as all the resources under its control for this time horizon

(Xing et al., 2021). In this context, real-time pricing usually means
hourly changing prices that are known day ahead Nge et al.
(2019), but other shorter-term real-time pricing approaches exist
and shall be introduced below. A minority of research considers a
shorter timeframe in which the photovoltaic generation
nowcasting could be exploited. Recognizing the inevitable
errors in predicting wind power generation day ahead, Hu
et al. (2021) propose a 2-stage dispatch, day-ahead and real-
time, to exploit the more accurate short-term forecast; a similar
approach is applicable to photovoltaic dispatch if short-term solar
irradiation forecasts are available. Das et al. (2021) propose to

optimize photovoltaic generation and battery storage use in the
context of hourly changing electricity prices. Elkazaz et al. (2020)
consider a household with local photovoltaic generation and
battery storage, and propose a scheme consisting of day-ahead
optimization as well as real-time control to manage the errors
caused to the optimization by uncertain forecasts. Elkazaz et al.
(2020), Das et al. (2021), Hu et al. (2021) are all examples of
methods that use real-time measurements as the input to an
algorithm that handles the error of medium-term renewable
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generation forecasts, so an obvious line of further research would
be to exploit nowcasting. Nefedov et al. (2018) exploit electric
vehicle batteries for short-term storage of surplus photovoltaic
energy, updating plans as vehicles arrive or if they leave
unexpectedly. Wu et al. (2020) and Seyyedeh Barhagh et al.
(2020), present similar approaches with the additional

capability to consider dynamic electricity prices. Kolodziejczyk
et al. (2021) operate a system consisting of photovoltaic
generation and battery storage on a real-time electricity
market with hourly changing prices. An example of a close to
real-time electricity market is Singapore’s half-hourly spot market
(Zhang et al., 2021); at this time-scale, photovoltaic generation
nowcasting exploiting sky image analysis begins to be
advantageous. A few works address a very short-term scenario,
in which the photovoltaic generation nowcasting approach is
most beneficial. In particular, Larsen et al. (2017) consider a
virtual power plant with smart loads participating on a real-time

market with prices changing at 5 min intervals.
Photovoltaic generation is at the same time a problem and a

potential solution for power grid frequency reserves. In fact,
increased photovoltaic penetration without VPPs is a part of
the problem, as it decreases the grid inertia Su et al. (2020), Zhang
et al. (2020) and increases the demand for frequency reserves
(Karbouj et al., 2019). This increased demand is specifically due to
the short-term variability of photovoltaic generation (Sinsel et al.,
2020). A straightforward approach is to invest in battery storage

that is dedicated for frequency reserves (Koller et al., 2015).
However, a VPP can be more economical for managing
uncertainties and optimizing a set of diverse resources with
different characteristics. Forecasting the grid frequency

involves considerable uncertainty which is compounded by
other uncertainties such as photovoltaic generation Mashlakov
et al. (Mashlakov et al., 2021). As the future grid frequency
deviations are not known even in the short term, it is the
frequency reserve resource provider’s duty to ensure that the
reserve resource capacity is available and ready to be activated in
the event of a frequency disturbance (Subramanya et al., 2021).
Several innovative solutions have been proposed for this purpose,
exploiting the specific characteristics of the intelligent energy
resources that are being exploited as frequency reserve resources.
Angenendt et al. (Angenendt et al., 2020) identify an alternative

way to exploit batteries for supporting local photovoltaic
generation. Such batteries could be traded on frequency
reserves in the low photovoltaic generation season. Other
authors simply rely on smart loads to cover the demand for
frequency reserves caused by large photovoltaic penetration
(Conte et al., 2021). Bagheri-Sanjareh and Nazari (2020)
present a comprehensive approach for coordinating
photovoltaics with other smart energy resources for the
purpose of providing frequency reserves. In the case of these
and other systems for providing frequency reserves by
coordinating intelligent energy resources, whenever

photovoltaic generation is part of the mix, the nowcasting of
such generation can support the planning of the coordination on
a short time horizon, e.g., 5, 10 or 15 min. This is especially
beneficial for reserve resources that need several minutes to be
ramped up. Finally, it is noted that frequency reserve markets are
traditionally operated by transmission system operators, but the
emergence of photovoltaic microgrids is leading to the emergency
of real-time frequency response being managed at the level of the
microgrid Shi et al. (2015) or cluster of collaborative microgrids
(Qazi et al., 2021).

