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ABSTRACT For lifelong and reliable operation, advanced solar photovoltaic (PV) equipment is designed to 

minimize the faults. Irrespectively, the panel degradation makes the fault inevitable. Thus, the quick detection 

and classification of panel degradation is pivotal. Among various problems that promote panel degradation, 

hot spots and micro-cracks are the prominent reliability problems which affect the PV performance. When 

these types of faults occur in a solar cell, the panel gets heated up and it reduces the power generation hence 

its efficiency considerably. In this study, the effect of the hotspot is studied and a comparative fault detection 

method is proposed to detect different PV modules affected by micro-cracks and hotspots. The classification 

process is accomplished by utilizing Feed Forward Back Propagation Neural Network technique and Support 

Vector Machine (SVM) techniques. Six input parameters like percentage of power loss (PPL), Open-circuit 

voltage (VOC), Short circuit current (ISC), Irradiance (IRR), Panel temperature and Internal impedance (Z) are 

accounted to detect the faults. Experimental investigation and simulations using MATLAB are carried out to 

detect five categories of faulty and healthy panels. Both methods exhibited a promising result with an average 

accuracy of 87% for feed-forward back propagation neural network and 99% SVM technique which exposes 

the potential of this proposed technique. 

INDEX TERMS Binary tree, Feed Forward Back Propagation Neural Network, Hot-spotting, Micro crack, 

PV module, Support Vector Machine 
 

I. INTRODUCTION 

In photovoltaic (PV) panels, hot-spotting is a solidity 

problem. It can be characterized when the adjacent solar cells 

heat up to a remarkable level and decrease the optimum 

power generation of the PV panel (Dhimish et al., 2018a). 

Hot spotting arises when a single cell or group of cells 

operate at reverse bias condition or peculiar inflated 

temperature levels (Mazumdar et al., 2014; Pannebakker et 

al., 2017). Hotspots are predominately caused by following 

reasons – non-uniform current density, variations in shading, 

improper soldering, and package failure (Akram et al., 

2020). Due to the hotspots, PV degradation is enhanced and 

a high probability for the occurrence of permanent damage 

to PV panels prevails (Simon and Meyer, 2010). Another 

solidity problem that affects the PV panels is discontinuation 

[6], Maximum Power Point Tracking (MPPT) faults 

(Rakhshan et al., 2018; Dhimish et al., 2019; Pendem et al., 

2020; Manoharan et al., 2020; Pradhan et al., 2020), micro-

cracks (Dimish et al., 2017) and variations in the wind speed 

and humidity (Stoichkov et al., 2018). The above-mentioned 

problems affect the performance of output power in a PV 

panel but, the parameters such as temperature coefficient will 

decrease its annual energy production. Ultimately, these 

studies only state the effect of hot-spotting in PV panels but 
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do not focus on other issues. For obtaining the maximum 

output from the PV system over the lifetime, systematic 

maintenance and perpetual inspection are mandatory (Dhoke 

et al., 2018). Since manual inspection is impracticable in 

large scale power plants, automatic inspection is effective to 

detect defective panels using various methodologies. These 

methodologies have broadly classified into two parts as (i) 

Based on Electrical signal (ii) Based on image processing 

(Photoluminescence, Electroluminescence, Fluorescence, 

Infrared Thermography techniques). In the electrical signal-

based fault detection category, the modulation of PV module 

temperature is achieved the by altering the electrical 

behaviour in severe and mild defective regions (Waqar 

Akram et al., 2019). In the image processing-based fault 

detection methodologies, neural network and machine 

learning algorithms are involved. Naïve Bayes classifier 

algorithm detects the degradation in PV module as faulty and 

non-faulty instead of detecting the individual faults (Niazi et 

al., 2019).  Recently, PV inspection using Infra-Red (IR) 

camera has become a common practice to observe the PV 

hotspots (Hu et al., 2014). Defective regions in Infra-Red 

images are visualized by variation in colours and difference 

in brightness. However, the effects of hotspot on the 

performance of PV systems have not been noticeably 

addressed. This initiates the researchers to analyze the need 

for an approved mechanism to eliminate the hot-spotting and 

detailed specification for approval criterion in monetary 

structure. 

