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Abstract. An overview is given about recent developments and results of comprehensive simu-
lations of magneto-convective processes in the near-surface layers and photosphere of the Sun.
Simulations now cover a wide range of phenomena, from whole active regions, over individual
sunspots and pores, magnetic flux concentrations and vortices in intergranular lanes, down to the
intricate mixed-polarity structure of the magnetic field generated by small-scale dynamo action.
The simulations in concert with high-resolution observations have provided breakthroughs in our
understanding of the structure and dynamics of the magnetic fields in the solar photosphere.
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1. Introduction

Solar magneto-convection is a rather extended area of research. It covers topics ranging
from the generation of the large-scale magnetic field by the solar dynamo in the deep
convection zone to the excitation, propagation, and dissipation of currents and MHD
waves in the chromosphere and beyond. Obviously, this wide field cannot be reasonably
covered in a single review. Recent reviews of various aspects of solar magneto-convection
can be found in Fan (2009), Charbonneau (2010), Stein (2012), and Weiss (2012).

Here I shall restrict the discussion to the solar photosphere, the region where the
best understanding of the magneto-convective processes has been achieved so far. The
significant progress was made possible through the interplay between high-resolution
observations, idealized theoretical models, and comprehensive numerical simulations. The
latter provide a 3D view of the processes underlying the observations. Simulations can be
validated (albeit not in a strict sense) by detailed comparison of synthetic observational
quantities based on simulation results with real observations. At the same time, this
comparison provides a firm basis for the interpretation of the observations in terms
physical quantities and processes.

I prefer to qualify these simulations as ‘comprehensive’ in favor of the often-used term
‘realistic’, the reason being that the values of important non-dimensional numbers (such
as the kinetic and magnetic Reynolds numbers, or the magnetic Prandtl number) that
can be reached in the simulations differ from the realistic values by (many) orders of
magnitude. Typically, some kind of hyperdiffusion or subgrid modelling is used to account
for the unresolved spatial scales, but in the absence of a theory of turbulence the validity
of such quasi-heuristic approaches cannot be strictly proven. On the other hand, the
term ‘comprehensive’ expresses the fact that these simulations aim at representing all
relevant physical processes and conditions in the photosphere, i.e., compressible MHD
in 3D domain, partial ionization and molecule formation, as well as non-grey and non-
local radiative transfer. A number of numerical codes are used to obtain comprehensive
simulations, among them the ANTARES code (Muthsam et al. 2010), the CO5BOLD
code (Freytag et al. 2012), the MURaM code (Vögler 2003; Vögler et al. 2005), the
PENCIL code (Brandenburg & Dobler 2002), the STAGGER/BIFROST code (Gudiksen
et al. 2011), as well as the codes of Robinson et al. (2003), and Jacoutot et al. (2008).
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There are also codes with rather coarse treatment of radiation, such as the RADMHD
code (Abbett 2007; Abbett & Fisher 2012) with a local radiative cooling term or the
code of Ustyugov (2010), which uses the diffusion approximation. Unfortunately, not all
groups have given detailed descriptions of the numerical methods and approximations
used in their codes and shown test results in the literature, so that it is difficult to judge
and trust the validity of their simulation results. On the other hand, the STAGGER,
CO5BOLD and MURaM groups groups have embarked on a cross-validation of their
codes by a detailed comparison of numerical results (Beeck et al. 2012).

Even when restricting oneself to the photosphere, a complete review of observational,
theoretical, and simulation results is far beyond the scope of this contribution. Limitations
of space (and human time) force me to restrict myself mainly to the discussion of recent
simulation results, with very limited references to observation and theoretical concepts.
Furthermore, I am afraid that this text is somewhat biased towards results obtained with
the MURaM code – not because this code would be better than others, but just because I
am most familiar with its results. What follows is organized according to the spatial scale
of the phenomenon: from whole active regions down to the fine threads of the magnetic
field generated by small-scale dynamo action.

