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Abstract: This paper focuses on minimizing the annual operative costs in monopolar DC distribution
networks with the inclusion of solar photovoltaic (PV) generators while considering a planning
period of 20 years. This problem is formulated through a mixed-integer nonlinear programming
(MINLP) model, in which binary variables define the nodes where the PV generators must be located,
and continuous variables are related to the power flow solution and the optimal sizes of the PV
sources. The implementation of a master–slave optimization approach is proposed in order to
address the complexity of the MINLP formulation. In the master stage, the discrete-continuous
generalized normal distribution optimizer (DCGNDO) is implemented to define the nodes for the PV
sources along with their sizes. The slave stage corresponds to a specialized power flow approach for
monopolar DC networks known as the successive approximation power flow method, which helps
determine the total energy generation at the substation terminals and its expected operative costs
in the planning period. Numerical results in the 33- and 69-bus grids demonstrate the effectiveness
of the DCGNDO optimizer compared to the discrete-continuous versions of the Chu and Beasley
genetic algorithm and the vortex search algorithm.

Keywords: monopolar DC networks; solar PV generation; generalized normal distribution optimizer;
master–slave optimization; successive approximation power flow method

1. Introduction
1.1. General Context

Direct current (DC) networks have increased their participation in the electrical sector
due to DC distribution’s advantages regarding energy losses, voltage profile behavior, and
controllability properties [1,2]. In addition, DC distribution technologies are becoming
a real alternative for providing electrical service to multiple users due to the advances
made in power electronic converters, small-scale renewable energy sources, and energy
storage systems, as most of these devices work with DC power. Therefore, this makes their
connection to DC distribution networks more natural in contrast with classical AC networks,
where power electronic inverters are mandatory [3,4]. Electrical distribution networks with
DC technology can be built with two topologies, i.e., monopolar and bipolar configurations.
Monopolar DC networks correspond to distribution grids with a positive pole and a return
wire (neutral) that allow multiple linear and non-linear loads to be interconnected between
both conductors, which are supplied with a single voltage magnitude [5]. Bipolar DC grids
comprise two poles (positive and negative poles) and a neutral wire that make it possible
to connect loads with a monopolar voltage magnitude as well as bipolar loads between the
positive and negative poles that experience twice as much voltage in their terminals [2].
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Due to construction costs, most of the existing DC distribution networks have been
built with a monopolar structure, as this requires 33% fewer investments in conductors than
the bipolar configuration. Therefore, this research focuses on the analysis of monopolar DC
networks while considering the optimal power injection from renewables in order to reduce
the expected annual operating costs in terminals of the substation, i.e., the power electronic
converter that interfaces the conventional AC network with the monopolar DC network.

1.2. Motivation

The efficient integration of renewable energy resources in electrical networks effec-
tively reduces greenhouse gas emissions into the atmosphere caused by fossil sources [6].
In this research, the optimal integration of PV generation units is explored as an opportu-
nity to provide sustainable alternatives in order to ensure global development for future
generations [7,8]. PV sources are a reliable and mature electricity generation technology
with long useful life periods (higher than 20 years) and low maintenance in non-seasonal
countries. Hence, this makes them an attractive technology for home applications (self-
consumption) and microgrids and general distribution grids from the point of view of
utility companies, given the tax reductions provided by the regulations of the electrical sec-
tor in countries where the presence of renewable generation is insignificant in comparison
with conventional generation sources [9].

The integration of PV sources in electrical distribution networks, even if operated
with DC monopolar technology, is not an easy task since its mathematical modeling
belongs to the family of mixed-integer nonlinear programming (MINLP) models. The
nature of these models makes it necessary to develop efficient solution methodologies that
address complexities with reduced computational effort. Therefore, the MINLP model
that represents the studied problem is solved in this research by applying a master–slave
optimization methodology. The main advantage of using metaheuristic optimizers is the
possibility of guiding the exploration and exploitation of the solution space by using a
fitness function that allows exploring infeasible solution regions in the search for local and
global optimal solutions.

1.3. State-of-the-Art Review

There are multiple optimization methodologies to address the problem regarding
the optimal placement and sizing of renewable energy resources in electrical networks.
These methodologies include particle swarm optimization (PSO) [10], the vortex search
algorithm (VSA) [11], the improved Harris hawks optimizer [12], teaching learning-based
optimization [13], genetic algorithms [14], the Smalling area technique [15], population-
based incremental learning [16], and mathematics-based approaches in the general algebraic
modeling system (GAMS) [17]. The main characteristic of the optimization methodologies
above is that they focus only on minimizing power losses in order to solve the problem
regarding renewable energy integration (placement/sizing) in electrical networks. Power
losses are minimized considering only the demand condition, which does not occur in a
real electrical system, since the said condition is continuously changing throughout the day.