In general, an approved mechanism to mitigate hot-

spotting is accomplished by adopting bypass diodes. When 

these diodes are connected within the PV module, it may 

reach the excess reverse voltage level across the hot-spotted 

solar cells. This mechanism will boost the short circuit 

current and open-circuit voltage of the affected PV panel 

(Acciari et al., 2011; Kim et al., 2016; Dhimish et al., 2018b). 

Since it can be adverse in terms of power dissipation, it is 

uncharacteristic. Moreover, it increases the cost due to the 

use of additional bypass diodes (Manganiello et al., 2015). 

Another literature (Garoudja et al., 2017) showcased that a 

one diode model (ODM) based EWMA (Exponentially 

Weighted Mean Average) chart to the statistical fault 

detection in actual PV systems. Furthermore, a new MPPT 

technique is suggested by Coppola et al. (2012) and Olalla et 

al. (2018) to mitigate the hotspots in a PV module. It offers 

a predicted decrease of 20°C in small or medium hot-spotting 

regions. Besides, Kim and Krein (2015) have pointed the 

ineffectiveness of the typical bypass diodes and suggested 

that a switch is to be connected in series, which is suitable to 

interpolate the flow of current during the bypass activation 

process. Anyhow, this solution requires a modified 

convoluted electronic-based design. Dhimish et al. (2018c) 

proposed a hot-spot mitigation technique by joining few 

MOSFETs to the PV panels to rectify the hot-spotted PV 

solar string. However, the overall effect of PV hotspots on 

output power is not discussed. By using the infrared images, 

the Support Vector Machine system is employed in (Ali et 

al., 2020) to point out only three different classes’ i.e. 

healthy, non-faulty hotspot and faulty hotspot. In the study 

authored by Dhimish and Badran (2019), the impact of PV 

hot-spotting using fuzzy systems was discussed. Certainly, 

the PV module affected only by hotspots will be accurately 

identified with an accuracy of 96.7%. Many techniques are 

available to mitigate the faults and hot spots (Winston, 2020; 

Winston, 2019), hence detection of fault and hotspots with 

high accuracy is the need of the hour. The above-mentioned 

literature mainly focuses on the hotspot fault only. Even 

though micro-crack faults are the small fissure occur in solar 

panel making it difficult to inspect with the naked eye, these 

faults should be taken into concern since it has a negative 

impact on the lifetime and performance of solar PV system.  

The proposed work deals with identifying hotspots as well as 

micro-cracks in the PV panel. Most of the article uses very 

complex techniques to find the faults in the PV panel. This 

technique is very simple and more efficient when compared 

with conventional intelligence techniques.    

The primary objective of this proposed work is to study 

and investigate the effect of PV hot-spotting and micro-

cracks faults. For this investigation, 10W PV modules are 

considered for experimentation. Though this study is 

conducted for a small panel at a particular geographical 

location, the proposed technique can be implemented for any 

panels at any locality. Since panel temperature, percentage 

of power loss and the internal impedance of the panel are 

considered in this study, the investigation can be extended to 

any PV modules affected by various environmental 

conditions and panel temperature. The secondary objective 

of this work is to develop an appropriate PV hot-spot fault 

detection algorithm using the ANN and SVM classification 

tool. Finally, the performance of both fault detection 

algorithms is tested and compared to find the best 

methodology. Thus, the different PV modules affected by 

various types of hot spots and micro-cracks faults are 

detected. 

The study is structured as follows: Section 2 describes 

the proposed methodology and investigations, while section 

3 presents the proposed ANN-based machine learning-based 

detection algorithm. The results of the proposed detection 

method are evaluated in Section 4 and finally, the 

conclusions are drawn in Section 5. 

 
II. PROPOSED METHODOLOGY  

This section details the methodology utilized to meet the 

objectives. 