2. Active regions

In the past decade, the computational resources available for comprehensive simula-
tions have increased dramatically. It has become possible to simulate the emergence and
development of whole active regions with sunspots, pores, and plage areas. This line of
research was started by Cheung et al. (2007), who considered the emergence of a twisted
flux tube carrying a longitudinal magnetic flux of 1019 Mx. The initially coherent flux
tube becomes undulated and fragmented by the vigorous convective flows, so that the
flux emergence takes place in the form of numerous patches of horizontal field connecting
small bipoles in a ‘salt-and-pepper’ pattern. The disturbed granulation at the emergence
site shows elongated granules threaded by dark lanes. Many of these features are also
found in observations (e.g., Cheung et al. 2008; Yelles Chaouche et al. 2009). Similar re-
sults were found by Stein et al. (2011), Fang et al. (2010, 2012), and by Mart́ınez-Sykora
et al. (2008, 2009). The latter authors also considered the evolution of the coronal field
during flux emergence and the development of spicule-like structures.

Cheung et al. (2010) simulated the emergence of a flux tube with 7.6×1021 Mx. As the
emergence proceeds, the pattern of small bipoles at the visible solar surface increasingly
reorganizes until the magnetic flux distribution reflects the large-scale bipolar structure
of the underlying Omega-shaped flux tube. At the same time, a pair of sunspots forms
through the coalescence of pores and smaller flux fragments, so that the appearance
of a full-fledged active region develops. These simulations also solved the long-standing
problem of how the enormous amount of mass contained in a deep-lying flux tube is
removed as it reaches the low-density regions near the surface. It turns out that much
of this mass is accumulated in sinking U-shaped loops that reconnect near the surface
and thus release the mass from the field lines of the surface field. Observational evidence
for this process has recently been reported (Centeno 2012). Simulations by M. Cheung
and M. Rempel (not yet published) show that an initial twist is not essential for the
formation of coherent sunspots from a flux tube inserted at a depth of about 16 Mm.

While the simulations discussed so far assumed a large-scale flux tube to coherently
enter the simulation domain from below, Stein & Nordlund (2012) assumed horizontal
magnetic field to be advected by upflows at the bottom boundary of the computational
domain. They found the development of a bipolar structure at the surface that resembled
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a small active region with a few pores. Although this simulation shows that a bipolar
region can form without inserting a coherent flux tube beforehand, some caution is indi-
cated when interpreting this result: the horizontal field advected into the computational
box has a fixed direction and strength, so that the simulation implicitely assumes the ex-
istence of an infinite reservoir of strictly organized and coherent horizontal magnetic flux
below the computational domain, in fact something like a huge homogeneous flux sheet.
Consequently, the orientation of the developing bipolar region is along the direction of
the assumed horizontal field below the simulation box.

3. Sunspots and pores

Comprehensive simulations of sunspots have seen tremendous progress in the last few
years. Already studies of ‘sunspot slabs’ at rather coarse resolution and limited box size
(Heinemann et al. 2007; Rempel et al. 2009b) provided crucial insights in the processes
responsible for the penumbral filamentation and the Evershed effect. The first simula-
tions of full sunspots by Rempel et al. (2009a) and their further development and detailed
analysis by Rempel (2011a,b, 2012) revealed the nature of the magneto-convective pro-
cesses leading to the characteristic structure of sunspots. While the bright umbral dots
represent hot upflow plumes, whose lateral expansion is strongly constricted by the ver-
tical umbral field (Schüssler & Vögler 2006; Bharti et al. 2010), the inclined field in the
penumbra provides a path for the unimpeded expansion of hot upflowing material: the
direction along the field. As a consequence, sheet-like convective upflows in the penumbra
appear as bright, elongated filaments with strong outflows (representing the Evershed ef-
fect), which feed downflow patches in the outer part of the penumbra. Part of the rising
plasma turns over laterally (perpendicular to the filament axis) and descends in downflow
lanes next to the bright filaments. The expanding outflow stretches and expels the mag-
netic field, so that the outflow channels exhibit relatively weak (albeit non-vanishing) and
almost horizontal magnetic field. All these properties are consistent with observational
results (e.g., Borrero & Ichimoto 2011; Rempel & Schlichenmaier 2011; Joshi et al. 2011;
Scharmer et al. 2011).