Related Work in Solar Irradiance
Nowcasting
In recent work, several approaches have been proposed for solar
irradiance nowcasting, using sky cameras, satellite imagery,
ground sensor networks, and time-series of historical PV
generation.

Chen et al. (2019) proposed a spatio-temporal PV
nowcasting method using a sensor network with predictor
preselection. It enabled preselection in different cloud
movement scenarios; stationary, and ramp, and interpolate

cloud information to provide consistent PV nowcasts. Zheng
et al. (2020) proposed a method to predict the output of solar
power plants based on time series forecasting, primarily
focusing on multiple regions. They used a Long Short-Term
Memory Network (LSTM) model for the forecasting and
multiple LSTM structures were compared to determine the
final prediction model with sensitivity analysis. Additionally,
particle swarm optimization was employed to improve the
prediction by optimizing the parameters used for the LSTM

TABLE 1 | Nomenclature.

Abbreviation Description

AI Artificial Intelligence

CNN Convolutional Neural Networks

Conv-LSTM Convolutional LSTM

GHI Global Horizontal Irradiance

IR Infrared

LSTM Long Short-Term Memory Network

MAE Mean Absolute Error

nRMSE Normalized Root Mean Squared Error

RBR Red-Blue Ratio

RMSE Root Mean Squared Error

VPP Virtual Power Plants

L Euclidean distance to the Sun location from the center of the image

S Estimated distance from the center to the point where the sun is

located (according to the camera calibration)

Alpha Zenith angle

X X-coordinates of the Sun location (on the image)

Y Y- coordinates of the Sun location (on the image)

R Radius of the image (Half of the image width/height)

Beta Azimuth angle

Ft Activation of the forget gate

It Activation of the input gate

Ot Activation of the output gate

W Input weights values for each gate

U Recurrent connection weights for each gate

X Inputs

B Bias values for each gate

H Upward output

C Cell output

A Actual values

F Forecasted values

N Number of samples

X Mean of the actual values
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models. Kong et al. (2020) proposed a series of novel deep
learning approaches for short-term PV forecasting based on
whole-sky-images. They developed both static and dynamic
architectures composed of Convolutional Neural Networks
(CNN), LSTM, ConvLSTM and PredNet deep learning
models. Caldas and Alonso-Suárez (2019) have reported a
hybrid forecasting method to forecast 1-min averaged solar
irradiance using all-sky images and past irradiance
measurements. Detection of clouds and cloud motion

estimation were done using pre-existing methods with the
addition of a post-processing procedure. After that, the
predicted cloud information was used to infer the solar
irradiance by forecasting the clear-sky index using the
proposed method that uses a simple deterministic model.
Zhang et al. (2018) proposes a deep photovoltaic
nowcasting approach using sky images and historical PV
power values. Several CNN based models were trained to
learn the relationship between sky appearance and future
PV power output. Feng and Zhang (2020) proposes a CNN
based approach for intra-hour solar forecasting exclusively

using sky images. This contains a set of models that generate
fixed-step global horizontal irradiance (GHI) in parallel.

Infrared (IR) technology has also been applied in related work on
sky imaging based solar irradiance forecasting. Mammoli et al. (2019)
proposed short-term solar forecasting by merging far-field images
from multiple longwave infrared sensors. Terrén-Serrano and
Martínez-Ramón (2021) presented a short-term solar forecasting

approach based on processing of global solar irradiance and
ground-based infrared sky images. Both approaches focus on the
cloud behavior and the latter also categorized the sky condition of an
infrared image into four main cloud formations, clear-sky, cumulus,
stratus, and nimbus. Apart from forecasting, infrared is also used in
solar position identification which is an important aspect that even
helps with forecasting. Nespoli and Niccolai (2020) proposed an
approach for solar position identification using infrared thermal all-
sky images of which the sunspot is defined clearer than color images.
However, to capture infrared images a special camera system is
specified.

As delineated above, several statistical, machine learning, deep
learning, infrared-based and hybrid methods have been proposed
in recent literature to address the technical challenges of solar
irradiance nowcasting. However, none of these approaches
consider the multimodality of the problem domain in terms of
the need for development of real-time capabilities for VPP. The
significance of cloud detection, Sun localization and mask
generation in computing the impact of cloud cover on
irradiance intensity as a necessary augmentation phase prior
to the consideration of its multimodality is a further limitation
of existing work. Drawing on this context, a new approach that

delivers an AI pipeline consisting of preprocessing,
augmentation, and a multimodal deep learning model, is
presented in the following section. Table 1 lists the nomenclature.

