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ABSTRACT
The variable magnetic field of the solar photosphere exhibits periodic reversals as a result of dynamo activity occur-

ring within the solar interior. We decompose the surface field as observed by both the Wilcox Solar Observatory and
the Michelson Doppler Imager into its harmonic constituents, and present the time evolution of the mode coefficients
for the past three sunspot cycles. The interplay between the various modes is then interpreted from the perspective of
general dynamo theory, where the coupling between the primary and secondary families of modes is found to correlate
well with large-scale polarity reversals for many examples of cyclic dynamos. Mean-field dynamos based on the solar
parameter regime are then used to explore how such couplings may result in the various long-term trends in the surface
magnetic field observed to occur in the solar case.

Subject headings: Sun: corona — Sun: magnetic fields

1. Introduction1

The Sun is a dynamic star that possesses quasi-regular cy-2

cles of magnetic activity having a mean period of about 22 yr.3

This period varies from cycle to cycle, and over the past sev-4

eral centuries has ranged from 18 to 25 years (Weiss 1990;5

Beer et al. 1998; Usoskin et al. 2007), as for example illus-6

trated by the unusual but not unprecedented length of the most7

recently completed sunspot cycle 23. During each sunspot8

cycle (comprising half of a magnetic cycle), the Sun emerges9

sunspot groups and active regions onto the photosphere, with10

such features possessing characteristic latitudes, polarity, and11

tilt angles. As with the period, the numbers and emergence12

frequencies of active regions is observed to vary from cycle13

to cycle.14

At activity minima when few active regions are present,15

the surface magnetic field is characterized by the presence16

of two polar caps, i.e., largely unipolar patches of magnetic17

flux dispersed across both polar regions with the northern and18

southern caps possessing opposite polarities. Reversals of this19

large-scale dipole represented by the polar-cap flux occur dur-20

ing each sunspot cycle, allowing the subsequent sunspot cy-21

cle to begin in the opposite configuration. After two sunspot22

cycles, and thus after undergoing two polarity reversals, the23

photospheric field will have returned to its starting configura-24

tion so as to complete a full activity cycle.25

In response to the photospheric flux associated with vari-26

ous features, such as active regions and their decay products,27

the coronal magnetic field possesses structures having a broad28
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spectrum of sizes. These structures are both evident in obser-29

vations of coronal loops, as found in narrow-band extreme ul-30

traviolet or soft X-ray imagery, and reproduced in models of31

the coronal magnetic field (e.g., Schrijver & DeRosa 2003).32

In both venues, the coronal magnetic field geometry is seen33

to contain a rich and complex geometry. Dynamical events34

originating from the corona, such as eruptive flares and coro-35

nal mass ejections, are likely powered by energy released by36

a reconfiguration of the coronal magnetic field, which in turn37

is responding to changes and evolution of photospheric fields.38

Precise measurements of the time-history of photospheric39

magnetic field, and the ability to determine the projection of40

this field into its constituent multipole components, are help-41

ful in investigating the physical processes thought to be re-42

sponsible for such dynamo activity (Moffatt 1978). In cool43

stars similar to the Sun, the dynamo is presumed to be a44

consequence of the nonlinear interactions between convec-45

tion, rotation, and large scale flows, leading to the genera-46

tion and maintenance against Ohmic diffusion of magnetic47

field of various temporal and spatial scales (Weiss 1987; Cat-48

taneo 1999; Ossendrijver 2003; Brun et al. 2004; Vögler &49

Schüssler 2007; Charbonneau 2010; Reiners 2012). In par-50

ticular, the dependence of dynamo activity upon rotation ap-51

pears to be well established (Reiners et al. 2009). However,52

selected details of the understanding of why many cool-star53

dynamos excite waves of dynamo activity having a regular54

period, specifically 22 yr in the case of the Sun, remains un-55

clear.56

To investigate this question, it is useful to explore the be-57

havior and evolution of the lowest-degree (i.e., largest-scale)58

multipoles, their amplitudes and phases, and their correla-59

tions of the solar photospheric magnetic field. Many earlier60

studies (e.g., Levine 1977; Hoeksema 1984; Gokhale et al.61

1992; Gokhale & Javaraiah 1992) have illustrated how power62
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in these modes ebb and flow as a function of the activity level.63

In particular, studies by Stenflo and collaborators have per-64

formed thorough spectral analyses on the temporal evolution65

of the various spherical harmonic modes. Stenflo & Vogel66

(1986) and Stenflo & Weisenhorn (1987), and more recently67

Knaack & Stenflo (2005), base their analysis on Mt. Wilson68

and Kitt Peak magnetic data spanning the past few sunspot69

cycles. As one would expect, they find that the most power is70

contained in temporal modes having a period of about 22 yr,71

and especially in spherical harmonics that are equatorially72

asymmetric, such as the axial dipole and octupole. How-73

ever, they find signatures of the activity cycle are present in74

all axisymmetric harmonics, as significant power is present at75

temporal frequencies at or near integer multiples of the fun-76

damental frequency of 1.44 nHz [equivalent to (22 yr)−1].77

In the current study, we focus on the coupling between78

spherical harmonic modes, and what such coupling may indi-79

cate about the operation of the interior dynamo. In particular,80

reversals of the axial dipole mode may be viewed as a result81

of continuous interactions between the poloidal and toroidal82

components of the interior magnetic field, i.e. the so-called83

dynamo loop. Currently, one type of solar dynamo model84

that successfully reproduces many observed behaviors is the85

flux-transport Babcock-Leighton type (e.g., Choudhuri et al.86

1995; Dikpati et al. 2004; Jouve & Brun 2007; Yeates et al.87

2008). A key ingredient in producing realistic activity cycles88

using this type of model is found to be the amplitude and pro-89

file of the meridional flow (Jouve & Brun 2007; Karak 2010;90

Nandy et al. 2011; Dikpati 2011), which result in field rever-91

sals progressing via the poleward advection across the surface92

of trailing-polarity flux from emergent bipolar regions. Dur-93

ing the rising phase of each sunspot cycle, polar cap flux left94

over from the previous cycle is canceled, after which new po-95

lar caps having the opposite magnetic polarity form (Wang96

et al. 1989; Benevolenskaya 2004; Dasi-Espuig et al. 2010).97

Helioseismic analyses of solar oscillations have provided98

measurements and inferences of key dynamo components,99

such as the internal rotation profile and the near-surface100

meridional circulation (Thompson et al. 2003; Basu & An-101

tia 2010). Complementing precise observations of the solar102

magnetic cycle properties, these helioseismic inversions rep-103

resent additional strong constraints on theoretical solar dy-104

namo models. Successful solar dynamo models strive to re-105

produce as many empirical features of solar magnetic activity106

as possible, including not only cycle periods, but also par-107

ity, phase relation between poloidal and toroidal components,108

and the phase relation between the dipole and higher-degree109

harmonic modes.110

Interestingly, a recent analysis of geomagnetic records has111

indicated that the interplay between low-degree harmonic112

modes during polarity reversals is one way to characterize113

both reversals of the geomagnetic dynamo (which have a114

mean period of about 300,000 yr) as well as excursions, where115

the dipole axis temporarily moves equatorward and thus away116

from its usual position of being approximately aligned with117

the rotation axis, followed by a return to its original position118

without having crossed the equator (see Hulot et al. 2010 for119

a recent review on Earth’s magnetic field). In particular, these120

studies have shown that, during periods of geomagnetic re-121

versals, the quadrupolar component of the geomagnetic field122

is stronger than the dipolar component, while during an excur-123

sion (which can be thought of as a failed reversal), the dipole124

remains dominant (Amit et al. 2010; Leonhardt & Fabian125

2007; Leonhardt et al. 2009). One may thus ask: Is a simi-126

lar behavior observed for the solar magnetic field?127

In an attempt to answer this question, we have performed128

a systematic study of the temporal evolution of the solar pho-129

tospheric field by determining the spherical harmonic coeffi-130

cients for the photospheric magnetic field throughout the past131

three sunspot cycles, focusing on low-degree modes and the132

relative amplitude of dipolar and quadrupolar components.133

Following the classification of McFadden et al. (1991), we134

have made the distinction between primary and secondary135

families of harmonic modes, a classification scheme that takes136

into account the symmetry and parity of the spherical har-137

monic functions (see Gubbins & Zhang 1993 for a detailed138

discussion on symmetry and dynamo).139

While we recognize that the solar dynamo operates in more140

turbulent parameter regime than the geodynamo, and is usu-141

ally more regular in its reversals, the presence of grand min-142

ima (such as the Maunder Minimum) in the historical record143

indicates that the solar dynamo can switch to a more intermit-144

tent state on longer-term, secular time scales. In fact in the145

late stages of the Maunder Minimum, the solar dynamo was146

apparently antisymmetric, with the southern hemisphere pos-147

sessing more activity than the north (Ribes & Nesme-Ribes148

1993) for several decades, a magnetic configuration that may149

have been achieved by having dipolar and quadrupolar modes150

of roughly the same amplitude (Tobias 1997; Gallet & Pétrélis151

2009). Additionally, recent spectopolarimetric observations152

of solar-like stars now provide sufficient resolution to char-153

acterize the magnetic field geometry in terms of its multipo-154

lar decomposition (Petit et al. 2008). Furthermore, the anal-155

ysis of reduced dynamical systems developed over the last156

20 yr describing the geodynamo and solar dynamo have em-157

phasized the importance of the nonlinear coupling between158

dipolar and quadrupolar components (Knobloch & Landsberg159

1996; Weiss & Tobias 2000; Pétrélis et al. 2009).160

This article is organized in the following manner. In §2,161

we describe the data sets and the data analysis methods used162

to perform the spherical harmonic analysis, followed in §3163

with an explanation of the temporal evolution of the various164

harmonic modes, the magnetic energy spectra, and the de-165

composition in terms of primary and secondary families. We166

interpret in §4 our results from a dynamical systems perspec-167

tive and illustrate some of these concepts using mean-field168

dynamo models. Concluding remarks are presented in §5.169
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2. Observations and Data Processing170

