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Abstract: Photovoltaic (PV) technology converts solar energy into electrical energy, and the PV
industry is an essential renewable energy industry. However, the amount of power generated
through PV systems is closely related to unpredictable and uncontrollable environmental factors
such as solar radiation, temperature, humidity, cloud cover, and wind speed. Particularly, changes in
temperature and solar radiation can substantially affect power generation, causing a sudden surplus
or reduction in the power output. Nevertheless, accurately predicting the energy produced by PV
power generation systems is crucial. This paper proposes a hybrid model comprising a convolutional
neural network (CNN) and long short-term memory (LSTM) for stable power generation forecasting.
The CNN classifies weather conditions, while the LSTM learns power generation patterns based on
the weather conditions. The proposed model was trained and tested using the PV power output data
from a power plant in Busan, Korea. Quantitative and qualitative evaluations were performed to
verify the performance of the model. The proposed model achieved a mean absolute percentage error
of 4.58 on a sunny day and 7.06 on a cloudy day in the quantitative evaluation. The experimental
results suggest that precise power generation forecasting is possible using the proposed model
according to instantaneous changes in power generation patterns. Moreover, the proposed model
can help optimize PV power plant operations.

Keywords: PV system; PV power generation forecasting; AI; deep learning; CNN; LSTM network

1. Introduction

The growing energy demand and development of various energy resources world-
wide because of the increasing global population and industrialization have raised the
amount of electrical power generated [1]. Renewable energy is considered an alternative
to fossil fuels. Importantly, renewable energy, such as solar, wind, hydroelectric, biomass,
and geothermal energy, is replenishable and is directly procured from nature without
environmental destruction.

Photovoltaic (PV) energy generation is a crucial component of renewable energy gener-
ation. PV energy is abundant, clean, and environment-friendly; further, it has experienced a
gradual increase in use in recent years [2–4]. Moreover, there is a significant acceleration in
the installation of PV power generation systems worldwide. PV power generation involves
directly converting solar energy into electrical energy. When solar rays are irradiated onto
a semiconductor (n- and p-type silicon), electrons move between electrodes, generating
electricity. Unlike fossil fuel power plants, the construction of a PV power plant is less
complicated, emits zero pollution, and is environment-friendly [5].

However, the power generated from a PV power plant can vary since it is affected
by the construction location, time, panel capability, and size [6,7]. Moreover, intermittent
variability of a PV power plant occurs depending on weather conditions, such as solar
radiation, temperature, humidity, cloud cover, and wind speed, that are unpredictable and
uncontrollable. Notably, changes in temperature and solar radiation can substantially affect
power generation [8,9].
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The nature of such variables can lead to unstable PV power generation, causing a
sudden surplus or reduction in power output. Furthermore, it may cause an imbalance
between power generation and load demand, inducing control and operation problems
in the power grid [10,11]. If the amount of power generation can be accurately forecasted,
operation optimization strategies, such as peak shaving and reducing the uncertainty of
a power generation system, can be effectively applied [12]. Therefore, a method for accu-
rately predicting the amount of energy produced is crucial for PV-based power generation
systems [13–15]. Accurate forecasting can improve the quality of power provided to a
power grid and help reduce the costs related to general variability [16]. In addition, it can
be used in various operation and control activities, including power scheduling in power
distribution and transmission grids [17].

Research on PV power generation forecasting has recently gained considerable inter-
est. Primarily, studies that employ deep learning models are receiving increasing atten-
tion [18–20]. Machine learning (ML)-based deep learning models were developed to solve
complicated problems by extracting meaningful data from big data. Deep learning models
are different from other theoretical ML models. Various hierarchical structures of deep
learning models enable the automatic learning of the methods required to extract semantic
features from raw data and find useful patterns.

Solar power generation has intermittent characteristics and is highly correlated with
dependence on meteorological parameters. The use of various meteorological parameters
can improve the forecasting accuracy of the model. Most conventional methods use
multivariate regression, which requires collecting multiple relevant data such as solar
radiation, temperature, and power generation. However, most PV plants in Korea have no
environmental sensors installed owing to cost considerations; thus, the factors affecting
PV power generation, such as temperature, humidity, cloud cover, and solar radiation, are
challenging to identify. Therefore, only power generation data can be obtained. The Korea
Meteorological Administration provides temperature and solar radiation data but it is not
suitable for use due to location errors of PV plants. Motivated by this, we aim to present a
deep model that forecasts power generation by analyzing time-series patterns in the data
from a PV power plant at which environmental sensors are not installed.