It is observationally well established that the formation of big sunspots invariably is
connected to major events of magnetic flux emergence. This is also reflected in simula-
tions of sunspot formation and structure, which always require either the advection of
well-organized magnetic flux into the computational domain (as in the simulations of
active-region formation discussed in Sec. 2) or the assumption of a sufficiently big con-
centration of vertical magnetic flux as initial condition for the simulation. The situation
is different with pores, small dark flux concentrations without penumbrae and mostly
not exceeding the area of a few granules. Such structures are observed to form and decay
quasi-spontaneously in mature plage areas, without any associated emergence of new
magnetic flux. Magneto-convection simulations in sufficiently deep boxes also show the
formation of pore-like dark structures if enough magnetic flux is available, either in the
form of a preset vertical flux through the computational box (Kitiashvili et al. 2010;
Ustyugov 2010) or by the perpetual advection of horizontal magnetic flux through the
bottom boundary (Stein et al. 2011). Previous simulations in shallow boxes extending
to a few Mm depth below the visible solar surface did not show the formation of dark
structures, apart from occasional small ‘micropores’ (e.g., Bercik et al. 2003; Vögler et al.

2005; Stein & Nordlund 2006). The reason why shallow simulations miss the formation of
proper pores is that it requires horizontal flows on a sufficiently big spatial scale in order
to collect the necessary sufficient amount of magnetic flux. Since the horizontal scale of
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Figure 1. Maps of brightness (bolometric intensity, left panel) and vertical magnetic field at
the optical solar surface (right panel) from a snapshot of a magneto-convection simulation in a
49 × 49 Mm2 wide and 15 Mm deep box permeated by a horizontally averaged vertical field of
100 G.

the convective flows increases with depth (see, e.g., Fig. 6 in Nordlund et al. 2009), only
sufficently deep boxes (at least 6 Mm) provide the conditions for pore formation.

A word of caution is in order here. The maximum horizontal scale of the convective
motions seen in simulations is roughly equal to the depth. This means that the horizon-
tal extension of the computational box should be at least 3-4 times its depth in order
to provide enough volume for a development of a large-scale flow pattern that is not
restrained by the periodic bounday conditions at the side walls of the box. Simulation in
boxes with smaller aspect ratios most probably provide unrealistic results.

What determines the size (or amount of flux) of pores and why do big sunspots not
form in this way? This depends basically on the amount of magnetic flux available (mean
flux density) and on the relation of the advection time of the horizontal flow (horizontal
scale divided by flow speed) and the lifetime of the flux concentration: the advected flux
per unit time has to be at least equal to the flux lost by ‘turbulent erosion’ of the flux
concentration (Cameron et al. 2007). As a result, for the mean vertical flux densities found
in plages (a few hundred G), the biggest flux concentrations formed by flux advection do
not exceed the size of a few granules. As an example, Fig. 1 shows maps of the emergent
intensity (left panel) and of the surface distribution of vertical magnetic field (right panel)
from a simulation (run by M.C.M. Cheung) in a box of 49×49Mm2 horizontal extension
reaching down to 15Mm depth, so that nearly supergranular-size flows can develop. The
average vertical field strength is 100 G, thus representing a typical plage region. The
simulation formed a number of pores, which qualitatively resemble those occuring in
plage areas. Furthermore, the distribution of the magnetic field shows a multi-cellular
pattern, reflecting the various horizontal scales of the convective flow. The biggest cells
have a scale of about 15 Mm, corresponding to the depth of the computational box. This
pattern is remarkably similar to those seen in plage observations. This result opens the
possibility to obtain information about the flows in the upper part of the convection
zone by surface observations and comparison with simulations, providing a supplement
to helioseismic inversions.