We analyze time series of synoptic photospheric mag-171

netic field maps of the radial magnetic field Br derived from172

line-of-sight magnetogram observations taken by both the173

Wilcox Solar Observatory (WSO; Scherrer et al. 1977) at174

Stanford University and by the Michelson Doppler Imager175

(MDI; Scherrer et al. 1995) on board the space-borne Solar176

and Heliospheric Observatory (SOHO). The WSO data1 used177

in this study span the past 35 years, commencing with Car-178

rington Rotation (CR) 1642 (which began on 1976 May 27)179

and ending with CR 2108 (which ended on 2011 Apr. 12).180

For MDI2, we used data from much of its mission lifetime,181

starting with CR 1910 (which began on 1996 Jul. 1) through182

CR 2104 (which ended on 2010 Dec. 24). In both data series,183

one map per Carrington rotation was used, though maps with184

significant amounts of missing data were excluded. The mea-185

sured line-of-sight component of the field is assumed to be186

the consequence of a purely radial magnetic field when calcu-187

lating the harmonic coefficients. Additionally, for WSO, the188

synoptic map data are known to be a factor of about 1.8 too189

low due to the saturation of the instrument (Svalgaard et al.190

1978). Lastly, the MDI data have had corrections applied for191

the polar fields using the interpolation scheme presented in192

Sun et al. (2011).193

For each map, we perform the harmonic analysis using the194

Legendre-transform software provided by the “PFSS” pack-195

age available through SolarSoft. Using this software first en-196

tails remapping the latitudinal dimension of the input data197

from the sine-latitude format provided by the observatories198

onto a Gauss-Legendre grid (c.f., § 25.4.29 of Abramowitz &199

Stegun 1972). This regridding enables Gaussian quadrature to200

be used when evaluating the sums needed to project the mag-201

netic maps onto the spherical harmonic functions. The end re-202

sult is a time-varying set of complex coefficients Bm
ℓ (t) for a203

series of modes spanning harmonic degrees ℓ = 0, 1, ..., ℓmax,204

where the truncation limit ℓmax is equal to 60 for the WSO205

maps and 192 for MDI maps. The Bm
ℓ coefficients are pro-206

portional to the amplitude of each spherical harmonic mode207

Y m
ℓ for degree ℓ and order m possessed by the time series of208

synoptic maps, so that209

Br(θ, φ, t) =

ℓmax
∑

ℓ=0

ℓ
∑

m=0

Bm
ℓ (t)Y m

ℓ (θ, φ), (1)210

where θ is the colatitude, φ is the latitude, and t is time. We211

note that because the coefficients Bm
ℓ are complex numbers,212

this naturally accounts for the rotational symmetry between213

spherical harmonic modes with ordersm and −m (for a given214

value of ℓ), with the amplitudes of modes for which m > 0215

appearing in the real part of Bm
ℓ , and the amplitudes of the216

modes where m < 0 being contained in the imaginary part217

of Bm
ℓ . Consequently, the sum over m in equation (1) starts218

1Available at http://wso.stanford.edu/synopticl.html.
2Available at http://soi.stanford.edu/magnetic/index6.html.

at m = 0 instead of at m = −ℓ. The coefficients B0

ℓ corre-219

sponding to the axisymmetric modes (for which m = 0) are220

real for all ℓ.221

We use the convention that, for a particular spherical har-222

monic degree ℓ and order m,223

Y m
ℓ (θ, φ) = Cm

ℓ P
m
ℓ (cos θ) eimφ, (2)224

where the functions Pm
ℓ (cos θ) are the associated Legendre225

polynomials, and where the coefficients Cm
ℓ are defined226

Cm
ℓ = (−1)m

[

2ℓ+ 1

4π

(ℓ −m)!

(ℓ +m)!

]
1

2

. (3)227

With this normalization, the spherical harmonic functions sat-228

isfy the orthogonality relationship229

∫ 2π

0

dφ

∫ π

0

sin θ dθ Y m∗

ℓ Y m′

ℓ′ = δℓℓ′ δmm′ . (4)230

When comparing our coefficients with those from other stud-231

ies, it is important to take the normalization into account. For232

example, the complexBm
ℓ coefficients used here are different233

than (albeit related to) the real-valued gm
ℓ and hm

ℓ coefficients234

provided by the WSO team3. This difference is due to their235

use of spherical harmonics having the Schmidt normalization,236

a convention that is commonly used by the geomagnetic com-237

munity as well as by earlier studies in the solar community238

such as Altschuler & Newkirk (1969). For the WSO data used239

here, we have verified that the values ofBm
ℓ used in this study240

are commensurate with the gm
ℓ and hm

ℓ coefficients provided241

by the WSO team.242

Because we possess perfect knowledge of Br neither over243

the entire Sun nor at one instant in time, the monopole co-244

efficient function B0
0(t) does not strictly vanish and instead245

fluctuates around zero. In practice, we find that the magni-246

tude of B0
0(t) is small, and thus feel justified in not consid-247

ering it further. This assumption effectively means that from248

each magnetic map we are subtracting off any excess net flux,249
∮

Br(θ, φ) sin θ dθ dφ, a practice which leads to the introduc-250

tion of small errors in the resulting analysis. However, these251

errors are deemed to be less important than the inaccuracies252

resulting from the less-than-perfect knowledge of the radial253

magnetic flux on the Sun, including effects due to evolution254

and temporal sampling throughout each Carrington rotation255

and due to the lack of good radial field measurements of the256

flux in the polar regions of the Sun.257

3. Multipolar Expansions and Their Evolution as a258

Function of Cycle259

3.1. Dipole Field (Modes with ℓ = 1)260

The solar dipolar magnetic field can be analyzed in terms261

of its axial and equatorial harmonic components. As has long262

3Tables of gm

ℓ
and hm

ℓ
are available from the WSO webpage at

http://wso.stanford.edu/Harmonic.rad/ghlist.html.

3



been known (Hoeksema 1984), the axial dipole component,263

having a magnitude of |B0
1 |, is observed to be largest during264

solar minimum when there is a significant amount of magnetic265

flux located at high heliographic latitudes on the Sun. These266

two so-called polar caps possess opposite polarity, and match267

the polarity of the trailing flux within active regions located268

in the corresponding hemisphere that emerged during the pre-269

vious sunspot cycle. Long-term observations of surface-flux270

evolution indicate that a net residual amount of such trailing-271

polarity flux breaks off from decaying active regions and is272

released into the surrounding, mixed-polarity quiet-sun net-273

work. This flux is observed to continually evolve as flux ele-274

ments merge, fragment, and move around in response to con-275

vective motions, but the long-term effect is that the net resid-276

ual flux is slowly advected poleward by surface meridional277

flows. Over the course of a sunspot cycle, such poleward278

advection results in a net influx of trailing-polarity flux into279

the higher latitudes. At the same time, an equivalent amount280

of leading-polarity flux from each hemisphere cancels across281

the equator, as is necessary to balance the trailing-polarity282

flux advected poleward. Over the course of a sunspot cycle,283

this process is repeated throughout subsequent sunspot cycles,284

during which flux from the trailing polarities of active regions285

eventually cancels out the polar-cap flux left over from previ-286

ous cycles. Once the leftover flux has fully disappeared, the287

buildup of a new polar cap having the opposite polarity occurs288

by the subsequent activity minimum.289

In contrast to the axial dipole component, the equatorial290

dipole components, having magnitudes |B−1

1
| and |B1

1 |, are291

largest during maximum activity levels and weakest during292

activity minima. Individual active regions on the photosphere293

each possess a small dipole moment that, aside from the small294

axial component arising from the Joy’s Law tilt, is oriented in295

the equatorial plane. Together the equatorial dipole moments296

from the collection of active regions add vectorially to form297

the overall dipole moment. When many active regions are298

on the disk, it thus follows that the equatorial dipole mode299

is likely to have a higher amplitude. During periods of quiet300

activity with few active regions on disk, the equatorial dipole301

amplitude is minimal.302

Because the WSO data span three sunspot activity cycles,303

a bit of historical perspective on the evolution of the dipole304

can be gained, as shown in Figure 1. Figure 1(a) shows the305

amplitude of the axial dipole moment since mid 1976 and its306

rise and fall in step with the amount of activity, represented307

in the figure by the sunspot number4 (SSN). It is also evident308

that, during the most recent minimum following Cycle 23,309

the magnitude of the solar-minimum axial dipole component310

is much lower than during any of the three previous minima311

(i.e., those preceding Cycles 21–23). The connection between312

4Sunspot numbers with slightly different calibrations are available from var-
ious sources worldwide. In this article, we use the indices provided by the
Solar Influences Data Center at the Royal Observatory of Belgium, whose
sunspot index data are available online at http://www.sidc.be/sunspot-index-
graphics/sidc_graphics.php.