On the other hand, optimization methodologies based on metaheuristic techniques
that use a master–slave strategy have been considered to address the problem of optimal PV
integration. In [11], a discrete-continuous version of the VSA technique was implemented
for optimal PV integration in electrical distribution networks while considering daily
load and generation profiles. In [18], the problem regarding optimal PV integration in
DC networks to reduce greenhouse gas emissions was solved via the GAMS software.
In [19], the optimal integration of wind power generation in electrical distribution networks
was studied while including the reactive power capability and wind speed curves. Wind
power integration was implemented in the GAMS software by proposing an MINLP model.
In [20], a hybrid metaheuristic technique to size and locate the distributed generation was
presented. This hybrid technique combined PSO and gravitational search techniques, which
minimize the total energy losses in a distribution network and simultaneously maximize
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the profit of its distributed generation. Ref. [21] presented optimal PV integration in
distribution networks using mixed-integer second-order cone programming. Second-order
cone programming guarantees the global optimum of a relaxed model while reducing the
processing times and eliminating the standard deviation. However, this integration only
includes the minimization of energy losses in the electrical network.

1.4. Contribution and Scope

The main contributions of this research are the following:

i. The application of the GNDO approach to the problem regarding the optimal place-
ment and sizing of PV sources in monopolar DC distribution networks by improv-
ing the existing literature results reported in [22] via the application of the discrete-
continuous VSA.

ii. The combination of the GNDO approach with the efficient successive approximation
power flow method using a master–slave optimization strategy. The main advantage
of this combination lies in its reduced processing times (less than 10 min) to solve
the studied problem in the DC versions of the IEEE 33- and IEEE 69-bus grids, with
excellent numerical results.

It is worth mentioning that, in this research, optimal renewable generation planning for
distribution networks is carried out by considering that the PV sources are designed to track
the maximum power point [23]. This allows minimizing the computational complexity of
the optimization model, as the decision variables are associated with the nodes where the
PV sources will be located and their nominal power rates. In contrast, when the maximum
power point is not tracked, it is also necessary to determine the daily dispatch of each
generator, which considerably increases the size of the solution space.

On the other hand, it is essential to highlight that our contribution is based on ap-
plying a well-established optimization algorithm based on distribution probabilities in
order to solve complex optimization problems, i.e., the GNDO approach. However, this
research does not contribute with a new version of this algorithm. Our contribution is
indeed the master–slave integration between the GNDO approach and the successive
approximation power flow method to locate and size renewable generators based on PV
sources for monopolar DC networks. Even though this problem was previously solved for
AC distribution networks by [24], the difference lies in the grid structure, as monopolar DC
networks do not include frequency and reactive concepts, which makes their mathematical
formulation and physical behavior widely different from AC grids.

1.5. Document Structure

The remainder of this document is organized as follows. Section 2 presents the mathe-
matical formulation that describes, via an MINLP formulation, the problem regarding the
optimal placement and sizing of PV sources in monopolar DC distribution networks. This
formulation is based on the branch power flow problem presented by [25], with the only
restriction that it is validated for strictly radial distribution networks. Section 3 presents the
proposed master–slave solution approach based on combining the GNDO algorithm and
the successive approximation power flow method. Section 4 presents the main characteris-
tics of the two test feeders based on the DC versions of the IEEE 33- and IEEE 69-bus grids.
Section 5 reveals the main numerical results and their comparisons with two metaheuristics
known as the Chu and Beasley genetic algorithm and the discrete-continuous version of
the vortex search algorithm. Finally, Section 6 lists the main concluding remarks of this
research and some proposals for future work.

2. Mathematical Formulation

The MINLP model that represents the problem regarding the optimal placement and
sizing of PV generators in monopolar DC networks is presented below.
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Objective function

min zcosts = z1 + z2 + z3, (1)

Subject to.
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∀j ∈ N , j 6= slack
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}
, (5)

v2
j,h = v2

i,h − 2Rij pij,h + R2
iji

2
ij,h, {∀ij ∈ L, ∀h ∈ H}, (6)

pij,h = vi,hiij,h, {∀ij ∈ L, ∀h ∈ H} (7)

xjPmin
pv ≤ ppv

j ≤ xjPmax
pv {∀j ∈ N}, (8)

vmin
j ≤ vj,h ≤ vmax

j {∀j ∈ N , ∀h ∈ H}, (9)

− imax
ij ≤ iij,h ≤ imax

ij {∀ij ∈ L, ∀h ∈ H}, (10)