Fig. 2 shows the distribution of the vertical magnetic field component on a vertical
section of the simulation box. The section cuts through surface flux concentrations of

https://doi.org/10.1017/S1743921313002329 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921313002329


Solar magneto-convection 99

Figure 2. Map of the vertical magnetic field component, Bz , in a vertical cut along a horizontal
line at x = 27.5 Mm in Fig. 1 (right panel). Reddish colors indicate positive values of Bz , bluish
colors negative values. The zero level of the depth scale corresponds to the optical surface (mean
level of optical depth unity).

various sizes. While the small-scale flux concentrations in intergranular lanes are re-
stricted to the near-surface layers, bigger flux concentrations extend deeper, reflecting
the depth of the flow pattern that accumulated them in the first place. The big mag-
netic flux concentration corresponding to the pore near the right-hand edge of the plot
stretches down almost to the bottom of the computational domain. While the magnetic
field is rather organized in the surface layers, the deeper parts of the box show patches
with a chaotic pattern of small-scale field structures, resulting from the turbulent nature
of the convective downflow regions. These are the sites of small-scale dynamo action (see
Sec. 6).

4. Small-scale flux concentrations

Starting with the pioneering work of Nordlund (1983, 1985b), comprehensive 3D sim-
ulations have revealed the processes responsible for the concentration of most of the
‘non-turbulent’ part of the magnetic flux at the solar surface into small-scale structures
with kG field strength located in intergranular downflow lanes (e.g., Steiner et al. 1996,
1998; Bercik et al. 1998; Stein et al. 2002; Vögler & Schüssler 2003; Vögler et al. 2005;
Schaffenberger et al. 2006; Stein & Nordlund 2006). The simulations confirmed the valid-
ity of the basic theoretical explanations for the intermittent structure of the solar surface
field, which were developed already in the 60s and 70s of the last century. The first con-
cept is flux expulsion by convective flows in an electrically conducting fluid, pioneered
by Weiss (1964, 1966) and Parker (1963). The advection of magnetic flux by horizontal
flows and its concentration in convective downflow areas concentrates the field roughly up
to equipartition field strength, for which the magnetic energy density equals the kinetic
energy density of the flow. The concept of convective collapse is based in the strongly
superadiabatic startification of the subsurface layers, which renders equipartition flux
concentrations unstable with respect to downflow along the field lines (Webb & Roberts
1978; Spruit & Zweibel 1979). This evacuates the upper part of the flux concentrations,
so that the gas pressure of the surrounding plasma compresses the flux concentration
until kG field strength is reached (Parker 1978; Spruit 1979). The depression of the sur-
face of optical depth unity in the evacuated flux concentration leads to lateral heating
of its interior by the hot walls and its appearance as a bright structure (Spruit 1976;
Deinzer et al. 1984). Quantitative comparison of observations and comprehensive nu-
merical simulations confirmed the relation between kG magnetic flux concentrations and
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bright points (Schüssler et al. 2003; Shelyag et al. 2004; Lagg et al. 2010; Röhrbein et al.

2011; Danilovic et al. 2012), faculae (Keller et al. 2004; Carlsson et al. 2004), and the
spectro-polarimetric signatures of these structures (Shelyag et al. 2007).

5. Vortices

Figure 3. Volume rendering of the swirling strength (for a definition, see Moll et al. 2011a) for
a non-magnetic simulation (upper panel) and for a simulation with an average vertical magnetic
field of 200 G (lower panel), viewed from one side of the computational box. Shown is the upper
half (6×6×0.8 Mm3 ) of the box, the bottom plane corresponding roughly to the optical surface.
While the vertical vortex tubes turn over near the surface in the non-magnetic case, they align
with the vertical flux concentration and protrude high into the atmosphere when a background
magnetic field is present.