the axial dipole component and the flux in the northern hemi-313

sphere is illustrated in the time-history of the net hemispheric314

flux, shown in Figure 2.315

Figure 1(b) illustrates the magnitude of the equatorial316

dipole since mid 1976. In step with the relatively lower num-317

ber of active regions during Cycle 23 when compared with the318

maxima for Cycles 21 and 22, the equatorial dipole strength319

is found to be lower during the most recent maximum than320

during the maxima corresponding to Cycles 21 or 22.321

Given the variation in sunspot cycle strengths throughout322

the past few centuries, we suspect that cycle-to-cycle varia-323

tions in the magnitudes of the axial and equatorial modes are324

not unusual. Proxies of the historical large-scale magnetic325

field, such as cosmic-ray induced variations of isotopic abun-326

dances measured from ice-core data (Steinhilber et al. 2012),327

also show such longer-term variation and thus seem to be con-328

sistent with this view. Interestingly, the range over which the329

variation in the ratio of the energies possessed by the equa-330

torial versus the axial dipole components is about the same331

for the three sunspot cycles observed by WSO, as shown in332

Figure 1(c). Longer-term measurements of this ratio unfor-333

tunately are not available due to the lack of a sequence of334

long-term magnetogram maps from which the harmonic de-335

composition analysis outlined in Section 2 can be applied.336

3.2. Reversals of the Dipole337

The process by which old polar caps are canceled out and338

replaced with new, opposite-polarity polar caps, as described339

in the previous section, manifests itself as a change in sign of340

the axial dipole amplitude throughout the course of a sunspot341

cycle. Such dipole reversals for the past three sunspot cycles342

are shown in Figure 3, where the latitude and longitude of the343

dipole axis are plotted with time. It is found that the dipole344

axis spends much of its time in the polar regions, and for only345

about 12–18 months during these cycles is it located equator-346

ward of ±45◦.347

During these reversals, the energy in the dipole never com-348

pletely disappears. We find that the energy (B0
1)2 in the the349

axial dipole is partially offset by the energy (B−1

1
)2 + (B1

1)2350

in the equatorial dipole, resulting in a reduction of the total en-351

ergy
∑

m(Bm
1 )2 in all dipolar modes only by about an order352

of magnitude from its axial-dipole-dominated value at solar353

minimum, as shown in Figure 4(a).354

Figure 3 indicates that, during a reversal when the axial355

dipolar component is weak, the axis of the equatorial dipo-356

lar component wanders in longitude. This seemingly aimless357

wandering occurs because the longitude of the dipole axis is358

primarily determined by an interplay amongst the strongest359

active regions on the photosphere at the time of observa-360

tion. As older active regions decay and newer active regions361

emerge onto the photosphere, the equatorial-dipolar axis re-362

sponds in kind.363
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Fig. 1.— Evolution of the dipole (ℓ = 1) modes, as char-
acterized by the (a) axial dipole coefficient B0

1 , (b) equato-

rial dipole magnitude
√

(B−1

1
)2 + (B1

1
)2, and (c) the ratio of

their energies [(B−1

1
)2 + (B1

1)2]/(B0
1)2 for the WSO (black)

and MDI polar-corrected (magenta) data sets. Panel (d) shows
the monthly smoothed sunspot number (SSN) from Solar In-
fluences Data Center at the Royal Observatory of Belgium.
The WSO data have not been corrected for known saturation
effects that reduce the reported values by a factor of 1.8 (Sval-
gaard et al. 1978).
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Fig. 2.— Northern hemispheric net flux (magenta) and axial
dipole coefficient from WSO (black), illustrating the connec-
tion between the axial dipole and the net flux in each hemi-
sphere. The downward spike in the hemispheric flux occur-
ring in 2001 is likely related to WSO sensitivity issues occur-
ring during that time period, and may not be real.
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Fig. 3.— (a)–(c) Mollweide projections of the location of the
dipole axis for the past three sunspot cycles (Cycles 21–23),
as determined from WSO synoptic charts. The solid circles
indicate the longitude and latitude of the dipole axis for each
Carrington rotation, with every sixth Carrington rotation also
indicated by an open circle. Grid lines (dashed) are placed
every 45◦ in latitude and longitude for reference. The Car-
rington longitudes of the central meridians of each projection
are chosen to best illustrate the reversals, and differ in each of
the panels. Panel (d) illustrates the latitude of the dipole axis
as a function of time. The open circles in panel (d) correspond
to same times as the open circles in panels (a)–(c).
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Fig. 4.— Total energy in (a) dipolar modes
∑

m(Bm
1 )2,

(b) quadrupolar modes
∑

m(Bm
2 )2, and (c) their ratio
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m(Bm
2 )2/

∑

m(Bm
1 )2 for the WSO (black) and MDI polar-

corrected (magenta) data sets. Panel (d) shows the monthly
smoothed SSN. The WSO data have not been corrected for
known saturation effects that reduce the reported values by a
factor of 1.8 (Svalgaard et al. 1978).
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3.3. Quadrupole Field (Modes with ℓ = 2)364

The evolution of the energy contained in the individual365

quadrupolar (ℓ = 2) modes exhibit much more variation than366

the dipole. As with the equatorial dipole components, all of367

the quadrupolar modes have more power during greater ac-368

tivity levels than during quieter periods. Furthermore, when369

large amounts of activity occur, it is possible for the total370

energy
∑

m(Bm
2 )2 in all quadrupolar modes to be greater371

than the energy
∑

m(Bm
1 )2 in the dipolar modes at the pho-372

tosphere. The ratio between these two groups of modes is373

shown in Figure 4(c), from which it is evident that during374

each of the past three sunspot cycles there have been peri-375

ods of time when the quadrupolar energy exceeded the dipo-376

lar energy by as much as a factor of 10. The corona, in turn,377

reflects the relative strength of a strong quadrupolar config-378

uration of photospheric magnetic fields by creating complex379

sectors and possibly multiple current sheets. One example of380

such complex field geometry is suggested by the potential-381

field source-surface model of Figure 5, where a quadrupolar382

configuration having an axis of symmetry lying almost in the383

equatorial plane is seen to predominate.384

3.4. Octupole Field (Modes with ℓ = 3)385

As with the quadrupole, the octupolar modes contain more386

power during periods of high activity and less power during387

minimum conditions, as illustrated in Figure 7. The exception388

is the axial octupolar coefficient B0
3 , plotted in panel (a) of389

Figure 7, which is nonzero during solar minima and exhibits390

sign reversals during sunspot maxima in a manner similar to391

the axial dipole coefficient B0
1 .392

The behavior of the various m = 0 modes can be under-393

stood by considering their functional symmetry: the Y 0

ℓ func-394

tions are antisymmetric in θ (i.e., antisymmetric across the395

equator) when the degree ℓ is odd, whereas for even ℓ the396

Y 0

ℓ functions are symmetric in θ. The presence of polar caps397

during solar minimum, a highly antisymmetric configuration,398

is reflected in the similar evolution of the B0
1 and B0

3 coeffi-399

cients, which correspond to the axial dipole (ℓ = 1, m = 0)400

and octupole (ℓ = 3, m = 0) modes. The axial quadrupole401

(ℓ = 2, m = 0) mode does not share this behavior because,402

as a symmetric mode, it is not sensitive to the presence of the403

polar caps during solar minima.404

The dependence of the B0

ℓ coefficients on the degree ℓ is405

illustrated in Figure 8, where the time-averaged energies from406

the MDI data (spanning Solar Cycle 23) as a function of de-407

gree ℓ are plotted. Prior to averaging, the spectra were placed408

in two classes: Carrington rotations for which the SSN is rel-409

atively large (defined as when SSN>100) and rotations for410

which the SSN is relatively small (defined as when SSN<50),411

thus capturing the state of the Sun when it is either overtly412

active or overtly quiet. The figure indicates that the even-odd413

behavior is more pronounced during quiet periods, and these414

occur near and during solar minimum when the polar-cap field415

is significant. During active periods the even-odd trend is still416

Fig. 5.— Representation of the coronal magnetic field in Oc-
tober 2000 for which the large-scale field is predominantly
quadrupolar. This field is the result of a potential-field source-
surface extrapolation (Schatten et al. 1969) with an upper
boundary of 2.5 R⊙ at which the coronal field is assumed
purely radial. Both closed (black) and open (magenta and
green, depending on polarity) field lines are shown in the
model. Also shown is the contour of Br = 0 at R = 2.5R⊙

(thicker black line).

7



−4

−2

0

2

4

L
=

2
 m

=
0

c
o

e
ff

ic
ie

n
t 

[G
]

    

    

0

2

4

6

8

L
=

2
 |
m

|=
1

m
a

g
n

it
u

d
e

 [
G

]

    

    

0

2

4

6

8

L
=

2
 |
m

|=
2

m
a

g
n

it
u

d
e

 [
G

]

    

    

1980 1990 2000 2010
year

0

100

200

0

S
S

N

SC21 SC22 SC23

(a)

(b)

(c)

(d)

Fig. 6.— Evolution of the quadrupolar (ℓ = 2) modes,
as characterized by the (a) axial quadrupole coefficient
B0

2 , along with higher-order magnitudes of the (b) m =

±1 modes
√

(B−1

2
)2 + (B1

2
)2 and (c) m = ±2 modes

√

(B−2

2
)2 + (B2

2
)2, for the WSO (black) and MDI polar-

corrected (magenta) data sets. Panel (d) shows the monthly
smoothed SSN. The WSO data have not been corrected for
known saturation effects that reduce the reported values by a
factor of 1.8 (Svalgaard et al. 1978).