PROPOSED METHODOLOGY

The proposed approach for solar irradiance nowcasting is
illustrated in Figure 1. Given the multimodal nature of this

FIGURE 1 | The proposed approach for solar irradiance nowcasting.

FIGURE 2 | Redundancy reduction of the sky image for irradiance (A)

original and (B) after reduction.
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approach, it receives two input modalities, a temporal image
modality of a stream of sky images, a temporal numerical
modality that consists of a time-series of past solar
irradiance readings and cloud cover readings. Streams
from both modalities are input to a data preprocessing

module, which conducts missing data handling and
redundancy reduction for images and temporal sequence
alignment, normalization, and range correction for the solar
irradiance readings. The preprocessed sky image stream is
funneled through an irradiance augmentation module,
which further refines the irradiance information using
cloud detection, Sun localization and mask generation
techniques. The irradiance augmentation module receives
a further time-series of solar angle readings. This augmented
sky image stream, the preprocessed irradiance readings and
cloud cover data converge in the final phase for irradiance

nowcasting. The irradiance nowcasting module is composed
of two LSTM Networks, irradiance readings and cloud cover
data LSTM (irLSTM) and sky image LSTM (siLSTM). The
irLSTM was designed with four 2-dimensional layers of 128,
128, 64, 64 nodes and three fully connected layers of 64, 32,
16 nodes. The siLSTM was designed with five 2-dimensional
Conv-LSTM layers of 256, 256, 128, 64, 32 nodes that
generates a flattened 1-dimensional output which is then
integrated with a repeat vector of 32 nodes, followed by a
time distributed dense layer of 32 nodes that is again
flattened prior to final fully connected layers of 64, 32 and

16 nodes. This deep learning architecture was formulated
using a grid optimization process, which is considered as the
state of the art in global optimization (Bergstra et al., 2012).
Each module is further elaborated in the following
subsections.

Data Preprocessing Module
Scaling and normalization are the initial preprocessing steps
conducted to ensure that variations in magnitude, range and
units of measurement do not have a negative impact on the

FIGURE 3 | (A) Solar irradiance behavior with cloud cover (B) Mean solar irradiance for each month.

FIGURE 4 | Cloud detection using the Red Blue Ratio method.
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model architecture or the learning process of the proposed
multimodal approach based on deep learning in LSTM
networks. For example, input features of high magnitude
are allocated with large weights resulting in unstable models

during the learning and testing phases. Temporal sequence
alignment, normalization and range correction techniques
were used to address these variations in numerical time-
series data streams of solar irradiance and cloud cover
readings. In the nowcasting prediction module, the final
output was reverted to the original scale and magnitude for
evaluation and application.

The sky image data stream was initially checked for missing
data due to maintenance and technical faults. The missing days
are removed entirely to maintain the accuracy of the model. Then,
the raw image data are saved in JPEG file format with the size of

288 × 352. A raw image consists of the sky region and other
segments of the surroundings or the machinery involved. In
redundancy reduction, all images were cropped to 270 × 270
(as shown in Figure 2) to focus on the area of interest, which is
the sky region.

A correlation analysis was performed using the Pearson
correlation coefficient to determine features of importance
from the time series of irradiance readings. Hour of the day,
total cloud cover, and opaque cloud cover were identified as the
most correlated to the actual solar irradiance reading. Figure 3A
illustrates this correlation, here it can be observed that the

presence of clouds leads to a decrease in the level of irradiance.
Figure 3B depicts solar irradiance in the Northern hemisphere

across the 12 months of a calendar year. During winter months,
irradiance is low and during summer, irradiance reaches the peak.
This seasonal fluctuation impacts the predictive accuracy of an
irradiance nowcasting approach. To overcome this, the dataset
was divided into four seasons and trained a separate model for
each season.

Irradiance Augmentation Module
Following the preprocessing phase, the irradiance augmentation
phase further refines the irradiance information using cloud
detection, Sun localization and mask generation techniques.

Each technique is described below.