We propose a hybrid model of a long short-term memory (LSTM) and convolutional
neural network (CNN) model specialized for time-series data analysis and forecasting to
improve the accuracy of power generation forecasting. The proposed network adopts a
parallel structure of branched CNN-LSTM. First, a CNN offers the advantage of higher
accuracy since different patterns can be identified depending on weather conditions based
on the pattern extraction schemes. A proposed CNN model classifies the daily weather
as sunny or cloudy by analyzing historical patterns in raw data. Then, the LSTM part
is split into two models trained separately on sunny and cloudy day data and proceeds
to extract long-term dependent features from the raw data. The LSTM model can more
accurately predict the power generation by individually learning the power generation
pattern according to each weather condition type.

The main purpose of this study is to enhance short-term PV forecasting accuracy
by using the proposed hybrid model based on a univariate data approach. To train and
evaluate the proposed method, using the power generation data collected from a PV
power plant in Busan, Korea. The data were collected from 10 September 2019 to 22 July
2021. The data defined as corresponding to sunny and cloudy weather conditions by the
Korea Meteorological Administration were used. The contributions obtained through the
proposed method are as follows. We develop an accurate and simple CNN-LSTM model
for PV forecasting that relies on historical PV data and does not rely on specific sensors or
environment data.

The remaining paper is organized as follows. Section 2 discusses previous studies on
power generation forecasting algorithms. In Section 3, the proposed hybrid CNN-LSTM
model is introduced. The overview of the proposed analytical method, data cleaning,
re-definition, and design verification of the LSTM model is presented. The performance of
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the proposed model is evaluated using objective indicators in Section 4, and the conclusions
are presented in Section 5.

2. Related Work

A decrease in the PV module price, timely forecasting of power generation, and
policies related to renewable energy have demonstrated a synergistic effect. Renewable-
energy power plants are actively being constructed, thereby increasing energy production.
Power generation forecasting plays a vital role from an economic perspective. Moreover,
PV power generation forecasting helps rationally plan power generation to effectively solve
problems such as system stability and power generation balance. The power generation
forecasting of renewable energy using physical, statistical, ML, and artificial neural network
(ANN)-based methods have been consistently researched.

Physical models forecast PV power generation based on numerical weather prediction
(NWP) and physical principles of PV cells [21]. An input of a physical model consists
of dynamic information, such as NWP and environmental monitoring data, and static
information, such as the installation angle of PV panels and the conversion efficiency of PV
cells [22]. Though the method does not require past information, it depends on geographic
information of PV panels and detailed weather data.

Statistical methods set mapping relationships between past time-series data and PV
energy outputs [23]. The model performance depends on the relationship between past
power generation observations and weather/climate parameters. Generally used statistical
methods include autoregressive moving average, Kalman filter, and Markov chain [24–26].

An ML method forecasts power generation by analyzing the correlations in nonlinear
data. Such a method involves learning the characteristics of sample data and making
predictions using a neural network or training model such as a support vector machine
(SVM). The cross-validated model in [27] used the characteristic statistical parameters of
illumination intensity and surrounding temperature as the input vector. In [28], a dataset
corresponding to four different environments—sunny, cloudy, foggy, and rainy—was used.
The model used an SVM and weather data to classify a specific environment and select an
appropriate model to predict power generation. A hybrid ML model combining an SVM
and the random forest algorithm was developed in [29]. SVM predicts power generation,
while the random forest was applied with an ensemble learning method wherein predicted
values are combined and analyzed. Past and present generated power and weather data
were combined as the input.

Artificial neural networks (ANNs), a subcategory of ML models, are widely used
for forecasting [30]. An ANN is a nonlinear model consisting of completely connected
nodes. The node connections consist of weights used to analyze specific patterns within the
data. An ANN predicts PV power generation through nonlinear approximation. An ANN-
based prediction algorithm obtained favorable results using a shallow neural network
in the initial steps. For the real-time prediction of PV solar energy, a hybrid method
combining ANN and random forest has been proposed [31]. An improved ANN model
was successfully developed to enhance the PV energy forecasting accuracy [32] despite
uncertainty in solar radiation. Another study predicted power generation using solar
radiation and panel temperature as independent variables [33]. Furthermore, [34] used the
nonlinear characteristics of ANNs to predict solar radiation using multiple variables, such
as average temperature, relative humidity, and daytime hours.