recognizable, but because the polar caps are weak and the417

active regions are primarily oriented east-west (thereby con-418

tributing little power to the axial modes) the even-odd trend419

is less pronounced. We will further discuss the behavior of420

axisymmetric modes in the context of Babcock-Leighton dy-421

namo models in Section 4.2.422

3.5. Full Spectra and Most Energetic Modes423

One property of the spherical harmonic functionsY m
ℓ (θ, φ)424

is that the degree ℓ is equal to the number of node lines (i.e.,425

contours in θ and φ where Y m
ℓ = 0). In other words, the426

spatial scale represented by any harmonic mode (i.e., the dis-427

tance between neighboring node lines) is determined by its428

spherical harmonic degree ℓ. As a result, the range of ℓ val-429

ues containing the greatest amount of energy indicates the430

dominant spatial scales of the magnetic field.431

To this end, we have averaged the non-axisymmetric power432

spectra from each of the datasets both over time and over m,433

and have displayed the result in Figure 9. As with Figure 8,434

we have divided the spectra into active and quiet classes de-435

pending on SSN. In the figure, it can be seen that the magnetic436

power spectra form a broad peak with a maximum degree oc-437

curring at ℓPmax ≈25, corresponding to a size scale of about438

360◦/ℓPmax ≈15◦ in heliographic coordinates. Stated another439

way, this indicates that much of the magnetic energy can be440

found (not surprisingly) on the spatial scales of solar active441

regions or their decay products.442

Energy spectra determined from WSO charts (not shown)443

do not show the same broad peak at ℓPmax ≈25 as found in444

the curves from the MDI-derived data shown in Figure 9.445

This is an effect of the significantly lower spatial resolution446

of the WSO magnetograph (which has 180′′ pixels, and is447

stepped by 90′′ in the east-west direction and 180′′ in the448

north-south direction when constructing a magnetogram) ver-449

sus MDI (which has a plate scale of 2′′ in full-disk mode).450

The WSO magnetograph, as a result, does not adequately re-451

solve modes higher than about ℓ = 15, creating severe alias-452

ing effects even at moderate values of ℓ in the energy spectra.453

Accordingly, as longer time series of data from newer, higher-454

resolution magnetograph instrumentation are assembled, the455

high-ℓ behavior of the energy spectra (such as those shown in456

Figs. 8 and 9) may change due to better observations of finer457

scales of magnetic field.458

3.6. Primary and Secondary Families459

The projection of the solar surface magnetic fields onto460

spherical harmonic degrees allows us to delineate the main461

symmetries of the magnetic field. As noted in §2, the har-462

monic modes can classified as either axisymmetric (m = 0)463

or non-axisymmetric (m 6= 0). Separately, the harmonic464

modes can be either antisymmetric (odd ℓ + m) or symmet-465

ric (even ℓ + m) with respect to the equator (Gubbins &466

Zhang 1993). Some authors refer to antisymmetric modes467

as dipolar and the symmetric modes as quadrupolar (presum-468
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Fig. 7.— Evolution of the octupolar (ℓ = 3) modes, as
characterized by the (a) axial octupole coefficient B0

3 , along
with higher-order magnitudes of the (b) m = ±1 modes
√

(B−1

3
)2 + (B1

3
)2, (c) m = ±2 modes

√

(B−2

3
)2 + (B2

3
)2,

and (d) m = ±3 modes
√

(B−3

3
)2 + (B3

3
)2, for the WSO

(black) and MDI polar-corrected (magenta) data sets. Panel
(e) shows the monthly smoothed SSN. The WSO data have
not been corrected for known saturation effects that reduce
the reported values by a factor of 1.8 (Svalgaard et al. 1978).
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Fig. 8.— Time-averaged energies in the axisymmetric modes
(B0

ℓ )2 as a function of ℓ for MDI original (black) and polar-
corrected (magenta) data sets, for more active conditions
(solid lines; defined as when SSN>100) and for quieter pe-
riods (dashed lines; defined as when SSN<50).
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ℓ )2 as a function of ℓ for MDI original
(black) and polar-corrected (magenta) data sets, for more ac-
tive conditions (solid lines; defined as when SSN>100) and
for quieter periods (dashed lines; defined as when SSN<50).
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ably because the axial dipole and quadrupole modes usually469

possess the most power), while others synonymously assign470

modes to either the primary and secondary family (e.g., Mc-471

Fadden et al. 1991 when characterizing the Earth’s magnetic472

field geometry), respectively. In this article, we adopt the473

primary- and secondary-family nomenclature when describ-474

ing the equatorial symmetry because this avoids the confusion475

that may otherwise occur when, for example, it is realized that476

the equatorial dipole mode (ℓ = 1,m = 1) belongs to the477

“quadrupolar” family of modes (since ℓ + m is even for this478

mode).479

One important result put forward by the geomagnetic com-480

munity is that the relative strengths of the primary and sec-481

ondary families are different during geomagnetic field rever-482

sals and excursions. During reversals, the modes associated483

with the secondary family predominate over primary-family484

modes, and during excursions this is not the case (Leonhardt485

& Fabian 2007). We now investigate whether analogous be-486

havior is occurring in the solar setting, by determining which487

harmonic modes are most correlated with the axial dipole and488

axial quadrupole.489

When applied to two variables, the Spearman rank correla-490

tion index ρ ∈ [−1, 1] indicates the degree to which two vari-491

ables are monotonically related. The index ρ is positive when492

both variables tend to increase and decrease at the same points493

in time. A rank correlation analysis is more general than494

a more common Pearson correlation analysis, which specif-495

ically measures how well two variables are linearly related,496

whereas the rank correlation analysis enables a determination497

of whether the time evolution of two mode amplitudes follow498

a similar pattern in time without regard to their (unknown)499

functional dependency.500

In Table 1 we list the degrees ℓ and orders m correspond-501

ing to the harmonic coefficients Bm
ℓ (t) that have the highest502

ρ (positive correlation) when compared with the axial dipole503

and axial quadrupole coefficients B0
1(t) and B0

2(t) (which504

peak at different phases of the sunspot cycle). The corre-505

sponding harmonic modes comprise the strongest modes in506

the primary and secondary families, respectively. We find507

that, among the mode amplitudes that are positively correlated508

with B0
1 , two out of three belong to the primary family. Simi-509

larly, for B0
2 , 7 of the 10 most-correlated modes are members510

of the secondary family.511

These correlations indicate a preference in the solar dy-512

namo, at least as inferred from its surface characteristics, for513

modes belonging to the same family and thus having the same514

north-south symmetry characteristics to be excited nearly in515

phase. This preference is demonstrated further in Figures 10516

and 11, in which the long-term trends in the time evolution517

of the first several axisymmetric mode coefficients is shown,518

after smoothing with a boxcar filter having a width of 1 yr.519

(We focus here on the axisymmetric mode properties because520

these modes are the only ones considered in most mean-field521

dynamo models, as discussed further in §4.2.) In Figure 10,522

there is a clear correlation amongst the first few odd-ℓ and523

amongst the first couple of even-ℓ mode coefficients, a trend524

which is emphasized in Figure 11 in which these same mode525

coefficients are overplotted. We note that the mode group-526

ings are not precisely in phase, as evidenced for example by527

the lag in ℓ = 3 and especially the ℓ = 5 modes reversing528

signs with respect to the ℓ = 1 mode. When ℓ ≥ 6 or so,529

these trends become much weaker amongst the axisymmetric530

modes (although Table 1 indicates that this is not necessarily531

true for the non-axisymmetric modes), presumably because532

as smaller and smaller scales are considered the effects of the533

global organization associated with the 11 yr sunspot are less534

important in structuring the surface magnetic field.535

Figure 11 additionally illustrates that the modes of the536

secondary family attain amplitudes of about 25% of the pri-537

mary mode amplitudes. Furthermore, the primary and sec-538

ondary mode families are out of phase: during reversals the539

primary modes become weak at the same time as the ampli-540

tudes of the modes associated with the secondary family be-541

come maximal, which was shown previously in Figure 4(c).542

This same pattern is observed to occur during reversals of the543

axial dipole field of the geodynamo. As in the geodynamo544

case, we ascribe the relative amplitudes and phase relation545

between the primary and secondary families observed during546

solar dipole reversals as a strong indication that the interplay547

of the mode families play a key role in the process by which548

the axial dipole reverses". Hence, any realistic model of the549

solar dynamo must excite both families of modes to similar550

amplitude levels, and must exhibit similar coupling between551

modes belonging to the primary and secondary families.552

4. Theoretical Implications for Solar Dynamo553

As demonstrated in previous sections, the amplitudes of554

the various harmonic modes of the solar magnetic field are555

continually changing. During reversals, as the axial dipole556

necessarily undergoes a change in sign, other modes predom-557

inate such that the amplitude of the solar magnetic field never558

vanishes during a reversal. As a result of such reversals oc-559

curring in the middle of each 11-yr sunspot cycle, during the560

rising phase of each cycle the polar fields and the emergent561

poloidal fields have opposite polarity (Babcock 1961; Benev-562

olenskaya 2004), while in the declining phase the polarity of563

sunspots and active regions are aligned with the newly formed564

polar-cap field.565

We have already noted how the temporal modulation of566

the large-scale harmonic modes comprising the primary and567

secondary families during polarity reversals appears similar568

to that of the magnetic field of the Earth (McFadden et al.569

1991; Leonhardt & Fabian 2007). We have illustrated that as570

the magnitude of the primary-family mode amplitudes (pri-571

marily those of the axisymmetric odd-ℓ modes B0

ℓ ) lessen,572

the secondary-family mode amplitudes (particularly those of573

the equatorial dipole B1
1 and axial quadrupole B0

2) simulta-574

neously increase. Once the secondary-family modes have575

peaked, the primary-family modes grow as a result of the576
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Fig. 10.— (a)–(h) Coefficients B0

ℓ for the axisymmetric
modes of the first eight degrees ℓ as a function of time, as cal-
culated from the WSO (black) and MDI polar-corrected (ma-
genta) synoptic maps. Panel (i) shows the monthly smoothed
SSN. The WSO data have not been corrected for known satu-
ration effects that reduce the reported values by a factor of 1.8
(Svalgaard et al. 1978).
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tively) and even (ℓ = {2, 4, 6} (dark blue, blue, light blue,
respectively) axisymmetric modes, as calculated from WSO
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Most Correlated modes
ℓ = 1, m = 0 ℓ = 2, m = 0

ℓ m Primary ℓ m Secondary

3 0 Y 4 0 Y
5 0 Y 4 1 N
2 0 N 9 9 Y

6 1 N
7 0 N
9 1 Y
5 1 Y
1 1 Y
7 7 Y
3 3 Y

Table 1: Ranking of the most positively correlated modes
within the primary and secondary families. The basis for
comparison in each family is the lowest-degree axisymmetric
mode belonging to each family, specifically the axial dipole
(ℓ = 1, m = 0) and axial quadrupole (ℓ = 2, m = 0)
modes for the primary and secondary families, respectively.
The most correlated mode is the next axisymmetric mode in
each family. The equatorial dipole mode (ℓ = 1, m = 1)
is more correlated with the axisymmetric quadrupole, as ex-
pected from its symmetry properties. We note the presence
of 4 sectoral modes (for which ℓ = m) in the list of the sec-
ondary family.