∑
i∈N

xj ≤ Nmax
pv , (11)

xj ∈ {0, 1}, {∀i ∈ N}, (12)

where zcosts corresponds to the value of the objective function that defines the total annual
grid operating costs; z1 is the component of the objective function associated with the total
costs of energy purchasing in the slack source; z2 represents the value of the objective
function related with the total annual investments in PV generation plants; z3 defines the
variable costs of the PV generators, which is calculated as a function of the total expected
energy generated during the planning period; CkWh represents the expected energy costs
of energy at the substation bus; T is the mean duration of an ordinary year; re and ra are
the interest rates regarding the possible increments of the energy service and the expected
return of the utility company that will invest in PV solutions for its grids; psub

si,h is the power
output at the substation terminals for each period of time; ∆h is a period of time defined as
1 h for daily operative scenarios; Cpv is a linear cost factor that defines the investment value
of a kWp of PV generation installed in the distribution grid; y is the total number of years
of the planning period; ppv

i is a decision variable that determines the optimal size of the
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PV source connected at node i; CO&M is a constant factor that defines the administration,
operation, and maintenance costs of the PV generation units per unit of energy generated;
Gpv

h corresponds to the per-unit expected generation curve that is used to implement a
maximum power point tracking strategy in the PV inverters; pij,h (pjk,h) represents the
power sent from node i (j) to node j (k) in the period of time h; Rij means the resistance
value of the branch in the route ij; iij,h is the current flow in the branch that connects node i
and node j in the period of time h; Pd

j,h represents the total constant power consumption
at node j in the period of time h; vi,h (vj,h) is the voltage value at node i (j) for the period
of time h; xj is the decision variable that determines whether a PV source is installed at
node j (xj = 1) or not (xj = 0); Pmin

pv and Pmin
pv correspond to the lower and upper limits

regarding the admissible PV source sizes that can be installed in the distribution network;
vmin

j and vmax
j are the minimum and maximum voltage regulation bounds admissible in the

daily operation for each node j at any given time; imax
ij corresponds to the thermal bound

associated with the conductor installed in route ij; and Nmax
pv means the maximum number

of PV sources that can be installed in the distribution grid.
The interpretation of the mathematical model is as follows. Equation (1) corresponds

to the objective function formulation comprising the operating cost of the network, which
is associated with the acquisition of energy at the substation bus during the planning
period, and the investment and operation costs of the PV sources (see Equations (2)–(4),
respectively). Equation (5) is one of the more complex constraints associated with the
power equilibrium at each demand node at any time, which is due to its nonlinear and
non-convex structure [25]. Equation (6) is also non-convex, and it represents the voltage
drop in each line as a function of the current and power flows. Equation (7) corresponds to
the application of Tellegen’s second theorem, which associates the instantaneous power
in an element with its voltage and current. Inequality constraints (8)–(10) determine
the admissible values for the PV sizes, as well as the voltage and current magnitudes,
respectively. Equation (11) limits the maximum number of PV generation units installed in
the DC distribution network. Finally, Equation (12) shows the binary nature of the decision
variable xj.

Remark 1. The optimization model (1)–(12) is from the MINLP family, which makes it difficult to
solve via classical optimization methods, such as the Branch and Cut and interior-point techniques.
This is due to the high probability of getting stuck in the local optimum solutions.

To deal with the complexity of the solution of the MINLP model (1)–(12), this study
implements a master–slave optimization methodology based on the power flow approach
for multiple periods and the generalized normal distribution optimizer in the master stage.
The following section presents the proposed solution methodology in detail.

3. Solution Methodology

In order to deal with the problem regarding the optimal placement and sizing of PV
generation sources in monopolar DC distribution networks, this work proposes a master–
slave solution methodology [26]. The master stage is entrusted with defining the nodes
where the PV sources are to be located along with their optimal sizes. The slave stage
is entrusted with solving the multiperiod power flow problem to calculate the energy
generation costs at the substation bus [24]. The master and slave optimization stages are
described in the following subsections.

3.1. Generalized Normal Distribution Optimization Algorithm

The GNDO approach is a mathematics-inspired algorithm based on the philosophy of
Gaussian distribution, which allows describing multiple natural and physical phenomena
with a high level of precision [27]. A Gaussian distribution function generally takes the
form presented in Equation (13).
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f (x) =
1√
2πδ

exp

(
(x− µ)2

2δ2

)
, (13)

where x is a random variable that represents the probability of distribution, which is
associated with the scaling (δ) and the location (µ) parameters [28].

Note that parameters µ and δ determine the mean and standard deviation values
of the random variables x. To illustrate the effect of these parameters in the behavior
of Equation (13), Figure 1 presents the Gaussian distribution for different values of µ
and δ [27].
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Figure 1. Variations in the Gaussian distribution as a function of the changes in the µ and δ parameters:
(a) behavior of the Gaussian distribution when δ is fixed, and µ is varied; (b) behavior of the Gaussian
distribution when µ is fixed, and δ is varied.

In order to understand the behavior of the Gaussian distribution in Figure 1, note that
(i) the movement of the Gaussian distribution is given by the direction of the increase in the
µ parameter. At the same time, its standard deviation and amplitude remain constant due
to the fixed value of the δ parameter (see Figure 1a); and (ii) the amplitude and standard
deviation are modified when the δ parameter is changed, whereas the location of the Gaussian
distribution remains fixed since the µ parameter is constant, as can be seen in Figure 1b).