In recent years, numerous studies have been conducted on applying deep learning,
which has shown excellent performance in diverse applications to power generation fore-
casting. Unlike ML algorithms, deep learning learns data and patterns using a complicated
neural network architecture. The deep-learning-based recurrent neural network (RNN)
is an ANN-type network that uses sequential or time-series data [35]. This model uses
information from the previous input to determine the current input and output. A feedback
loop for the recurrent layer saves information about a point in time in the past time-series
data of a memory cell. An RNN contains a shared parameter in each layer. A feed-forward
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network has different weights for each node, but an RNN shares the same weight parameter
in each network layer. This weight is adjusted through backpropagation and gradient
descent during training. Such characteristics of RNNs have been applied to PV power
generation forecasting [36,37].

3. Proposed Method
3.1. CNN for Feature Extraction

CNN, a deep learning algorithm frequently used for image, text, and signal inputs,
consists of stacked layers that extract object features. Figure 1 shows the basic architecture
of a CNN.
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Figure 1. Standard convolutional neural network (CNN) architecture.

The model performance is based on the number of stacked layers and the type and
size of the kernel. The data in the input layer goes through convolution and pooling layers
to extract deep features. These features are then input in the fully connected layer, where
the result values are classified.

A CNN is used for extracting hierarchical features from an image. Accordingly, a
CNN can extract important information from the one-dimensional sequential and two-
dimensional input data.

1D-CNNs are frequently used in natural language or time series processing since they
can handle sequential data. Unlike in 2D-CNNs, the kernel executing convolution and the
sequence of data being applied have a one-dimensional form in 1D-CNNs. As shown in
Figure 2, a 1D-CNN has a kernel moving along a single dimension.
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3.2. Long Short-Term Memory

LSTM is one of the RNN architectures used for processing time-series data while
solving the problem of gradient exploding or gradient vanishing. This network forgets
unnecessary information while storing information for a prolonged time. Figure 3 shows
the cell structure of LSTM.
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LSTM receives current input data and long- and short-term memory of the previous
cell in each time step. Short-term memory represents the hidden state and represents ht−1,
while long-term memory represents the cell state Ct−1. A cell adjusts the information to
be maintained or discarded in each time step before delivering short-term and long-term
information to the next cell using a gate. This gate is called the input, forget, or output gate
and accurately performs filtering through training.

The first step of LSTM is identifying and removing unnecessary information in a
memory cell. This process is performed in the forget gate that determines an output value
between 0 and 1 based on a sigmoid function. The closer the value is to 1, the more
information about a previous state is maintained. The information of a previous state is
forgotten as the value approaches 0, and omitted parts are decided. After passing the
forget gate, the information to be stored is selected. If the previous time is forgotten, new
information to be remembered is added, and the value of each element is decided as the
newly added information. In this case, new information is not stored in the memory cell
unconditionally; instead, an appropriate value is selected using an input gate.

The sigmoid function is added with the last LSTM cell and the current state and time
activation feature. The value passed through the sigmoid layer is expressed as a number
between 0 and 1 and indicates the degree of new information being updated. The value that
has passed through the tanh function has a value between −1 and 1. Then, the output is
multiplied, and the final value is stored in the long-term memory. The following process is
used to select the output information. The output gate generates a new short-term memory
(hidden state) to be delivered to the cell in the next step using the current input, previous
short-term memory, and newly generated long-term memory. The output of the current
time step can also be imported from the hidden state. The short- and long-term values
generated by this gate are transferred to the next cell as the process is repeated. The output
of each time step can be obtained from short-term memory or a hidden state.

ft = σ
(

xtw f + ht−1w f + bias f

)
(1)

gt = tanh
(
xtwg + ht−1wg + biasg

)
(2)



Energies 2022, 15, 8233 6 of 17

it = σ(xtwi + ht−1wi + biasi) (3)

ct = ft ~ ct−1 + gt ~ it (4)

ot = σ(xtwo + ht−1wo + biaso) (5)

ht = o ~ tan h(ct) (6)

Equations (1)–(6) are applied to each gate. Equation (1) shows the process of the forget
gate. Input data are updated through Equations (2)–(4). The data undergo an operation, as
in Equation (5), in the last output gate and are updated as per the final Equation (6). Here,
σ is the sigmoid function, w is the weight matrix, h and ct represent the hidden and cell
states, respectively.