The formal equivalence of the vorticity equation and the induction equation suggests
that vertical vorticity should be expelled and concentrated in intergranular downflows
in similar ways as magnetic flux. It is no surprise, therefore, that vortical features and
whirl flows are regularly found in comprehensive convection simulations (Nordlund 1985a;
Stein & Nordlund 1998; Moll et al. 2011a; Kitiashvili et al. 2012a). While most of the
strong vertical vortices have diameters below 100 km, probably too small to be detected
with existing telecopes, larger-scale vortex flows have been reported by observers (e.g.,
Brandt et al. 1988; Bonet et al. 2008, 2010; Attie et al. 2009; Vargas Domı́nguez et al.

2011). In addition, Steiner et al. (2010) detected horizontal vortices in granules, both in
simulations and in observations with the Sunrise balloon telescope.

If a sufficient amount of vertical background flux is present, the vortices are closely
associated with magnetic flux concentrations. Vögler (2004) first found ‘magnetic vor-
tices’ in magneto-convection simulations. Recently, this topic found considerable interest,
also in connection with chromospheric and coronal heating processes (e.g., Shelyag et al.

2011; Kitiashvili et al. 2012b; Steiner & Rezaei 2012; Wedemeyer-Böhm et al. 2012).
The simulations of Moll et al. (2012) indicate that the dynamical structure of the upper
photosphere and chromosphere of ‘quiet’ regions (i.e., areas with a mean signed field be-
low about 20 G) is significantly different from that of more strongly magnetized regions:
while the former are dominated by patterns of moving shock fronts (as noted previously
by Wedemeyer et al. 2004; Wedemeyer-Böhm 2010), the more magnetized areas show
numerous vertical vortices, which are strongly associated with the small-scale magnetic
flux concentrations in intergranular lanes. As illustrated in Fig. 3, vertically orientated
vortices in the surface layers of weakly magnetized regions do not extend high into the
atmosphere, but turn over near the optical surface and form low-lying vortex loops (Moll
et al. 2011a). In more strongly magnetized regions (network, plage), the vertical vortices
align with the magnetic flux concentrations and reach high into the atmosphere, where
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the dissipation of kinetic energy leads to intense local heating. Fig. 4 illustrates the dif-
ferent dynamical character of the upper photosphere/lower chromosphere in weakly and
strongly magnetized regions: while shocks dominate the former, hot vortices provide the
governing structure in the latter case.

Figure 4. Horizontal cuts (size 6 Mm × 6 Mm) through the upper photospheric layers of a
nonmagnetic simulation (upper row) and a simulation with an average vertical magnetic field of
200 G (lower row). Shown are maps of temperature (left panels), ranging from about 3000 K to
over 7000 K, and of horizontal flow speed (middle panels), which reaches values up to 15 km·s−1 ).
The upper right panel shows a (bolometric) brightness map for the hydrodynamic case and the
lower right panel gives a map of the vertical magnetic field in the upper photosphere of the
magnetic run. The hydrodynamic case is dominated by shock fronts while vortices prevail in the
magnetic simulation. Both kinds of structures show strong local heating of the plasma.

6. Small-scale dynamo

There are a number of observational indications for the existence of a considerable
amount of magnetic flux in the form of a small-scale turbulent field in the solar near-
surface layers (Sánchez Almeida & Mart́ınez González 2011, see also the contribution
of S. Tsuneta in this volume). This component of the solar surface flux seesm to be
independent of the 11-year solar cycle (e.g., Trujillo Bueno et al. 2004), indicating a
different source mechanism. Recently, D. Bühler (in preparation) systematically analyzed
Hinode/SP data for the period between 2007 and 2012, which covers the extended solar
minimum and the rise of the current cycle. He found that the area fraction of weak, but
significant, linear and circular polarization signals in quiet internetwork regions did not
change during this time. This suggests that the turbulent magnetic field is not connected
to the solar cycle, but possibly generated by small-scale dynamo (SSD) action.