growing polar-caps. Such interplay between primary and sec-577

ondary families provides insight toward an understanding of578

the processes at play in the solar dynamo that are assumed to579

be responsible for the occurrence of the observed cyclic activ-580

ity (Tobias 2002).581

The presence of power in members of both the primary582

and secondary families indicates that the solar dynamo ex-583

cites modes that are both symmetric and antisymmetric with584

respect to the equator. As was demonstrated by Roberts &585

Stix (1972), this cannot occur unless nonlinearities exist or586

unless basic ingredients of the solar dynamo (such as, for ex-587

ample the α and/or ω effects, or the meridional flow) possess588

some degree of north-south antisymmetry. In light of the the589

parameter regime in which the solar dynamo is thought to op-590

erate, including large fluid and magnetic Reynolds numbers591

believed to characterize the solar convection zone (of order592

1012–1015; Stix 2002; Ossendrijver 2003), one expects the593

Sun to possess a nonlinear dynamo. Detailed observations594

of the magnetic field in the solar interior where dynamo ac-595

tivity is thought to occur are not available, but the observed596

magnetic patterns and evolution provide circumstantial evi-597

dence of a turbulent, highly nonlinear processes that lead to598

complex local and nonlocal cascades of energy and magnetic599

helicity (Alexakis et al. 2005, 2007; Strugarek et al. 2012).600

Yet, the presence of regular patterns formed by the emergent601

flux on the solar photosphere, as codified by Hale’s Polarity602

Law, Joy’s Law for active-region tilts, and the approximately603

regular cycle lengths, suggest that some ordering is indeed604

happening in the solar interior.605

With the aim of distilling the necessary elements of the606

various nonlinear dynamos into a manageable framework,607

multiple authors have created idealized models of the solar608

dynamo, including (for example) Weiss et al. (1984); Feyn-609

man & Gabriel (1990); Ruzmaikin et al. (1992); Knobloch610

& Landsberg (1996); Tobias (1997); Knobloch et al. (1998);611

Melbourne et al. (2001); Weiss & Tobias (2000); Spiegel612

(2009). Similarly, for the geodynamo there are many ef-613

forts, including Glatzmaier & Roberts (1995); Heimpel et al.614

(2005); Christensen & Aubert (2006); Busse & Simitev615

(2008); Nishikawa & Kusano (2008); Takahashi et al. (2008);616

Christensen et al. (2010). A completely different approach617

has been taken by Pétrélis & Fauve (2008) and Pétrélis et al.618

(2009), who have developed simplified models of the von619

Karman sodium (VKS) laboratory experiment (Monchaux620

et al. 2007). In all of these idealized models, the modulations621

resulting from the coupling between magnetic modes from622

the different families, or between the magnetic field and fluid623

motions (Tobias 2002) can be analyzed in terms of the equa-624

tions that describe the underlying systems. The variability of625

the most prominent cycle period develops as a result of the626

coupling of modes introducing a second time scale into the627

dynamo system, often leading to a quasi-periodic or chaotic628

behavior of the magnetic field, cycle length, and/or dominant629

parity. One can further understand via symmetry considera-630

tions how reversals and excursions arise (Gubbins & Zhang631

1993).632

4.1. Reversals and Coupling between Modes633

To illustrate such a dynamical system, following the work634

of Pétrélis & Fauve (2008), we assume that the axisymmet-635

ric dipole and quadrupole modes are nonlinearly coupled. We636

can then define a variable A(t) = B0
1(t) + iB0

2(t), where637

we have used the time-varying mode coefficients defined in638

Equation 1, and write an evolution equation that satisfies the639

symmetry invariance found in the induction equation, i.e.,640

B → −B. It then follows that A → −A, and that such a641

equation to leading nonlinear order is642

dA

dt
= µ1A+µ2Ā+ ν1A

3 + ν2A
2Ā+ ν3AĀ

2 + ν4Ā
3, (5)643

where µi and νi are complex coefficients and Ā = B0
1 − iB0

2644

is the complex conjugate of A, and the quadratic terms have645

vanished due to symmetry considerations. As discussed in646

Pétrélis & Fauve (2008) and Pétrélis et al. (2009), such dy-647

namical systems are subject to bifurcations. In particular,648

they demonstrate that this dynamical system can be character-649

ized by a saddle-node bifurcation when comparing its proper-650

ties with so-called normal form equations (Guckenheimer &651

Holmes 1982). In such a bifurcated system, both stable and652

unstable equilibria (fixed points) exist, as illustrated in the left653

panel of Figure 12. For instance, if the solution lies at a stable654

point (for example, where the dipole axis is oriented north-655
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ward), fluctuations in the system may disturb the equilibrium656