3.3. Adaptive Selector

This paper proposed a hybrid CNN-LSTM model to forecast power generation. The
CNN classifies weather type, while the LSTM predicts power generation. The LSTM
model learns the power generation patterns according to weather type, which reduces the
complexity and variability of data fitting to improve prediction accuracy. Figure 4 is the
graph of power generation on sunny and cloudy days.
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The power generation differs on a sunny and cloudy day, as shown in Figure 4a,b,
respectively. The power generation on a cloudy day is low and highly inconsistent. On a
sunny day, the graph has a semi-circular data distribution affected by sunrise and sunset;
the power generation is the highest around noon, as indicated by the high elevation. On
a cloudy day, the variability of power generation is severe due to the changes in solar
radiation. Figure 4c,d shows that the power generation data on clear and cloudy days are
superimposed and expressed as a scatter plot. In Figure 4c, it can be seen that the power
generation production pattern on a clear day is regularly generated within a certain area. In
this figure, there are cases in which the power generation data is out of range by one point.
This is an outlier due to equipment error or electrical noise. In Figure 4d, it can be seen that



Energies 2022, 15, 8233 7 of 17

the power generation pattern at the time of cloudy days has high variability according to
the non-linear characteristics.

Figure 5a,b show the sectional power generation patterns during sunny and cloudy
days, respectively. On a sunny day, the power generation gradually increases or decreases,
but the variability abruptly changes on a cloudy day. Since such data patterns also influence
continuous time-series patterns, using the LSTM model for training can complicate data
convergence. Therefore, the current weather conditions are first classified according to the
patterns in Figure 5, and the power generation is forecasted using the individual LSTM
model according to the classification results. Boxes in the Figure 5 show the detailed pattern
form of the collected power generation data. The data of sunny day is generated with a
regular period, whereas data of cloudy day has a large fluctuation range and does not show
periodicity. The proposed hybrid CNN-LSTM model is shown in Figure 6.
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Figure 6a shows the CNN architecture used to classify weather conditions. This
architecture consists of two layers of convolution with relu layer and two layers of fully
connected layers. The CNN model is trained to classify sunny and cloudy days based on
the data pattern of weather conditions. The last layer outputs the results of the weather
conditions. In the inner process of the neural network, the difference between the predicted
values and the labels is calculated using a loss function. It then uses a backpropagation
algorithm to minimize the loss function so that the predicted values are as close to the
labels as possible. In the course of training a neural network, parameters, including weights
and biases, are fine-tuned and updated to compare predicted values to labels to produce
better predictions at every epoch. The optimizer used Adam and set learning rate = 0.01,
the coefficient for primary momentum β1 = 0.9, the coefficient for secondary momentum
β2 = 0.999, and epsilon = 10−8. The weight initialization used kaiming uniform initializer
and adopted the cross-entropy function as the loss function. Figure 6b shows the LSTM
architecture used to forecast PV power generation. This architecture consists of two layers
of LSTM and one layer of the fully connected layer. The last layer outputs the predicted
power generation. The two LSTM models with the same structure are trained on sunny and
cloudy days data, respectively. In the case of the LSTM model, the input, forget and output
gates and cell-state help the model to determine which values to preserve for keeping
long-term memory during the computational process. The hyper-parameters used for
network training are as follows. The optimizer used Adam and set learning rate = 0.001,
the coefficient for primary momentum β1 = 0.9, the coefficient for secondary momentum
β2 = 0.999, and epsilon = 10−8. The weight initialization used kaiming uniform initializer
and adopted MSE (Mean Square Error) function as the loss function. Figure 6c shows the
overall structure of the CNN-LSTM hybrid model. Select an LSTM model according to the
output of CNN and predict PV power using time series data.