Cloud Detection

Red Blue Ratio (RBR) method was utilized for cloud detection (Li
et al., 2019). First, the images were separated into the red, blue,
and green channels. Then, the pixel-wise ratio of the red and the
blue channels were calculated which reduces the 3-channel image
to a 2-D array with ratio values. After this, commonly a single
threshold is used for cloud detection. However, in this approach
three thresholds were used where each threshold detects clouds
with different intensities, to increase the cloud details that can be
extracted from the image. As shown in Figure 3, when a lower

threshold is used, all the clouds with lower intensity are detected
and when a higher threshold is used, only the clouds with higher
intensity are detected. In the final image, all the outputs which
were acquired using different thresholds were concatenated
giving each layer a value depending on the threshold where
the layer acquired from the highest threshold gets 255.
Figure 4 illustrates the input and the outputs of each stage of
the cloud detection technique.

Sun Localization and Mask Generation

A new algorithmic method is proposed for Sun localization using
the zenith angle, the azimuth angle and their corresponding
astronomical details. Here the zenith angle is considered as the
angle between the direction of the Sun and the zenith (directly
above). Also, the azimuth angle is defined as the angle between
the horizontal direction of the Sun and the reference (usually
north but sometimes taken as south). Figure 5 illustrates the
zenith angle and the azimuth angle.

FIGURE 5 | Zenith angle and Azimuth angle.
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The coordinates of the Sun on the image (x, y) are calculated

using Eq1, 2 and 3,

l � S p sin (α) (1)

y � R + l p cos(β − π /

2) (2)

x � R + l p sin (β − π /

2) (3)

Here, the R is the radius of the hemisphere that the image
has covered. Next, the Sun localization is used for solar mask

generation, which is used to make the region closer to the Sun
more effective since the clouds close to the Sun has the most
impact when it comes to nowcasting. The solar mask is a
gradient from 1 to 0, with 1 being directly where the Sun is
located and then gradually decreasing to zero across the image.
Finally, element-wise multiplication is used to apply the mask
to the processed image. Figure 6 illustrates the estimation of
the solar location (B) on samples representing different times
of the day and the year (A) and the corresponding solar mask
(C). Figure 7 illustrates the process in terms of outputs at each

stage, and how the solar mask is merged with the

preprocessed image.

Irradiance Nowcasting Module
As described earlier, the irradiance nowcasting module is based
on LSTM networks. LSTM is a type of deep Recurrent Neural
Network (RNN). RNNs are designed for sequential data with

internal memory states and feedback connections. An LSTM unit
is illustrated in Figure 8. It mainly consists of four parts, namely,
cell, input gate, output gate and forget gate. The cell stores the
feedback values while the gates control the information flow to
the cell. Each of these cells can be considered as neurons of a
standard feedforward neural network where the activation of a
weighted sum is calculated. In that sense, if the activations for the
input, output and forget gates are considered as it, ot, and ft,
respectively, there are calculated using Eq 4, 5 and 6.

ft � σ(Wf xt + Uf ht−1 + bf ) (4)

it � σ(Wixt + Uiht−1 + bi) (5)

ot � σ(Woxt + Uoht−1 + bo) (6)

FIGURE 6 | Solar location estimation and solar mask generation.
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W represents the input weights and U represents the recurrent
connection weights of the cell or the three gates. The cell output ct
and the upward output ht is calculated using Eq. 7, 8 and 9,

c̃t � tanh(Wcxt + Ucht−1 + bc) (7)

ct � ft ⊗ ct−1 + it ⊗c̃t (8)

ht � ot ⊗ tanh(ct) (9)

Here, σ represents the sigmoid function and in both Figure 8

and the equations, ⊗ denotes the matrix multiplication.
Furthermore, ht goes through an activation function, before it
is considered as the output of the unit.

The proposed irradiance nowcasting module is composed of
multimodal LSTM networks Hochreiter and Schmidhuber

(1997), irradiance readings LSTM (irLSTM) and sky image
LSTM (siLSTM). Although LSTM has been used in solar

forecasting Zhang et al. (2018), Kong et al. (2020), Zheng
et al. (2020), the multimodal LSTM approach and the learning
architecture that is proposed in this paper are novel
contributions. Conv-LSTM is a variant of the LSTM network
which is specifically designed to learn the spatial information of
data. Conv-LSTM is designed for multi-dimensional data in
which the all-sky solar image dataset can be learned. The
matrix multiplications at each gate in the LSTM are replaced
by the convolutional operations in the Conv-LSTM to capture the
underlying spatial information in data.