Considering the advantage of Gaussian distributions in describing multiple physical
and natural phenomena with a high level of precision, the author of [27] proposed an
efficient and reliable optimization approach that combines the advantages of distribution
probabilities with combinatorial optimization methods (population-based optimization
algorithms).

The main features of the GNDO are listed below:

X An initial population is generated with a normal distribution throughout the solution
space. This initial population evolves through the solution space to explore and exploit
its promissory sub-regions. During the first stages of the optimization process, the
variances regarding the positions of the solution individuals show minimal variations,
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and the location of the decision variables concerning the global optimal solution can
be considered to be randomly distributed with a normal structure.

X As the evolution process through the solution space advances, the main position and
the standard deviation are continuously decreased. This is done in order to pass from
the exploration phase to the exploration of the solution space, i.e., refining the solution
around the best solution reached.

X At the end of the optimization process, the variance of the positions between all the
solution individuals and the distance between the mean position and the optimal
solution reach minimum values.

Considering the characteristics mentioned above of the GNDO approach, the local
and global exploration features of this optimization approach are presented below [24].

3.1.1. Local Exploration

Local exploration is typical of combinatorial optimization methods, where the popula-
tion’s current solutions are evolving to find a better, optimal one. Considering the strong
relationship between all solution individuals in the population in iteration t and the normal
distribution, a generalized rule is defined for each individual, as presented in Equation (14):

vt
i = µi + δiη, i = 1, 2, · · ·, Ni, (14)

where vt
i is the trailing vector of solution individual i in the current iteration; µi is the

generalized mean location of individual i in iteration t; δ represents its generalized standard
deviation; and η is defined as a penalization factor. Note that Ni is the total number of
solutions in the population; each one of the individuals is generated in the form presented
in Equation (15), which shows the general codification used to determine the nodes and the
optimal sizes of the PV generators to be installed in the monopolar distribution network).

xt
i =

[
7, k, · · ·, 25 |2.3006, ppv

k , · · ·, 1.2235
]

(15)

It is worth mentioning that, with this codification, the values of the objective function
regarding the costs of the PV sources and their operation z2 and z3 are easily obtained.

Note that, in Equation (14), the parameters µi, δi, and η are obtained using
Equations (16) and (18).

µi =
1
3
(

xt
i + xt

best + M
)
, (16)

δi =
1√
3

((
xt

i − µ
)2

+
(
xt

best − µ
)2

+ (M− µ)2
) 1

2 , (17)

η =

{
(−log(λ1))

1
2 cos(2πλ2) if a ≤ b

(−log(λ1))
1
2 cos(2πλ2 + π) if a > b

(18)

In Equations (16)–(18), the parameters a, b, λ1, and λ2 are values in the range between
0 and 1, generated with a uniform distribution. In addition, xt

best represents the best solution
reached so far, and M corresponds to a vector that contains the mean position of the current
individuals in the population. The way to calculate M is presented in Equation (19).

M =
1
Ni

Ni

∑
i=1

xt
i . (19)

3.1.2. Global Exploration

In combinatorial optimization, global exploration means using advanced evolution
rules to explore the solution space and find promissory solution regions that are likely to
harbor the global optimal solution [29]. In the GNDO approach, based on the recommenda-
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tions of [27], the global exploration stage has three main components, which are combined
in Equation (20).

vt
i = xt

i + β× (|λ3| × v1) + (1− β)× (|λ4| × v2), (20)

where β× (|λ3| × v1) has information regarding the local solution region, and (1− β)×
(|λ4| × v2) has information of the global solution space. Note that λ3 and λ4 represent
random numbers obtained using a normal distribution, β corresponds to a randomly
chosen adjusting parameter between 0 and 1, and v1 and v2 are also two trail vectors.

v1 =

{
xt

i − xt
j if A f

(
xt

i
)
< A f

(
xt

j

)
xt

j − xt
i otherwise

(21)

v2 =

{
xt

k − xt
k if A f

(
xt

k
)
< A f

(
xt

m
)

xt
m − xt

k otherwise
(22)

Note that in Equations (21) and (22), the subscripts j, k, and m represent integer
numbers associated with three positions of the solutions in the current population. The
only restriction applicable to these numbers is that they must be different from each other
and the analyzed individual i.