4. Experiment

In order to evaluate the effectiveness of the proposed deep model, we designed the
following experiments using collected PV power datasets. The proposed hybrid model
was trained and tested using the Python 3.8-based Pytorch deep learning framework as a
software platform along with an AMD Ryzen 5 5600X CPU operating at 3.70 GHz, NVIDIA
RTX 2070 GPU, and 16 GB RAM hardware environment.

The proposed hybrid CNN- LSTM model performs PV power generation forecasting,
as shown in Figure 7. In step 1, the power generation data generated from a PV power plant
are classified into sunny and cloudy day data. In step 2, the collected data are pre-processed
to remove noise elements, such as missing values or outliers affecting the experiment.
Normalization is then applied to use the data as a network input. In step 3, the CNN and
LSTM are trained using the training data. Each model only uses power generation data. In
step 4, the results of the forecasting model are tested and verified using various matrices.

4.1. Data Collection and Pre-Processing

This study used the power generation data collected from a PV power plant in Bu-
san, Korea. The average annual PV power generation time of the region is 3.5 h, the
average wind speed is 4–5 m/s, and the meridian altitude is 53◦ in spring (March–May),
76.5◦ in summer (June–August), 53◦ in fall (September–November), and 29.5◦ in winter
(December–January). The data were collected from 10 September 2019 to 22 July 2021. The
data defined as corresponding to sunny and cloudy weather conditions by the Korea Mete-
orological Administration were used. The Korea Meteorological Administration defines
weather conditions in 11 steps. In this study, steps 1–5 were classified as sunny, while steps
6–11 were classified as cloudy [38]. Table 1 presents the schema of the collected data.
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Table 1. Schema of data collected in Busan.

Column Data Type Default

Date Date Null
Time Time Null

Cumulative Power Double (22, 0) “0”

Data and time in Table 1 represented when the data were collected; cumulative power
indicates cumulative power generation. The power generation data of 682 days were used
for the experiment. The dataset consists of 446 and 236 sunny and cloudy day data points,
respectively. Data imbalance may occur since the number of sunny day data is 1.88 times
greater than the cloudy day data. Therefore, 100 data from each class were used for network
training, while the remaining data were used for testing.

Abnormal elements in the input data of a forecasting model can cause high forecasting
errors. Pre-processing the input data can improve model accuracy by reducing computation
costs and solving the inappropriate training problem. PV power data sets can contain
outliers due to solar equipment problems, collection system errors, and software system
problems. Therefore, to eliminate outliers, the datasets are cleansing by calculating the
75% quantile.

Quartile3 + 1.5 × IQR (7)
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The Cumulative power data in Table 1 is preprocessed using the interquartile range
(IQR). If the value of data was higher than that provided by Equation (7), it was determined
as an outlier and removed.

Missing values in the collected data can occur due to problems in the inverter or data
collection device. Since the proposed model predicts the data of a future point in time using
continuous time-series data, missing values at xt can affect the model’s performance. Thus,
time interpolation using the values at times xt−1 and xt+1 were applied.

The numerical scale of the power generation data used in this study is significant. For
example, power generation is less than 10 W near 06:00 when the amount of solar radiation
is low and more than 2500 W between 12:00–14:00 when the amount of solar radiation is
the highest. A significant difference between the minimum and maximum values can affect
the training speed and convergence accuracy of a network. Therefore, using Equation (8),
normalization was performed to improve computation speed and accelerate the network
training convergence speed.

z =
x − xmin

xmax − xmin
(8)

Here, x is the actual data, and z indicates a normalized value.
The data used in this study are the power generation data per minute, obtained by

dividing the cumulative power generation data by power generation time. This study
assumed a power plant without environmental sensors and predicted power generation
using time-series analysis characteristics. Clouds and rain that occur locally reduce the
amount of solar radiation, thus affecting the PV power generation efficiency. However,
they are difficult to predict when environmental sensors are unavailable. Therefore, this
study aimed to predict power generation based only on power generation patterns. The
network receives 20 time-series data and outputs one data. The hyper-parameters used for
training the network are as follows. The mean squared error (MSE) was used as the loss
function, and the Adam optimizer was used for optimization. A learning rate of 0.01 was
applied to network optimization.

4.2. Model Evaluation

In this study, a hybrid model combining CNN and LSTM is established. The general
indicators used for evaluating the performance of a time-series data forecasting model
include mean absolute error (MAE), root mean square error (RMSE), and mean absolute
percentage error (MAPE). Let N be the number of test data, xpred be the value predicted by
the proposed algorithm, and xact be the actual value in the quantitative indicators.