Characteristic for a SSD driven by a turbulent flow in an electrically conducting fluid
is that the magnetic field is generated at spatial scales that are much smaller than that of
the energy-carrying eddies of the flow (i.e., the integral scale of the turbulence). Although
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there is some dependence on the value of the magnetic Prandtl number (ratio of kinematic
viscosity to magnetic diffusivity), SSD action probably occurs in all turbulent flows of
sufficiently high magnetic Reynolds number (see Brandenburg et al. 2012, and references
therein). While direct numerical simulations demonstrated SSD action in various settings
since the 1980s (e.g., Meneguzzi et al. 1981; Cattaneo 1999; Bushby et al. 2012), the
effect was also found in large-eddy simulations (Boussinesq or anelastic) in spherical
shells carried out to model the solar convection zone (Gilman & Miller 1981; Glatzmaier
1985; Brun et al. 2004).

Comprehensive simulations of solar near-surface convection indicate that the observed
turbulent field could indeed be a product of a SSD action driven by the turbulent inter-
granular downflows (Vögler & Schüssler 2007; Pietarila Graham et al. 2010; Moll et al.

2011b). The characteristic properties of a magnetic field generated by a SSD can explain
the observed strong horizontal fields observed in the middle photosphere (Schüssler &
Vögler 2008) and the weak signals detected with sensitive polarimeters (Pietarila Gra-
ham et al. 2009; Danilovic et al. 2010a,b). While most of the field due to the SSD is of
mixed polarity on small scales and has a strength of some tens to a few hundred Gauss,
occasionally enough unipolar flux is being assembled by the granular flows to form a kG
flux concentration appearing as a bright point in the visible light. Therefore, observations
of such features in quiet internetwork areas on the Sun are consistent with SSD action.

Figure 5. Snapshot from a simulation of small-scale dynamo action in the solar near-surface
layers. The computational box is 12×12 Mm2 wide and 6.1 Mm deep. The panels show horizon-
tal cuts of the vertical field component (upper panels; black and white indicates negative and
positive polarity, respectively) and of the vertical flow velocity (lower panels; light shades indi-
cates upflows, dark shades downflows). The cuts were taken at a depth of ∼ 5 Mm (left panels)
and 2.5 Mm (middle panels) below the average height of the optical surface, as well as at the
optical surface (right panels). The dynamo-generated field is associated with the downflows in
the deeper parts of the domain and thus exhibits a ’mesogranular’ pattern at the surface.

Fig. 5 shows a snapshot from a dynamo simulation carried out in a deeper and wider
computational box than previous simulations. The maps show a close association between
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the dynamo-generated field, which exhibits the characteristic mixed-polarity pattern of
small-scale dynamo action, and downflow areas. This is due to the fact that the small-scale
dynamo mainly works in the turbulent downflows. The long-lived, large-scale horizontal
convective flow pattern in the deep layers is reflected in the ’mesogranular’ distribution
of the magnetic field in the surface layers (cf. Yelles Chaouche et al. 2011). The scale of
this pattern is determined by the relation between the horiontal advection time and the
timescale of flux generation (growth rate of the SSD) in the intergranular downflows.

7. Concluding remarks and outlook

The combined efforts of high-resolution observations and comprehensive numerical
simulations have tremendously improved our understanding of the magneto-convective
processes in the near-surface layers and the photosphere of the Sun. The identification of
key physical processes through the simulations and the detailed quantitative comparison
between observational data and numerical results was the key factor for this progress. It
should be noted that such a comparison needs to be done in a proper way, which means
that observational data (e.g., intensity images or Stokes profiles) should be compared with
the corresponding quantities derived from the simulation results (i.e., synthetic Stokes
profiles) after taking into account instrumental effects (e.g., convolving with point spread
functions, adding straylight and noise, rebinning to detector pixel size). Comparing sec-
ondary observational products such as inversion results directly with physical quantities
from a simulation can lead to misleading conclusions.

Where do we go from here, which are the frontiers of the field? In my opinion, there
are three lines of research that will dominate the field in the coming years.