Before deciding whether the potential solution individual vt
i will be part of the next

population, each one of the elements must be checked in order to ensure the feasibility of
the solution, i.e.,

vt
i,l =

{
vt

i,l if xmin
l ≤ vt

i,l ≤ xmax
l

vt
i,l = xmin

l + λ5
(
xmax

l − xmin
l
)

otherwise.
(23)

where xmin
j and xmax

j are the lower and upper admissible limits of the variable j, respectively.
Note that, due to the restriction implied by the integer nature of the decision variables
associated with the nodes where the PV sources are to be located, the first Nava

pv is rounded
to its nearest integer value. In order to choose the next solution individual, the following
rule is applied:

xt+1
i =

{
vt

i if A f
(
vt

i
)
< A f

(
xt

i
)

xt
i otherwise

(24)

3.2. Power Flow Solution

The power flow problem in electrical engineering is nonlinear and associated with
determining the voltage variables in electrical systems under steady-state operating condi-
tions [30]. In the case of the optimal siting and sizing of PV generation units in monopolar
DC networks, the power flow solution is the fundamental key to determining the total
energy purchasing costs at terminals of the substation [24]. In this research, the power flow
solution technique implemented is the successive approximation method reported in [22].

The general power flow formula for the successive approximation power flow method
is given in Equation (25).

Vm+1
d,h = Y−1

dd

[
diag−1

(
Vm

d,h

)(
Ppv,h − Pd,h

)
−YdsVs,h

]
, (25)

where m is the counter assigned to the power flow iterations; Vd is a vector that contains all
the demanded voltage variables for each period h; Ppv,h corresponds to a vector that contains
the power outputs in the PV generators for each period h; Pd,h represents a vector that
contains all the power consumption in the load nodes for each period h; Vs,h is the voltage
output at the substation bus at any period; Ydd contains all the conductance relations among
load nodes, which is a square invertible matrix; Yds represents a rectangular matrix that
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associates the substation bus with the load nodes; and diag(u) corresponds to a diagonal
matrix composed of the elements of the u vector.

To determine whether the power flow Formula (25) has converged to the power flow
solution, the difference between the voltage magnitudes of two continuous iterations is
evaluated as defined in Equation (26).

max
h

{
||Vm+1

d,h | − |V
m
d,h||

}
≤ γ, (26)

where γ represents the maximum convergence error, i.e., γ = 1× 10−10 [22].
Once the power flow problem is solved by reaching the desired convergence, the

power flow generation in the substation bus is obtained via Equation (27).

Psub
s,h =

{
diag(Vs,h)(YssVs,h + YsdVd,h)

}
. (27)

Note that, with the power generation values at the substation bus, which are given
by Equation (27), the component of the objective function z1 is obtained. One of the most
important aspects of combinatorial optimization is that it uses a fitness function to replace
the original objective function, thus enabling the exploration of infeasible solution regions
in the search for better objective function values (which increases the probabilities of finding
the global optimum) [31,32]. The proposed fitness function for the studied problem takes
the following structure.

A f = zcost +

[
γ1 maxh

{
|Vd,h| − vmax

d , 0
}
+ γ2 maxh

{
|vmin

d − |Vd,h|, 0
}
−

γ3 minh

{
Psub

s,h , 0
}
− γ4 minkj,h

{
imax
kj − |ikj,h|, 0

} ]
, (28)

Note that, in A f , the parameters γ1, γ2, γ3, and γ4 correspond to the penalization
factors of the objective function. These factors are activated in case the voltage regulation
limits the maximum admissible current flow in the lines, or the positive semi-definite power
generation requirements in a slack source are violated. Based on the recommendations
of [24], the magnitude of said factors is selected as 100× 103.

The main characteristic of the fitness function defined in Equation (28) is that when
all the constraints of the optimization model (1)–(11) are fulfilled, the A f value is equal
to the objective function, i.e., the global optimum the solution that guides the GNDO in
the exploration and exploitation of the solution space is indeed the optimal solution of the
MINLP model of Equations (1)–(11).

3.3. Summary of the Optimization Methodology

The application of the GNDO approach to solve the MINLP model defined from
Equations (1)–(11) is summarized in Algorithm 1.

Note that the application of Algorithm 1 is general for any optimization problem.
Nevertheless, two modifications are necessary to adapt the GNDO approach to multiple
engineering optimization problems: (i) selecting the adequate codification of the studied
problem and (ii) modifying the slave stage for the adequate fitness function evaluator.

Figure 2 illustrates the general implementation of the proposed GNDO approach to
locate and size PV sources in monopolar DC networks. Note that the codification is carried
out using matrix representation, and power flow evaluation is performed via a power flow
function also implemented in the MATLAB coding.
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Algorithm 1: Application of the GNDO method to locate and size PV sources in
monopolar DC networks.