The model architecture of the multimodal LSTM networks

used for nowcasting is illustrated in Figure 9. For time series data,
four LSTM layers with 128, 128, 64, and 64 units were used and
three dense layers with 64, 32, and 16 units were integrated at the
end. For image data, five 2D Conv-LSTM layers with 256, 256,
128, 64, and 32 units were used. Then the output was flattened,
and a repeat vector was integrated before the LSTM layer with 32
units. Following a time distributed dense layer with 32 units the
output gets flattened again before the final dense layers with 64,
32 and 16 units. This deep learning architecture was formulated
using a grid optimization process (Bergstra et al., 2012). Finally,
the output is irradiance nowcasting with a prediction horizon of

10 min.

EXPERIMENTS AND RESULTS

The proposed approach was experimented on a solar irradiance
case study conducted by the NREL SRRL labs (Stoffel and
Andreas, 1981). The solar irradiance data, considered is the
global horizontal hemispheric shortwave irradiance, measured

FIGURE 7 | Pictorial representation of the process for merging the sun mask with preprocessed image output.

FIGURE 8 | LSTM unit.
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by a Kipp and Zonen CMP22 pyranometer with calibration factor
traceable to theWorld Radiometric Reference (WRR). The values
are measured inWatt per square meter (Wm-2). Solar angles data
are also acquired, namely, zenith angle and azimuth angle. The
ground-based All-sky images used are captured using a Yankee
Total Sky Imager 880 (TSI-880) which stores image data every
10 min. It also analyzes and calculates the cloud cover percentage

data of both total and opaque clouds, which are also used in the
research. Although the time-series data are available in 1 min,
10 min interval was selected since the image data are only
available for 10 min. Four separate models were designed and
trained for the four seasons. During the training, a call-back
function was used to prevent overfitting by stopping the training
if no improvement of the validation loss was observed for five

FIGURE 9 | Model architecture of the multimodal LSTM networks.

TABLE 2 | Comparison of nowcasting results for benchmark (BM), irLSTM, siLSTM and multimodal models.

Season MAE RMSE nRMSE (%)

BM irLSTM siLSTM Multi

modal

BM irLSTM siLSTM Multi

modal

BM irLSTM siLSTM Multi

modal

Winter (Dec, Jan, Feb) 65.42 60.23 171.41 44.67 83.57 78.38 199.53 66.52 26.85 24.92 64.15 21.38

Spring (Mar, Apr, May) 103.52 91.55 296.56 77.54 147.27 139.64 340.11 127.49 33.44 31.47 73.67 28.74

Summer (Jun, Jul, Aug) 134.52 103.95 286.35 98.27 182.26 159.50 327.21 153.22 38.28 33.49 65.46 32.16

Autumn (Sep, Oct, Nov) 64.61 56.67 185.13 48.32 96.72 91.60 213.07 81.88 24.80 23.60 51.91 21.05

TABLE 3 | Comparison of nowcasting results of the multimodal model with before and after the Sun masking.

Season MAE RMSE nRMSE (%)

Before After Before After Before After

Winter (Dec, Jan, Feb) 48.99 47.45 69.23 69.03 22.27 22.17

Spring (Mar, Apr, May) 93.33 77.54 139.23 127.49 31.38 28.74

Summer (Jun, Jul, Aug) 105.46 98.27 163.49 153.22 34.33 32.16

Autumn (Sep, Oct, Nov) 49.54 48.32 82.96 81.88 21.33 21.05
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continuous epochs. For the LSTM layers, the sequence size of six
steps (1 h) was used. Hence, the rolling window method was used
for training as well as the evaluations. The hardware

specifications of the experimental setup are composed of
eighth Gen. Intel i7 processor, 16 GB random access memory
and NVIDIA GeForce GTX 1050 Ti graphics card.

Three evaluation metrics were used to validate all models.
They are, Mean Absolute Error (MAE), RootMean Squared Error
(RMSE), and normalized RMSE (nRMSE). MAE measures an
average model accuracy giving equal weights to the errors that are
calculated at each observation. ConsideringAi and Fi as the actual
and the forecasted values respectively, for n observations, Eq 4

calculates the MAE.

MAE �

∑n
i�1

|Ai − Fi|

n

(10)

The RMSE takes the residuals between the forecasted values
and the actual value to compare prediction errors, giving higher
weights to large errors. ConsideringAi and Fi as the actual and the
forecasted values respectively, for n observations, Eq 5 calculates
the RMSE.