(a) The local comprehensive simulations will make contact to the global simulations
of the deep convection zone carried out with anelastic codes. This will require wider and
deeper boxes and the inclusion of the effects of sphericity and rotation. By combining
the results (or even the codes), a comprehensive understanding of solar convection and
its surface manifestations will hopefully be achieved. This is the more important con-
sidering recent helioseismic results that suggest an inconsistency with global simulations
(Hanasoge et al. 2010, 2012; Gizon & Birch 2012).

(b) An second important goal is to extend the simulation domain into the chromo-
sphere (and corona) with a proper treatment of the radiation processes. In the chromo-
sphere, the energy balance is dominated by radiative transfer in a few strong spectral
lines, all of which are formed in NLTE. In addition, ionization and recombination can no
longer be treated as local equilibrium processes. A consistent treatment of these effects
within the framework of a 3D MHD simulation provides a considerable challenge, which
requires a significant amount of development work (e.g., Gudiksen et al. 2011; Carlsson
& Leenaarts 2012). This also involves the treatment of the Hall effect and ambipolar
diffusion in non-ideal MHD (e.g., Cheung & Cameron 2012; Mart́ınez-Sykora et al. 2012;
Khomenko & Collados 2012).

(c) Finally, the comprehensive simulations have reached a degree of maturity and
validation by solar observations that affords their application to other cool stars. 3D
hydrodynamic simulations of this kind have been carried out already for some time (e.g.,
Nordlund & Dravins 1990; Collet et al. 2007; Ludwig et al. 2009; Freytag et al. 2012).
Recently, the first magneto-convection simulations in the surface layers of other cool stars
than the Sun have become available (Beeck et al. 2011; Wedemeyer et al. 2012). Such
simulations will provide a crucial tool for testing and calibrating methods to infer stellar
magnetic fields from observational spectral and spectro-polarimetric data.
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Keller, C. U., Schüssler, M., Vögler, A., & Zakharov, V. 2004, ApJ, 607, L59

Khomenko, E. & Collados, M. 2012, ApJ, 747, 87

Kitiashvili, I. N., Kosovichev, A. G., Mansour, N. N., Lele, S. K., & Wray, A. A. 2012a, Phys.
Scr., 86, 018403

Kitiashvili, I. N., Kosovichev, A. G., Mansour, N. N., & Wray, A. A. 2012b, ApJ (Letters), 751,
L21

Kitiashvili, I. N., Kosovichev, A. G., Wray, A. A., & Mansour, N. N. 2010, ApJ, 719, 307

Lagg, A., Solanki, S. K., Riethmüller, T. L., Mart́ınez Pillet, V., Schüssler, M., Hirzberger, J.,
Feller, A., Borrero, J. M., Schmidt, W., del Toro Iniesta, J. C., Bonet, J. A., Barthol, P.,
Berkefeld, T., Domingo, V., Gandorfer, A., Knölker, M., & Title, A. M. 2010, ApJ (Letters),
723, L164

Ludwig, H.-G., Caffau, E., Steffen, M., Freytag, B., Bonifacio, P., & Kučinskas, A. 2009, Mem.
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Steiner, O., Franz, M., Bello González, N., Nutto, C., Rezaei, R., Mart́ınez Pillet, V., Bonet

Navarro, J. A., del Toro Iniesta, J. C., Domingo, V., Solanki, S. K., Knölker, M., Schmidt,
W., Barthol, P., & Gandorfer, A. 2010, ApJ (Letters), 723, L180

Steiner, O., Grossmann-Doerth, U., Knölker, M., & Schüssler, M. 1998, ApJ, 495, 468
Steiner, O., Grossmann-Doerth, U., Schussler, M., & Knolker, M. 1996, Sol. Phys., 164, 223
Steiner, O. & Rezaei, R. 2012, ArXiv e-prints, arXiv:1202.4040v1
Trujillo Bueno, J., Shchukina, N., & Asensio Ramos, A. 2004, Nature, 430, 326
Ustyugov, S. D. 2010, Physica Scripta Vol. T, 142, 014031
Vögler, A. 2004, A&A, 421, 755
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