MAE measures the error between predicted and actual values and can vary depending
on the measure of continuous variables, as shown in Equation (9). A smaller value indicates
a higher accuracy.

MAE =
1
N

n

∑
i=1

∣∣∣xpred − xact

∣∣∣ (9)

RMSE, defined as in Equation (10), measures the difference between predicted and
actual values; it is a measure of the deviation between predicted and actual values. An
RMSE closer to 0 indicates better performance. The difference between RMSE and MAE is
that RMSE is sensitive to outliers, making it more susceptible to significant deviation. Since
the error is squared, a larger error leads to weight being reflected a greater extent.

RMSE =

√
1
n

n

∑
i=1

(
xpredicted − xreal

)2
(10)

MAPE, given by Equation (11), indicates the extent of error in the predicted value. A
value closer to 0 can be interpreted as a more outstanding forecasting model performance.
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MAPE is robust to outliers, but in this case, it is more challenging to check for errors
intuitively than in the case of MAE.

MAPE =
1
n

n

∑
i=1

∣∣∣∣ xpredicted − xreal

xreal

∣∣∣∣× 100% (11)

The power generation forecasted using the LSTM entails errors. The magnitude of
errors varies depending on the density of the predicted power generation data. The error
between predicted and actual values is smaller when the density of predicted values is
dense. An error becomes more significant when the density is sparse. The accuracy of a
forecasting model is also determined by density. As shown in Equation (12), R2 measures
the strength of a correlation between the predicted and actual values. R2 has the range
of 0 ≤ R2 ≤ 1. A value closer to 0 indicates very low accuracy, and a value closer to 1
indicates higher accuracy of the forecasting model.

R2 = 1 −
∑n

i=1

(
xpredicted − xreal

)2

∑n
i=1(xreal − xreal)

2 (12)

where xreal is the average of the actual power generation data.

4.3. Experimental Results

Quantitative and qualitative evaluations were performed using sunny and cloudy
days’ data for model verification. The data of the same month (sunny day: 28 December
2020, cloudy day: 27 December 2020) were used for uniformity of the validation process.

Figure 8 is the graph of the sunny day dataset; certain sections demonstrate power gen-
eration fluctuations due to clouds. Figure 9 is the graph of the cloudy day dataset in which
the maximum power output is 400 W. In contrast, on a sunny day, the maximum power
output is 2500 W. This result implies that the amount of solar radiation is minimal, resulting
in severe fluctuations in overall power generation. The blue line shows the measured data
from the device, while the red line shows the prediction data. A quantitative evaluation
was performed using MAPE, RMSE, and MSE to validate the LSTM forecasting model. The
LSTM model adequately followed the trend of the observation data for accurate forecasting.
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Figure 9. Forecasting result of cloudy day power generation data.

Table 2 presents the results of a quantitative evaluation of the test data for sunny and
cloudy days. The sunny day data showed a MAPE of 4.58, which is lower than that of the
cloudy day data, 7.06. In the cloudy day data, peak point errors occurred in the fluctuation
amplitude according to the power production period, which increased the MAPE value
compared to that of the sunny day data. The RMSE and MAE were lower in the cloudy
day data, thus exhibiting more outstanding results. Figures 10 and 11 plot the residuals
between observed and forecasted values for the sunny and cloudy day test data. The dotted
line indicates the standard deviation (SD) corresponding to the residuals.

Table 2. Quantitative validation results of the power generation forecasting model.

Column MAPE RMSE MAE R2

Sunny 4.58 43.87 34.00 0.99
Cloudy 7.21 9.09 6.97 0.99
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Figure 11. Residual graph of forecasting results using power generation data of cloudy days.

Table 3 presents the residual comparison results for a sunny day. The SD of residual
is 38.25, and the mean is 34.00 on a sunny day. Table 4 presents the residual comparison
results of a cloudy day. The SD of residual is 27.42, and the mean is 17.13 on a cloudy day.
A relatively large number of the residual values of sunny days deviate from the standard
deviation section for the number of data, which can be observed between index 200 and 400
in Table 3. This section is the peak point region where the power generation is the largest
in Figure 8.