Data: Select the monopolar DC network
1 Obtain the per-unit network equivalent;
2 Chose the values of Ni and tmax;
3 Assign the µ parameter as 1

2 and make t = 0;
4 Create the initial population with the structure in (15);
5 Solve the power flow problem for each xt

i to obtain A f
(
xt

i
)
;

6 Assign the best individual as the solution in the current population with the
minimum objective function value, i.e., xt

best;
7 for t ≤ tmax do
8 for i = 1 : Ni do
9 Obtain a random value for ζ between 0 and 1;

10 if ζ > 1
2 then

11 /*Local exploration search*/;
12 Calculate the value of the vector M through Equation (19);
13 Compute the value of µi through Equation (16);
14 Compute δi through Equation (17);
15 Find the penalty factor η using Equation (18);
16 Perform the local exploration using Equation (14);
17 else
18 /*Local exploration search*/;
19 Obtain numbers for j, k, and m which are different from each other and

from i;
20 Calculate the value of v1 with Formula (21);
21 Calculate the value of v2 with Formula (22);
22 Apply the global exploration rule (20) to reach vt

i ;

23 Check the minimum and maximum values of vt
i using the rule (23);

24 Evaluate the power flow solution to obtain A f
(
vt

i
)
;

25 Chose the next individual xt+1
i with Formula (24);

Result: Present the best solution found, i.e., xt+1
best

Evolution rules

Evaluation of the 

fitness function

Evaluation of the 

fitness function

Power flow solution 

(𝐴𝑓(𝑣𝑖
𝑡)): fitness 

function calculation

Population 

updating

GENERALIZED NORMAL DISTRIBUTION OPTIMIZER

Individual Codification Fitness function

𝑥1 𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16 𝑝1
𝑝𝑣

𝑥2 𝑥21 𝑥22 𝑥23 𝑥24 𝑥25 𝑥26 𝑝1
𝑝𝑣

⋮ ⋮ ⋮

𝑥𝑛 𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 𝑥𝑛4 𝑥𝑛5 𝑥𝑛6 𝑝𝑛
𝑝𝑣

Figure 2. General implementation of the GNDO approach in MATLAB software for the studied problem.
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4. Test Feeder Characteristics and Problem Parametrization

To study the problem regarding the optimal placement and sizing of PV generation
sources in monopolar DC networks, two test feeders composed of 33 and 69 nodes were
considered [22]. These systems correspond to the DC monopolar adaptation of the classical
IEEE 33- and IEEE 69-bus grids [17].

4.1. First Test Feeder

The electrical configuration of the 33-bus grid is depicted in Figure 3a. This system’s
main characteristic is that it operates with a monopolar DC voltage of 12.66 kV between
the positive pole and the return wire. All the branch and load parameters of this test feeder
are listed in Table 1.

slack

DC
1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 18

23
24
25

19
20
21
22

26 27 28 29 30 31 32 33

(a)

slack

DC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65

51
52

66
67

68
69

28 29 30 31 32 33 34 35

(b)

Figure 3. Test feeder topologies: (a) 33-bus grid and (b) 69-bus grid.

Table 1. First test feeder, composed of 33 nodes.

Node i Node j Rij (Ω) Pj (kW) Node i Node j Rij (Ω) Pj (kW)

1 2 0.0922 100 17 18 0.7320 90
2 3 0.4930 90 2 19 0.1640 90
3 4 0.3660 120 19 20 1.5042 90
4 5 0.3811 60 20 21 0.4095 90
5 6 0.8190 60 21 22 0.7089 90
6 7 0.1872 200 3 23 0.4512 90
7 8 1.7114 200 23 24 0.8980 420
8 9 1.0300 60 24 25 0.8960 420
9 10 1.0400 60 6 26 0.2030 60

10 11 0.1966 45 26 27 0.2842 60
11 12 0.3744 60 27 28 1.0590 60
12 13 1.4680 60 28 29 0.8042 120
13 14 0.5416 120 29 30 0.5075 200
14 15 0.5910 60 30 31 0.9744 150
15 16 0.7463 60 31 32 0.3105 210
16 17 1.2860 60 32 33 0.3410 60

4.2. Second Test Feeder

The electrical configuration of the 69-bus grid is depicted in Figure 3b. This system’s
main characteristic is that it operates with a monopolar DC voltage of 12.66 kV between the
positive pole and the return wire. All the branch and load parameters for this test feeder
are listed in Table 2.
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Table 2. Second test feeder, composed of 69 nodes.

Node i Node j Rij (Ω) Pj (kW) Node i Node j Rij (Ω) Pj (kW)

1 2 0.0005 0 3 36 0.0044 26
2 3 0.0005 0 36 37 0.0640 26
3 4 0.0015 0 37 38 0.1053 0
4 5 0.0251 0 38 39 0.0304 24
5 6 0.3660 2.6 39 40 0.0018 24
6 7 0.3810 40.4 40 41 0.7283 1.2
7 8 0.0922 75 41 42 0.3100 0
8 9 0.0493 30 42 43 0.0410 6
9 10 0.8190 28 43 44 0.0092 0