and push the magnetic axis away from its stable location. If657

such fluctuations are not strong enough, the evolution of the658

dynamical system resists the deterministic evolution of the659

system and the system returns to its original configuration (in660

the example, resulting in an excursion of the dipole), such as661

seen in the geomagnetic field (Leonhardt & Fabian 2007). If,662

instead, the fluctuations are large enough to push the system663

past the unstable point, the magnetic field then evolves toward664

the opposite stable fixed point allowed by B → −B (in the665

example, resulting in a reversal that changes the dipole axis666

to a southward orientation). Such behavior is also seen in the667

VKS experiment, from which is observed irregular magnetic668

activity combined with both excursions and reversals. Rever-669

sals result in an asymmetric temporal profile, with the dipole670

evolving slowly away from its equilibrium followed by a swift671

flip.672

In Figure 13 we have overplotted the last three sunspot cy-673

cle reversals such that the zero-crossings of the axial dipole674

coefficientsB0
1 for each cycle are aligned. It has been recently675

shown that the 10 major geomagnetic reversals for which de-676

tailed records exist occurring during the past 180 Myr pos-677

sess a characteristic shape upon suitable normalization (Valet678

& Fournier 2012). This shape can be described as compris-679

ing a precursory event lasting of order 2500 yr, a quick re-680

versal not exceeding 1000 yr, and a rebound event of order681

2500 yr. Pétrélis et al. (2009) show that the magnetic field in682

a simplified VKS laboratory experiment exhibits differing be-683

havior during reversals and excursions. During reversals, the684

magnetic field has an asymmetric profile that contains a slow685

decrease in the dipole, followed by a rapid change of polarity686

and buildup of the opposite polarity, whereas excursions are687

more symmetric. Additionally, after reversals the magnetic688

dipole overshoots its eventual value before settling down,689

whereas during excursions no such overshooting is measured690

(see Fig. 3 of Pétrélis et al. 2009). For the solar cases dis-691

played in Figure 13, we find that only the (green) curve of692

the reversal of cycle 22 exhibits an overshoot, whereas the693

other two cycles do not. Further, the rates at which the solar694

dynamo approaches and recovers from the reversal appear to695

be equal, leading to a symmetric profile, in contrast with the696

VKS results. Therefore, the Sun seems to reverse its mag-697

netic field in a less systematic way than other systems that698

have shown such behavior.699

Analyzing such systems from a dynamical systems per-700

spective, when changing the control parameter past the bi-701

furcation point, the stable and unstable points coalesce and702

merge and the saddle nodes disappear, as shown in the right703

panel of Figure 12. This act transforms the system from one704

containing fixed points to one containing limit cycles with no705

equilibria (e.g., Guckenheimer & Holmes 1982), yielding an706

oscillatory solution that manifests itself as cyclic magnetic ac-707

tivity. Typically, large fluctuations are required in order to708

put the dynamical system above the saddle-node bifurcation709

threshold.710

In the case of the Sun, both the primary and secondary711

families are excited efficiently and a strong coupling between712

them is exhibited. The model of Pétrélis & Fauve (2008),713

in spirit very close to the studies of Knobloch & Landsberg714

(1996) or Melbourne et al. (2001), may be used to guide our715

interpretation of the solar data. As illustrated in Figure 11, the716

axisymmetric dipole and quadrupole are out of phase, such717

that their coupling may lead to global reversals of the solar718

poloidal field. To the best of our knowledge, however, the so-719

lar dynamo does not exhibit excursions of its magnetic field720

(unlike the geodynamo) but instead undergoes fairly regular721

reversals that take about one or two years to transpire. The722

solar dynamo is thus better approximated by a model in which723

a limit cycle is present. One may presume that the difference724

between the geodynamo and the solar dynamo may be a result725

of the large degree of turbulence present in the solar convec-726

tion zone, whereas the Earth has a more laminar convective727

flow and thus is below the bifurcation threshold where fixed728

points are still present.729

It may be the case that the solar dynamo is better described730

by a Hopf bifurcation, in which a limit cycle arises (branches731

from a fixed point) as the bifurcation parameter is changed.732

The dynamo instability that occurs as a result of the interac-733

tion of magnetic fields and fluid flows (such as αω dynamos734

typically used to model the Sun, as summarized in Tobias735

2002) often arises from a Hopf bifurcation. This allows the736

system to pass through domains having different properties,737

such as the aperiodic oscillations that characterize the grand738

minima and nonuniform sunspot cycle strengths of the solar739

dynamo (e.g., Spiegel 2009 and references therein).740

Yet another approach toward investigating magnetic rever-741

sals is to develop detailed numerical simulations solving the742

full set of MHD equations. Such three-dimensional numerical743

simulations in spherical geometry of the Earth’s geodynamo744

(Glatzmaier & Roberts 1995; Li et al. 2002; Nishikawa & Ku-745

sano 2008; Olson et al. 2011) or of the solar global dynamo746

(Brun et al. 2004; Browning et al. 2006; Racine et al. 2011)747

have looked at the behavior of the polar dipole vs multipolar748

modes. Even though such models have large numerical reso-749

lution and thus possess a large number of modes, all have the750

property that the dominant polarity of the magnetic field fol-751

lows the temporal evolution of a few low-order modes, even if752

in some cases the magnetic energy spectrum peaks at higher753

angular degree ℓ. These findings suggest that the coupling754

between the primary and secondary family remains an impor-755

tant factor in characterizing polarity reversals for these simu-756

lations, and is thought to be linked to a symmetry-breaking of757

the convective flow (Nishikawa & Kusano 2008; Olson et al.758

2011). Some studies of the geomagnetic field (e.g., Clement759

2004) even advocate for a coupling between two modes of760

the same primary family, such as the axial dipole and oc-761

tupole. While in the solar data these modes are well corre-762

lated, the coupling between the primary and secondary fam-763

ilies of modes seems more likely to be at the origin of the764

reversal, as demonstrated in §3.6.765
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Fig. 12.— Schematic diagrams of a magnetic dynamo system
on either side of a saddle-node bifurcation, with two distinct
polarity configurations represented by B and −B. The coor-
dinate axes represent states where the primary (as represented
by the axial dipoleD) or secondary (as represented by the ax-
ial quadrupoleQ) families are dominant. In the left-hand dia-
gram, stable (±Bs) and unstable (±Bu) states present during
the system’s evolution are indicated by blue circles and red
squares. Perturbations away from a stable point can either
cause the system to evolve to the opposite stable configura-
tion (if the perturbation is strong enough) or simply cause an
excursion in which the system returns to the same stable state.
In the right-hand diagram, the stable and unstable points have
merged, and the system simply oscillates between the two
configurations in a limit cycle.
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Fig. 13.— The reversals, as defined by the magnitude of the
axial dipole component for WSO, for the past sunspot Cy-
cles 21–23. The reversal for these three cycles occurred in
Oct. 1979, Nov. 1989, and Jul. 1999, respectively.

4.2. Mean-Field Dynamo Models and the Axisymmetric766

Modes767

Mean-field dynamo models are found to capture the768

essence of the large scale solar dynamo (Moffatt 1978; Ossen-769

drijver 2003; Dikpati et al. 2004; Charbonneau 2010). At770

present, the most favored model is the mean-field Babcock-771

Leighton (BL) dynamo model (e.g., Dikpati et al. 2004), in772

which the mean magnetic induction equation is solved us-773

ing empirical guidance for both the differential rotation and774

meridional circulation profiles, as well as for parameteriza-775

tions of the α-effect and poloidal-field source terms. In this776

section, we use the Stellar Elements (STELEM) code (see Ap-777

pendix A of Jouve & Brun 2007 for more details) to solve the778

(axisymmetric) BL dynamo equations, and investigate some779

of the consequences of the coupling between modes from the780

primary and secondary families. In the interest of brevity, we781

refer interested readers to Appendix A.1 for a listing of the782

governing equations associated with BL dynamos.783

In many BL solar dynamo models, the parameters gov-784

erning the imposed flows and the poloidal-field source terms785

are chosen based on their solar counterparts. When carefully786

chosen these terms favor a dipolar (antisymmetric) dynamo,787

since this is what the Sun apparently favors much of the time.788

This is a result of the commonly used latitudinal profiles of789

the key dynamo ingredients (symmetric large-scale flows and790

antisymmetric alpha effect) combined with the parity in the791

BL mean-field dynamo equations, leading to a situation where792

modes of the primary family remain uncoupled to modes of793

the secondary family that allows both dynamo families to co-794

exist without much interaction. We consider the symmetry of795

the BL equations used here in Appendix A.2 (see also Roberts796

& Stix 1972 for a broader discussion on this topic).797

To demonstrate these characteristics, we now consider a798

typical solution of the standard BL mean-field dynamo as cal-799

culated by STELEM. Figure 14 presents the time evolution of800

the resulting magnetic field patterns, and is thus analogous to801

the standard solar butterfly diagram. Performing a Legendre802

transform on the magnetic field reveals the degrees ℓ of the803

dominant axisymmetric modes. Figure 15 illustrates that the804

odd ℓ modes from the primary family dominate over the even805

ones by about five orders of magnitude in this model. This806

differs significantly from what is observed on the Sun, where807

the amplitude of the quadrupole is measured to be about 25%808

of the dipole amplitude for most of the time, becoming domi-809

nant only during reversals [cf., Fig. 4(c)]. The behavior of the810

standard BL model of Figure 15 arises because of the symme-811

try characteristics of the BL dynamo equations. Because the812

model was initialized with a dipolar field, no modes from the813

secondary family are excited in the standard BL model shown814

in Figure 15 because no coupling exists between the primary815

and secondary families.816

If instead the calculation were initialized with a quadrupo-817

lar field (belonging to the secondary family), we find that the818

system eventually transitions to a state in which the primary-819
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family modes predominate, as shown in Figure 16. The820

growth of the primary-family modes is due to the presence821

of a very weak dipole (likely of numerical origin) at the on-822

set of the simulations. In these models, the BL source term823

quenches the growth of the magnetic field once a certain824

threshold is passed, and as a result the maximum total am-825

plitude of the magnetic field is capped. The reason why the826

primary-family modes are preferred stems from the fact that827

the thresholds for dynamo action (based on the parameter Cs828

in Equation [A4]) are found empirically to be lower for the829

dipole than for the quadrupole (Cs ∼ 6.12 vs. Cs ∼ 6.25),830

meaning the dipole-like modes have a higher growth rate than831

the quadrupole-like modes. In this model, only briefly during832

the transition phase does the model possess a quadrupole of833

order 25% of the dipole, as in the Sun.834

Observations of solar photospheric fields, however, indi-835

cate that the Sun excites both families and does not strongly836

favor members of one family over the other, a situation that837

has apparently existed over many centuries. Even during the838

Maunder minimum, evidence suggests that this interval may839

have been dominated by a hemispherical dynamo with mag-840

netic activity located primarily in the southern hemisphere841

(Ribes & Nesme-Ribes 1993), which can only be formed by842

a state in which primary- and secondary-family modes pos-843

sess nearly equal amplitudes (Tobias 1997; Gallet & Pétrélis844

2009). Consequently, the solutions presented in Figures 15845

and 16, in which modes from only one family are preferred,846

are thus not a satisfactory model of the Sun.847

As advocated by Roberts & Stix (1972) and Gubbins &848

Zhang (1993) following their symmetry-based study of the849

solar dynamo and the induction equation, and more recently850

by Nishikawa & Kusano (2008) in their geodynamo simula-851

tions, a north-south asymmetry of the flow field specified in852

the BL dynamo, or alternatively an antisymmetric poloidal-853

field source term, may allow the co-existence of both the pri-854

mary and secondary families. To investigate this effect we855

have performed two additional BL dynamo calculations, one856

with a BL source term and one with a meridional circulation857

that each generate both symmetric and antisymmetric fields858

(introduced via the parameter ǫ of Equations (A9) or (A13) of859

Appendix A.1).860

We have run several dynamo cases, with the antisymme-861

try arising either in the BL source term or in the meridional862

flow profile, and with a range of amplitudes for the ǫ param-863

eter from 10−4 to 10−1. All cases were initialized with a864

dipolar field. We find that when ǫ is about 10−3, the modes865

in secondary family grow until they reach about 35% of the866

dominant dipolar mode, as illustrated in Figures 17 and 18.867

This result holds true regardless of whether the antisymmetry868

is introduced in the BL source term or in the meridional circu-869

lation profile, with very little difference in the resulting mode870

amplitudes. As expected, using a smaller ǫ results in solu-871

tions where the primary-family modes dominate, while using872

a larger ǫ yields a state where the secondary-family modes are873

comparable to the primary-family modes. Such results may874

indicate that Sun need only possess a weak degree of north-875

south asymmetry in order to behave as it does.876

5. Conclusions877

Cycles of magnetic activity in many astrophysical bodies,878

including the Sun, Earth, and other stars, are thought to be ex-879

cited by nonlinear interactions occurring in their interiors. Yet880

in some cases, such as the Sun, the cycles have approximately881

regular periods and in others, such as the Earth, there is no882

apparent periodicity. Dynamo theory indicates such a range883

of behaviors is expected and whether the cycles are regular884

depends on magnetohydrodynamic parameters that character-885

ize the system, including fluid and magnetic Reynolds and886

Rayleigh numbers. As a consequence, the large-scale appear-887

ance of the magnetic field may provide clues toward the type888

of dynamo that may be operating.889

In this article, long-term measurements of the solar photo-890

spheric magnetic field are utilized to characterize the waves891

of dynamo activity that exist within the interior of the Sun.892

Synoptic maps from WSO (dating back to 1976) and MDI893

(spanning 1995–2010) are used to determine the spherical894

harmonic coefficients of the surface magnetic field for the past895

three sunspot cycles. We focus on the apparent interactions896

between various low-order modes throughout the past three897

sunspot cycles, and interpret these trends in the context of dy-898

namo theory.899

The multipolar expansion of the solar field as deduced900

from WSO and MDI data indicates that the axial and equa-901

torial dipole modes are out of phase. During activity minima,902

the dipole component of the solar field is generally aligned903

with the axis of solar rotation, while the quadrupole compo-904

nent is much weaker. During activity maxima, the dipole905

reverses its polarity with respect to the rotation axis, and906

throughout this process there is more energy in quadrupolar907

modes than in dipole modes. During the past three cycles,908

these reversals have taken place over a time interval of about909

2 yr to 3 yr on average. More indirect measures of solar ac-910

tivity, such as the sunspot number and proxies of the helio-911

spheric field, seem to indicate that such regular activity cycles912

have persisted for at least hundreds of years with a period of913

approximately 11 yr. The most recently completed solar cycle914

(Cycle 23) lasted for about 13 yr and while unusual, is not un-915

precedented. We note in passing that such modulations of the916

solar dynamo may be interpreted as a type of nonlinear inter-917

action between the turbulent alpha effect and the field and/or918

flows (Tobias 2002).919

The harmonic modes can also be grouped into primary and920

secondary families, a distinction that depends on the north-921

south symmetry of the various modes. For example, the ax-922

ial dipole harmonic is antisymmetric and is a member of the923

primary family. Alternatively, the equatorial dipole and ax-924

ial quadrupole modes are both symmetric with respect to the925

equator and thus are grouped together in the secondary family.926

When the evolution of the mode coefficients are analyzed in927
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Fig. 14.— Latitude-time plots of Bφ and Br produced by a
mean-field BL dynamo model that uses empirical guidance
for the solar differential rotation and meridional flow profiles,
and that is initialized with a dipolar magnetic field. The upper
panel is analogous to the standard solar butterfly diagram.