Table 3. Comparison between observed and hybrid-model estimated values of DC power: Sunny day.

Index DC Power (Observed) Model Estimated Difference

1 9 9 0
100 864 854 10
200 2272 2216 56
300 2464 2377 87
400 1984 1960 24

Table 4. Comparison between observed and hybrid-model estimated values of DC power: Cloudy day.

Index DC Power (Observed) Model Estimated Difference

1 10 9 1
100 192 197 −5
200 213 214 −1
300 373 360 13
400 266 258 8

The forecasting model can generate errors in predicting the maximum power gen-
eration value. The error in the cloudy day data is 10.83 less than that for the sunny day
data. The number of data deviating from the standard deviation section is less than the
number of data used in the experiment. Figures 12 and 13 show the frequency distribution
of residuals with an SD of 38.25 and a mean of 34 for sunny days and an SD of 27.42 and a
mean of 17.13 for cloudy days, respectively.
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The advantage of the LSTM model is further highlighted when using unfavorable
weather patterns. Figure 14a,b show the qualitative evaluation results of various test data
for the sunny and cloudy day data, respectively. The proposed algorithm adequately
follows the trends in various power generation patterns for accurate forecasting. However,
errors occur at peak points for the cloudy data with irregular patterns and large fluctuations.
However, the algorithm is robust to abrupt changes in the patterns and fluctuation periods,
thus reasonably following the trend for reliable forecasting. A qualitative evaluation
confirms the high efficiency and improved performance of the proposed model in solving
the PV power generation forecasting problem.

The power generation forecasting performance of the proposed model differs depend-
ing on the weather patterns and validation datasets. The characteristics of power generation
fluctuation patterns are sufficiently captured by the CNN, while the LSTM finds long-term
dependencies in the time-series input. In other words, the CNN-LSTM hybrid model may
not produce the same result in an environment having different weather conditions. For
example, the proposed model produced errors in the power generation peak points for the
sunny day data but made accurate predictions by following the fluctuations pattern for the
cloudy day data having abrupt changes.
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5. Conclusions

A PV power generation forecasting model can improve prediction accuracy according to
weather conditions and enhance the planning, operation, and stability of PV power systems.
However, PV power generation forecasting can be challenging owing to intermittency in
weather conditions. A statistical method for inferring dependency between past and short-
term observed data is required to build an effective forecasting model that depends only on
past data, excluding the solar radiation data highly correlated with power production.

This paper proposes a CNN-LSTM hybrid model for PV power generation forecasting.
The proposed model overcomes the drawbacks of the individual models while preserving
their advantages. Because training one LSTM model using different time-series data may
affect network convergence, separate models were built according to weather conditions.
Weather patterns were classified using CNN, and the LSTM model was applied to the
classification results. The power generation patterns can clearly distinguish between sunny
and cloudy days. The proposed forecasting model can sufficiently reflect the fluctuations
in power generation for accurate forecasting. A qualitative evaluation confirmed that the
forecasted power output signals react to fluctuations and adequately follow the actual
power output signal trend.

Moreover, a quantitative evaluation demonstrated that the proposed model has RMSEs
of 4.58 and 27.55, MAEs of 34.00 and 17.13, and MAPEs of 4.58 and 7.06 for sunny and
cloudy day data, respectively. The residual distributions had an SD of 38.25 and a mean of
34.00 for sunny days and an SD of 27.42 and a mean of 17.13 for cloudy days, respectively,
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thus establishing the validity of the proposed model. The characteristics of collected data
and power generation values may vary depending on the inverter manufacturer. Since the
power generation capacity of a PV power plant system varies depending on installation
scale and weather conditions, the model requires reconfiguration according to the power
generation capacity. Future research should focus on methods for forecasting power
generation by adaptively reflecting the power generation capacity of a PV power plant.
This includes the application of optimization techniques that automatically perform model
fitting according to the data accumulated in the system to improve the prediction accuracy;
In addition, it is necessary to analyze factors affecting power generation efficiencies such
as PV panel characteristics and solar radiation. Additionally, the forecasting results are
expected to be used to understand the decrease in inverter efficiency over time. In cases
where inverter power generation is less than the predicted generation, it will help determine
whether the phenomenon is an efficiency decline due to the aging of the inverter.
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