10 11 0.1872 145 44 45 0.1089 39.22
11 12 0.7114 145 45 46 0.0009 39.22
12 13 1.0300 8 4 47 0.0034 0
13 14 1.0440 8 47 48 0.0851 79
14 15 1.0580 0 48 49 0.2898 384.7
15 16 0.1966 45.5 49 50 0.0822 384.7
16 17 0.3744 60 8 51 0.0928 40.5
17 18 0.0047 60 51 52 0.3319 3.6
18 19 0.3276 0 9 53 0.1740 4.35
19 20 0.2106 1 53 54 0.2030 26.4
20 21 0.3416 114 54 55 0.2842 24
21 22 0.0140 5 55 56 0.2813 0
22 23 0.1591 0 56 57 1.5900 0
23 24 0.3460 28 57 58 0.7837 0
24 25 0.7488 0 58 59 0.3042 100
25 26 0.3089 14 59 60 0.3861 0
26 27 0.1732 14 60 61 0.5075 1244
3 28 0.0044 26 61 62 0.0974 32

28 29 0.0640 26 62 63 0.1450 0
29 30 0.3978 0 63 64 0.7105 227
30 31 0.0702 0 64 65 1.0410 59
31 32 0.3510 0 11 66 0.2012 18
32 33 0.8390 14 66 67 0.0047 18
33 34 1.7080 19.5 12 68 0.7394 28
34 35 1.4740 6 68 69 0.0047 28

4.3. Parametrization of the Studied Problem

To determine the objective function value and calculate the fitness function, all the
parameters in Table 3 were employed [22].

Table 3. Fitness and objective function parametrization.

Parameter Value Unit Parameter Value Unit

CkWh 0.1390 US$/kWh T 365 days
ta 10 % te 2 %
y 20 years ∆h 1 h

CPV 1036.49 US$/kWp CO&M 0.0019 US$/kWh
ppv,max

i 2400 kW ppv,min
i

0 kW
Nava

pv 3 – ∆V ±10 %
γ1 100× 103 US$/V γ2 100× 103 US$/V
γ3 100× 103 US$/W γ4 100× 103 US$/A

On the other hand, in order to evaluate the expected daily behavior of the monopolar
DC networks under study, this research considered the generation and demand curves of
Medellín, Colombia, as depicted in Figure 4. These curves were adapted from [24]. It is
worth mentioning that Colombia is a non-seasonal country, which implies that the average
yearly demand and solar generation curves are enough for installing PV generation units.
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Figure 4. Daily demand and generation curves of Medellín, Colombia.

Remark 2. Our contribution considers the expected power generation from the solar source in the
typical metropolitan area of Medellín, Colombia. The maximum size considered for the solar sources
is 2400 kW. Due to the fact that it is a planning project, the expected generation curve is taken
into account. This curve was calculated using historical data (1 year) for this city with an hourly
resolution. A recursive artificial neural network was used to determine the expected daily behavior.

5. Computational Validation

Two efficient metaheuristics were used to show the efficiency of the proposed GNDO
algorithm at locating and sizing PV generation units in monopolar DC distribution net-
works. The metaheuristics were the Chu and Beasley genetic algorithm (AGCB) and the
discrete-continuous vortex search algorithm (DCVSA) [22]. The computational imple-
mentation of the metaheuristic optimizers was carried out in MATLAB using our scripts.
Regarding the software, Matlab version R2021b was used in the 64-bits version of Microsoft
Windows. Hardware-wise, an Intel(R) Core(TM) i7–7700HQ CPU 2.80 GHz computer with
24 GB of RAM was used.

A population size of 10 individuals, 1000 iterations, and 100 repetitions of each algo-
rithm was used in order to make an adequate comparison between the proposed GNDO
approach and the CGBA and the DCVSA.

5.1. Results for the First Test Feeder

Table 4 presents the numerical results in the 33-bus grid when the proposed and
comparative metaheuristics were implemented.

Table 4. Application of the GNDO approach to the location and sizing of PV generation in the 33-bus
grid and comparison of results with literature reports.

Method Site (Node)/Size (kW) zcost (US$/Year)

Bench. case – 3,644,043.01

CBGA
{

11(1162.95), 14(943.48), 31(1482.75)
}

2,662,724.82

DCVSA
{

9(580.31), 15(1291.37), 31(1715.59)
}

2,662,425.32

GNDO
{

10(974.26), 16(920.22), 31(1692.51)
}

2,662,371.59

The numerical results in Table 4 show the following:

X The reduction concerning the benchmark case with the CBGA was about USD/year
981,318.19, which corresponds to 26.9294%. The reduction reached with the DCVSA
was about USD/year 981,617.69, (26.9376%), and the best solution for the benchmark
case was reached with the proposed GNDO approach, with USD/year 981,671.42,
i.e., a reduction of 26.9391%. These results show that all the optimizers yield an
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annual expected reduction of USD 981,300.00 per year of operation. Furthermore,
comparing the best literature report (solution with the DCVSA in [22] with the pro-
posed GNDO approach, an improvement of about USD/year 53.73 is achieved, which
makes it the best result reported in the current literature for the 33-bus grid with a DC
monopolar configuration.