this way, we find that there is a trend for members of the same928

family to possess the same phasing, suggesting that modes in929

the same family of modes are either excited together and/or930

are more coupled when compared with modes of different931

families. This coupling is noticeable during reversals of the932

solar dipole, as less energy is present in primary-family modes933

than in secondary-family modes during these intervals.934

The historical record indicates that the geodynamo also un-935

dergoes reversals of its dipole axis (with respect to the rotation936

axis), but these reversals occur much more irregularly than in937

the solar case. Additionally, the dipole axis of the terrestrial938

magnetic field occasionally makes excursions away from the939

axis of rotation of the Earth, only to later return without ac-940

tually reversing. An examination of the large-scale harmonic941

modes of the geomagnetic field during these intervals indi-942

cates that the energy contained in secondary-family modes943

were significantly smaller during excursions than during re-944

versals. A strong quadrupole during geodynamo reversals is945

in line with the solar behavior; there is no parallel with excur-946

sions as excursions in the solar case do not occur. Analogous947

behavior is observed to occur in the VKS laboratory dynamo948

with respect to the relative strengths of the primary and sec-949

ondary families.950

We also examined the coupling of the mode families using951

a BL mean-field dynamo model computed using the STELEM952

code. Because of the symmetries in the magnetic induction953

and the assumed profiles of the large-scale flow fields and BL954

source term, we find that the standard mean-field solar dy-955

namo model results in a state containing largely members of956

the primary family. This is a result of the dipole (a primary-957

family mode) being more unstable to dynamo action than the958

quadrupole. With a modest amount of asymmetry, imple-959

mented here either in the meridional flow profile or in the BL960

source term, we find from the models that both the primary961

and secondary families can coexist in the same model and in962

the same proportions as in the solar dynamo. This can lead to963

a small lag between the northern and southern hemispheres as964

is actually observed on the Sun (Dikpati et al. 2007).965
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Fig. 15.— Time evolution of the coefficients of the lowest-
order harmonic functions of the surface magnetic field (as
grouped by primary and secondary families) from the same
BL dynamo model as shown in Fig. 14. In panel (a) are
shown the evolution of the first several primary-family coef-
ficients B0

ℓ with ℓ =1, 3, 5, and 7 in black, blue, green, and
red, respectively. In panel (b) are shown the evolution of the
secondary-family coefficients B0

ℓ with ℓ =2, 4, 6, and 8, re-
spectively in black, blue, green, and red. Panels (c) and (d)
show zoomed-in sections of panels (a) and (b).
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Fig. 16.— Time evolution of the same BL model as shown
Fig. 15 (and using the same color scheme), but initialized with
a quadrupolar magnetic field.
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Fig. 17.— Time evolution of the same BL model as shown
in Fig. 15 (and using the same color scheme), but with an
antisymmetric BL source term as implemented in Eq. (A9) by
setting ǫ = 10−3.
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Fig. 18.— Time evolution of the same BL model as shown
in Fig. 15 (and using the same color scheme), but with
an antisymmetric meridional flow profile as implemented in
Eq. (A13) by setting ǫ = 10−3.
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A. Mean-Field Dynamo Formalism979

A.1. Mean-Field Equations980

Here, we briefly list the equations governing the axisymmetric mean-field dynamo models calculated in §4.2. A more detailed981

explanation can be found in, e.g., Jouve et al. (2008). Following (Moffatt 1978), the mean-field induction equation is982

∂〈B〉

∂t
= ∇ × (〈V 〉 × 〈B〉) + ∇ × 〈v′

× b
′〉 − ∇ × (η∇ × 〈B〉) , (A1)983

where the variables 〈B〉 and 〈V 〉 refer to the mean parts of the magnetic and velocity fields, and v
′ and b

′ to their respective fluctu-984

ating components. The function η is the magnetic diffusivity and is not necessarily a constant. The terms “mean” and “fluctuating”985

refer to the fact that a separation of scales has been performed, such that the mean quantities are computed by averaging over some986

appropriate intermediate size scale and the fluctuating quantities are the residuals.987

Working in spherical coordinates (r, θ, φ) and under the assumption of axisymmetry, we perform a poloidal-toroidal decomposi-988

tion and write the mean magnetic field B and mean velocity field V (for clarity the angle brackets 〈 and 〉 are omitted going forward)989

as990

B(r, θ, t) = ∇ × (Aφêφ) +Bφêφ (A2)991

V (r, θ) = vp + Ω r sin θ êφ, (A3)992
993

where the poloidal streamfunction Aφ(r, θ, t) and toroidal field Bφ(r, θ, t) are used to generate B. The velocity field is time-994

independent, and is prescribed by profiles for the meridional circulation vp(r, θ) and differential rotation Ω(r, θ).995

Rewriting the mean induction equation (A1) in terms of Aφ and Bφ, we arrive at two coupled partial differential equations for996

Aφ and Bφ,997

∂Aφ

∂t
=

η

ηt

(

∇2 −
1

̟2

)

Aφ −Re

vp

̟
· ∇ (̟Aφ) + CsS (A4)998

∂Bφ

∂t
=

η

ηt

(

∇2 −
1

̟2

)

Bφ +
1

̟

∂(̟Bφ)

∂r

∂(η/ηt)

∂r
−Re̟vp · ∇

(

Bφ

̟

)

−ReBφ∇ · vp + CΩ̟ [∇ × (Aφêφ)] · ∇Ω, (A5)999

1000

where̟ = r sin θ. The contribution to the transport term in the mean induction equation (A1) that arises from the fluctuating fields,1001

namely the ∇ × 〈v′ × b
′〉 term, is present in the Aφ equation above and in general is assumed to take a specific form in terms of1002

the mean magnetic field (cf., Babcock 1961; Leighton 1969; Wang & Sheeley 1991; Dikpati & Charbonneau 1999; Jouve & Brun1003

2007). Here, we use a surface Babcock-Leighton (BL) term S(r, θ, Bφ) for this purpose which serves to introduce new poloidal field1004

into the model.1005

Additionally, equations (A4) and (A5) have been nondimensionalized by using R⊙ as the characteristic length scale and R2
⊙/ηt1006

as the characteristic time scale, where ηt = 1011 cm2 s−1 is representative of the turbulent magnetic diffusivity in the convective1007

zone. This rescaling leads to the appearance of three dimensionless control parameters CΩ = Ω0R
2
⊙/ηt, Cs = s0R⊙/ηt, and the1008

Reynolds number Re = v0R⊙/ηt, where Ω0, s0, and v0 are respectively the rotation rate and the typical amplitude of the surface1009

source term and of the meridional flow.1010

Equations (A4) and (A5) are solved with the Stellar Elements (STELEM) code (see Appendix A of Jouve & Brun 2007 for more1011

details) in an annular meridional plane with the colatitude θ ∈ [0, π] and the dimensionless radius r ∈ [0.6, 1], i.e., from slightly1012

below the tachocline (r ≈ 0.7) up to the solar surface R⊙. The STELEM code has been thoroughly tested and validated via an1013

international mean field dynamo benchmarking process involving 8 different codes (Jouve et al. 2008). At the latitudinal boundaries1014

at θ = 0 and θ = π, and at the lower radial boundary at r = 0.6, both Aφ and Bφ vanish. At the upper radial boundary at r = 1,1015

the solution is matched to an external potential field. Usual initial conditions involve setting a confined dipolar field configuration,1016

i.e. Aφ is set to (sin θ)/r2 in the convective zone and to 0 below the tachocline. To create the simulation shown in Figure 16, the1017

simulation was initialized using a quadrupolar configuration with an Aφ of (3 cos θ sin θ)/(2r3) in the convection zone. In both1018

cases, the toroidal field is initialized to 0 everywhere.1019

The rotation profile used in the series of models discussed in this work captures many aspects of the true solar angular velocity1020

profile, such as deduced from helioseismic inversions (Thompson et al. 2003). We thus assume solid-body rotation below r = 0.661021

and a differential rotation above this tachocline interface as given by the following rotation profile,1022

Ω(r, θ) = Ωc +
1

2

[

1 + erf

(

2(r − rc)

d1

)]

(Ωeq + a2 cos2 θ + a4 cos4 θ − Ωc). (A6)1023

The parameters Ωeq = 1, Ωc = 0.93944, rc = 0.7, d1 = 0.05, a2 = −0.136076 and a4 = −0.145713. With this profile for Ω, the1024

radial shear is maximal at the tachocline.1025
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We assume that the diffusivity in the envelope η is dominated by its turbulent contribution, whereas in the stable interior ηc ≪ ηt.1026

We smoothly match the two different constant values with an error function which enables us to continuously transition from ηc to1027

ηt,1028

η(r) = ηc +
(ηt − ηc)

2

[

1 + erf

(

r − rc
d

)]

, (A7)1029

with ηc = 109 cm2s−1 and d = 0.03.1030

In BL flux-transport dynamo models, the poloidal field owes its origin to the tilt of magnetic loops emerging at the solar surface.1031