RMSE �

��
∑n
i�1

√
(Ai − Fi)

2

n
(11)

The nRMSE represents the RMSE to the actual range of the

predicted variable. It is used to facilitate the comparison between
models developed for data with different scales. Also, it can be
interpreted as a fraction of the overall range that is typically
resolved by the model. Considering the X bar as the mean of the
actual variable, nRMSE is calculated using Eq. 6.

nRMSE �
RMSE

X

Data from 3 years were used for the evaluation, January 2018
to December 2020, following 2-fold cross validation procedure.
To evaluate and demonstrate the advantages of using both time
series and image data, the irLSTM and siLSTM models were
tested separately. The architectures are illustrated in Figure 9 and
additionally for each model a dense layer with 1 unit was

integrated following the dense layer with 16 units. Also, a
univariate LSTM model with the same architecture as of
irLSTM was tested as the benchmark model. Table 2 shows
the experimental results of the models, separately for “BM,”

FIGURE 10 | Actual irradiance, irradiance nowcasting, cloud cover and uncertainty measurement across 4 days during winter.
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“irLSTM” and “siLSTM,” as well as the “multimodal” model.
Here “BM” represents the benchmark model.

Based on Table 1, the proposed multimodal model surpasses
the benchmark model and the irLSTMmodel also outperforms

the benchmark in terms of the error metrics demonstrating the
positive effect of the added time series features. Then, it can be
observed that a considerable performance gain could be
achieved by using both irLSTM and siLSTM models as
multimodal model, with some fluctuations only during the
spring season. Especially during the winter and autumn, 14.28
and 10.8% improvements in nRMSE were recorded. The
multimodal model for the spring and the summer produced
nRMSE of 28.74 and 32.16%, respectively. The model
performed better during the winter and the autumn scoring
nRMSE values of 21.38 and 21.05%, respectively.

Table 3 presents the model performance of the multimodal
model with image data before and after the Sun masking. For
each season, the performance of the model was improved
with the Sun masking. Especially during spring and summer,
the nRMSE of the models were improved by 8.41 and 6.32%,
respectively.

Figure 10 illustrates the actual solar irradiance vs the
prediction of the benchmark and the multimodal model,
for 4 days during winter. As depicted by the “total cloud
cover,” Day 1 is all-day cloudy with a percentage close to
100% and Day 4 is sunny throughout the day with percentages

close to zero. During Day 1, the predictions from the
multimodal model manage to get closer to the actual value.
During day 4, multimodal model predicts closer to the actual
value but a bit lower during the peak. Then, during both day 2
and day 3, cloud cover is recorded a lower value and increases
during the latter part of the day, where the irradiance reading
is significantly affected. It is observed that model produces
lower values at the peaks during this period, while
maintaining the prediction closer to the actual value.

Also, the uncertainty of the prediction of the multimodal
model is also explored. The method proposed in Gal and

Ghahramani (2015) which utilizes dropout for representing
the model uncertainty was used. The measurement of
uncertainty was defined as the variance of the values that the
model predicts with dropout for 50 iterations. A dropout ratio of
0.16 was selected in a way that the percentages of the actual values
in each confidence interval are closer to the confidence interval
itself. This was carried out to make sure that the model confidence
interval is neither overestimated nor underestimated.
Nonetheless, the ‘variance’ in Figure 10 shows that the
proposed model has a lower uncertainty during cloudy
conditions than during clear sky conditions.

CONCLUSION

In this paper, the challenge of solar irradiance nowcasting in virtual
power plants is addressed using a novel approach that leverages the
multimodality of irradiance data streams. This approach receives a
temporal image modality of a stream of sky images, a temporal
numerical modality of a time-series of past solar irradiance readings
and cloud cover readings as inputs into an AI pipeline composed of
preprocessing and irradiance augmentation modules followed by a
multimodal LSTM network architecture that nowcasts solar

irradiance within a prediction horizon of 10minutes. These short
burst predictions inform the upstream decision-making of real-time
pricing and frequency reserves optimization in VPP. The complete
approach was empirically evaluated across the four seasons of the
northern hemisphere using a real-world solar irradiance case study.
The results confirm that our approach is more effective than single
modalities and outperforms current benchmark models. As future
work, we intend to formulate and integrate further modalities such as
weather, climate and mobility that improve the predictive accuracy of
solar irradiance nowcasting. Also, automated machine learning
methods offer a promising approach for optimizing the deep

neural network architecture, and their application is a topic for
further work. One relevant starting point for such work is the
extensive discussion of Neural Architecture Search (NAS) methods
in the survey (He et al., 2021).
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