X The three algorithms detected that one of the best sites to locate a PV source is node 31,
where injections of power higher than 1540 kW are listed. This location demonstrates
that the 33-bus grid is one of the most sensitive nodes to install PV sources concerning
the expected improvement of the objective function. In addition, the total PV capacity
installed with the CBGA is 3589.18 kW, 3587.27 kW with the DCVSA, and 3586.99 kW
with the proposed GNDO. These values show that, for the 33-bus grid, the proposed
GNDO installed less power with better objective function values, which a better nodal
selection can explain in comparison with the CBGA and the DCVSA.

As for the processing times, it is worth mentioning that the proposed GNDO approach
takes an average time of 159.99 s to solve the studied problem, which shows that for solving
a nonlinear programming model with integer and continuous variables (solution space
with infinite dimensions), the proposed GNDO approach takes less than 3 min. This implies
that a utility company can use this approach to evaluate hundreds of nodal locations for PV
generation units with lower processing times in order to find an adequate solution from
both economic and technical perspectives.

5.2. Results for the Second Test Feeder

Table 5 shows the numerical results in the 69-bus grid when the proposed and com-
parative metaheuristics were implemented.

Table 5. Application of the GNDO approach to the location and sizing of PV generation in the 69-bus
grid and comparison of results with literature reports.

Method Site (Node)/Size (kW) zcost (US$/Year)

Bench. case – 3,817,420.38

CBGA
{

19(790.80), 61(1789.05), 64(1147.42)
}

2,785,598.86

DCVSA
{

23(772.01), 62(2340.27) 63(618.53)
}

2,785,538.58

GNDO
{

19(497.00), 61(2399.99), 64(847.04)
}

2,785,011.53

The results in Table 5 allow observing the following:

X The proposed GNDO approach achieves the best reduction with respect to the bench-
mark case, with a value of USD/year 1,032,408.85, i.e., 27.044%. The DCVSA reached
an annual reduction of USD/year 1,031,881.8, corresponding to an improvement
of 27.0309%, and the CBGA reduced the expected annual operating costs by about
USD/year 1,031,821.52, i.e., 27.0293% with respect of the benchmark case.

X The nodes to locate PV generators for the proposed GNDO and the CBGA are the
same, i.e., nodes 19, 61, and 64. However, the sizes assigned to the PV sources in
these nodes differ between them. This behavior is explained by using the Gaussian
distribution functions and decreasing the radius in the GNDO approach, which allows
shifting from exploring the solution space to exploiting it.

X The improvement obtained with the GNDO with respect to the CBGA was USD
587.33 per year of operation, whereas, for the DCVSA, this improvement was about
USD/year 527.05. These results demonstrate that the proposed master–slave optimizer
is the best current solution reported for the 69-bus DC network with a monopolar
configuration, i.e., the GNDO represents the reference point for future research in
this area.

It is worth mentioning that the proposed GNDO approach takes about 376.88 s to solve
the problem regarding the optimal placement and sizing of PV sources in monopolar DC
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distribution networks, i.e., it takes less than 6.5 min to solve a highly complex optimization
problem with excellent numerical results.

6. Conclusions and Future Work

This research addressed the problem concerning the optimal placement and sizing of
PV generation units in monopolar DC distribution grids with a radial structure by applying
a master–slave optimization approach. In the master stage, the GNDO approach was used
to define the nodal location and sizes of the PV sources by using a discrete-continuous
codification, whereas the slave stage corresponded to an efficient DC power flow approach
that allowed evaluating the fitness function. Numerical results in the DC monopolar
versions of the IEEE 33- and IEEE 69-bus grids demonstrate that the GNDO approach
allowed reaching better results than the DCVSA with reductions of USD/year 53.73, and
USD/year 527.05, respectively, which turns the proposed master–slave approach into the
best current reference regarding the studied problem.

As for the processing times, the proposed GNDO approach took less than 3 and
6.5 min to solve the MINLP model (1)–(12) in test feeders with 33 and 69 nodes, respectively.
These results implied discrete solution spaces of 4960 and 50,116 nodal combinations and
infinite possibilities regarding continuous variables, yielding the best numerical results
in connection with the objective function when compared to those of the CBGA and
the DCVSA.

The main limitation of the proposed optimization approach corresponds to the design
of the PV systems, taking into account that these operate by tracking the maximum power
point. However, it is possible to obtain better objective function values if these PV sources
are freely operated, i.e., under a multi-period, optimal power flow design.

As future works, the following work could be carried out: (i) extending the application
of the GNDO approach in order to solve the problem of the optimal selection, location,
and operation of batteries in AC and DC distribution grids; and (ii) transforming the exact
MINLP model (1)–(12) into a mixed-integer conic formulation that allows determining the
best set of nodes and their optimal sizes via convex programming.
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