Thus, the source has to be confined to a thin layer just below the surface and since the process is fundamentally non-local, the source1032

term depends on the variation ofBφ at the base of the convection zone. We use the following expression (which is a slightly modified1033

version of that used in Jouve & Brun 2007) in order to better confine the activity belt to low latitudes:1034

S(r, θ, Bφ) =
1

2

[

1 + erf

(

r − r2
d2

)] [

1 − erf

(

r − 1

d2

)]

[

1 +

(

Bφ(rc, θ, t)

B0

)2
]−1

cos θ sin3 θ Bφ(rc, θ, t), (A8)1035

where r2 = 0.95, d2 = 0.01, B0 = 105G. In the particular case of an imposed antisymmetry between the north and southern1036

hemisphere we introduce a modified source term, modulated by the parameter ǫ, as follows,1037

Sasym(r, θ, Bφ) =
1

2

[

1 + erf

(

r − r2
d2

)][

1 − erf

(

r − 1

d2

)]

[

1 +

(

Bφ(rc, θ, t)

B0

)2
]−1

(cos θ+ǫ sin θ) sin3 θ Bφ(rc, θ, t). (A9)1038

In BL flux-transport dynamo models, meridional circulation is used to link the two sources of the magnetic field, namely the1039

base of the convection zone (where toroidal field is created via the latitudinal shear) and the solar surface (where poloidal field1040

is introduced via the BL source term). In the series of models discussed in this paper, the meridional circulation is equatorially1041

symmetric, having one large single cell per hemisphere. Flows are directed poleward at the surface and equatorward at depth (as in1042

the Sun), vanishing at the bottom boundary at r = 0.6. The equatorward branch penetrates slightly beneath the tachocline. To model1043

the single cell meridional circulation we consider a stream function with the following expression (Jouve et al. 2008),1044

ψ(r, θ) = −
2(r − rb)

2

π(1 − rb)
sin

(

π(r − rb)

1 − rb

)

cos θ sin θ, (A10)1045

which gives, through the relation vp = ∇ × (ψêφ), the following components of the meridional flow,1046

vr = −
2(1 − rb)

πr

(r − rb)
2

(1 − rb)2
sin

(

π(r − rb)

1 − rb

)

(3 cos2 θ − 1) (A11)1047

vθ =

[

3r − rb
1 − rb

sin

(

π(r − rb)

1 − rb

)

+
rπ

1 − rb

(r − rb)

(1 − rb)
cos

(

π(r − rb)

1 − rb

)]

2(1 − rb)

πr

(r − rb)

(1 − rb)
cos θ sin θ, (A12)1048

1049

with rb = 0.6.1050

To introduce antisymmetry into the model, an alternative to using the antisymmetric source term of equation (A9) is to introduce1051

an antisymmetry into the meridional flow profile. Such an antisymmetric meridional flow profile can be constructed using the1052

following stream function,1053

ψasym(r, θ) = −
2(r − rb)

2

π(1 − rb)
sin

(

π(r − rb)

1 − rb

)

(cos θ + ǫ sin θ) sin θ, (A13)1054

which leads to the following components of the meridional flow,1055

vr,asym = −
2(1 − rb)

πr

(r − rb)
2

(1 − rb)2
sin

(

π(r − rb)

1 − rb

)

(3ǫ sin θ cos θ + 3 cos2 θ − 1) (A14)1056

vθ,asym =

[

3r − rb
1 − rb

sin

(

π(r − rb)

1 − rb

)

+
rπ

1 − rb

(r − rb)

(1 − rb)
cos

(

π(r − rb)

1 − rb

)]

2(1 − rb)

πr

(r − rb)

(1 − rb)
(cos θ + ǫ sin θ) sin θ, (A15)1057

1058

again with rb = 0.6.1059

20



A.2. Symmetry Considerations1060

Following Gubbins & Zhang (1993) it is straightforward to assess symmetry properties of various mathematical operators and1061

equations. We adopt the superscripts A and S to indicate whether scalars or vectors are antisymmetric or symmetric across the1062

equator, respectively. For example, products between a scalar and a vector of the form aF = G, where a and F are of like1063

symmetry, yield a symmetric result (aS
F

S → G
S and aA

F
A → G

S), whereas products between quantities of differing symmetries1064

are antisymmetric (aA
F

S → G
A and aS

F
A → G

A). For the vector cross product F × G = H , when the two vectors F and1065

G have the same symmetry properties the result will be antisymmetric (F S
× G

S → H
A and F

A
× G

A → H
A), while the1066

cross product between two vectors having opposing symmetries will yield a symmetric result (F A
× G

S → H
S). Additionally,1067

the curl operator reverses symmetry (∇ × G
A → H

S and ∇ × G
S → H

A), while the Laplacian operator preserves symmetry1068

(∇2
F

S → H
S and ∇2

F
A → H

A).1069

With these properties established, the analysis of the symmetry properties of the magnetic induction equation,1070

∂B

∂t
= ∇ × (V × B) + η∇2

B, (A16)1071

follows in a straightforward manner. For cases possessing a symmetric velocity field V
S with respect to the equator, both terms on1072

the right-hand side of equation (A16) preserve the symmetry of B. Thus, a dynamo having only a symmetric field B
S will remain1073

symmetric over time, since both the transport term and the diffusion term of equation (A16) generate symmetric field only. Likewise,1074

a dynamo possessing an antisymmetric field B
A will preserve its antisymmetry over time. Because equation (A16) is linear in B, it1075

follows that a magnetic field possessing mixed symmetry in the midst of a symmetric velocity field can be considered to be operating1076

two independent, noninteracting dynamos: one that is symmetric and one that is antisymmetric.1077

However, in cases with an antisymmetric velocity field V
A, the transport term on the right-hand side of equation (A16) provides a1078

mechanism by which the symmetric and antisymmetric modes of B can couple. This coupling arises because an initially symmetric1079

field B
S will generate both antisymmetric and symmetric fields, according to the right-hand side of equation (A16). Analogously,1080

initializing with with a purely antisymmetric field B
A will generate fields of mixed symmetry over time.1081

This analysis procedure can further be applied to the mean-field induction equation. For example an analysis of equation (A1)1082

with an α-ω dynamo (i.e., where
〈

v
′
× b

′
〉

is set to α 〈B〉),1083

∂〈B〉

∂t
= ∇ × (〈V 〉 × 〈B〉 + α 〈B〉) − η∇2 (〈B〉) (A17)1084

indicates that, for an assumed symmetric mean velocity field 〈V 〉
S and an antisymmetric alpha effect αA (which is the natural1085

outcome of helical turbulence in a rotating fluid), such a mean-field dynamo will preserve the symmetry (or antisymmetry) of1086

the initial fields. Hence, as pointed out by Roberts & Stix (1972) and McFadden et al. (1991), a symmetric mean velocity field1087

and an antisymmetric alpha effect do not couple magnetic field modes belonging to different families. Alternatively, if instead an1088

antisymmetric mean flow 〈V 〉
A or a symmetric alpha effect αS are considered, this now enables a coupling between symmetric and1089

antisymmetric mean fields.1090

In a similar vein, the BL equations (A4) and (A5), which are determined by performing the poloidal-toroidal decomposition on1091

equation (A17), can also be analyzed for symmetry. It is important to note that, by equation (A2), the poloidal streamfunction Aφ1092

has a symmetry opposite to that of the mean magnetic field 〈B〉 it generates (and thus also to the corresponding toroidal field Bφ).1093

We established above that the diffusion term in the mean-field equation (A17) preserves the symmetry of 〈B〉, and so it follows1094

that the corresponding diffusion terms in the BL dynamo equations (A4) and (A5) will serve to preserve the symmetries Aφ and1095

Bφ. Likewise, because the large-scale transport term ∇ × (〈V 〉 × 〈B〉) term in equation (A17) preserves the symmetry of 〈B〉1096

whenever 〈V 〉 is symmetric, it follows that the analogous terms in the equations (A4) and (A5) also preserve the symmetry of the1097

system as long as the imposed velocity field is symmetric. For the BL dynamo considered here, an antisymmetric poloidal velocity1098

streamfunction ψA, as in equation (A10), yields a symmetric meridional flow profile vp
S , since vp = ∇ × (ψêφ), which in turn1099

gives a symmetric mean velocity 〈V 〉
S from equation (A3). Therefore, the imposed velocity field as defined by equations (A3)1100

and (A10) will preserve the symmetries of Aφ and Bφ. Lastly, the source term S as defined by equation (A8) also preserves the1101

symmetry of Aφ, since it is comprised of a series of symmetric coefficients multiplied by cos θ Bφ. Therefore, an antisymmetric1102

toroidal field implies a symmetric source term that in turn serves to preserve the symmetry of Aφ (and thus 〈B〉), and the same is1103

true when the toroidal field is symmetric.1104

For these reasons, the dynamo whose characteristics are illustrated in Figure 15, which was initialized with a dipolar field (which is1105

antisymmetric), preserves its antisymmetry with time since all of the terms in equations (A4) and (A5) preserve the initial symmetry.1106

Indeed, the amplitude of the secondary-family modes (which are symmetric) remain low in this model, as shown in Figures 15(b)1107

and (d). In the dynamos whose characteristics are displayed in Figures 17 or 18, this effect is responsible for the growth of symmetric1108

mean fields, even though both models were initialized with the same antisymmetric mean magnetic field.1109
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It is therefore a direct outcome of symmetry considerations that in standard mean-field dynamo models either one or the other1110

families of magnetic fields is excited. In the experiments discussed earlier in §4.2, we controlled the degree to which the symmetries1111

were mixed via the parameter ǫ in equation (A9) and in equations (A14) and (A15), which led to the dynamos illustrated in Figures 171112

or 18, respectively. In both cases, ǫ was chosen to yield a dynamo where the end state contained secondary-family amplitudes of1113

about 25%, as is observed on the Sun; other choices of ǫ will lead to end states with different ratios.1114
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