A. INVESTIGATION OF PV MODULES 

The investigated PV panels are of Polycrystalline 

silicon (Poly-Si) type. Each panel has a capacity of 10 W. 

The categories of examined PV modules are shown in Fig.1. 

They are classified as healthy, one hotspot, two hotspots, 

more than two hotspots and micro cracks. The panels are 

mounted at the terrace of the institutional building, KCET, 

Virudhunagar, Tamil Nadu, India. After installation, the data 

collection was done by investigating the panels. A few 

measuring instruments such as voltmeter, ammeter, tong-
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tester, PCE-EM 886, and thermal imaging camera are 

utilized in this process. The measuring instruments are 

calibrated before it is subjected to various measurements to 

achieve high accuracy and tolerant rate. Solar irradiation and 

panel temperature were measured for various time intervals 

as our method can be extensively used for any set of 

environmental conditions. The panel specifications are given 

in Table I.  

Before collecting the data, certain factors and processes are 

to be considered for conducting the investigation are listed 

below: 

(i) The parameters are measured during a non-shading 

sunny day. 

(ii) Solar panels with a set of hot spots and micro-cracks 

are created manually. 

(iii) All these panels are inspected using IR cameras to 

identify the number of hot spots and locate the points 

where the failure occurs. 

(iv) Few healthy panels are also considered to compare the 

data provided by hot-spotted modules and adjacent 

healthy modules. 

The instruments and sensors within the accuracy of 95% 

and above are only considered to eliminate the imprecise 

data. By inspecting the hot spots using a thermal imaging 

camera (Coppola et al., 2012), three different types of hot-

spots conditions were considered as shown in Fig. 2. 

The procedure to detect the respective outcomes is discussed 

in the next section. The parameters such as Percentage of 

Power Loss (PPL) and Impedance (Z) in each faulted type 

PV modules are used to find the outcomes. 

Examined PV Modules

Healthy modules (26%)

One hotspot modules (23%)

Two hotspot modules (23%)

More than two hotspot 

modules (21%)

Micro crack modules (7%)
 

 
FIGURE 1.  Categories of Examined PV modules 

 
TABLE I 

SPECIFICATIONS OF INVESTIGATED PV MODULE 

PARAMETERS at STC 

VALUES 

Open Circuit Voltage (Voc) 10.8 V 

Short Circuit Current (Isc) 1.25 A 

Maximum Power Point Voltage (Vmpp) 9 V 

Maximum Power Point Current (Impp) 1.11 A 

Maximum Power (Pm) 10 W 

Number of Cells in Series (Ns) 18 

Nominal Cell Operating Temp (NOCT) 450C 

  

e

c

d

b

a

 
FIGURE 2.  PV modules examined under different conditions (a) Healthy (b) Micro-cracked (c) One hot-spotted (d) Two hot-spotted (e) More          

than two hot-spotted. 

B. ESTIMATION OF PERCENTAGE OF POWER LOSS 
(PPL) AND OUTPUT IMPEDANCE (Z) 

Here, a technique is employed to estimate the PPL from the 

output power of hot-spotted PV modules. Accordingly, the 

calculations are done with its respective solar irradiance and 

panel temperature for an equal interval of time.  Principally, 

the output power of the hot-spotted PV module is measured. 

Then the measured power is divided by the average output 

power measured from the adjacent healthy PV modules. The 
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average output power from the adjacent healthy PV module 

is calculated using (1).  

 

𝑃𝐻𝑎𝑣=
∑ PV module powern

i=1

n

̇
      (1) 

 

The ratio of change in output voltage to the change in 

load current is known as output impedance. It is denoted 

using the symbol Z. The output impedance of the PV module 

is inversely proportional to the output current flowing from 

the PV module. In an electrical network, it is a measure of 

the opposition to the flow of current. The impedance is 

determined in terms of Ohms law (2), 

 

 𝑍 =  
𝑉𝑜𝑐

𝐼𝑠𝑐
       (2) 

 

Where, Voc is the open-circuit voltage in volts. 

 Isc is the short circuit current in ampere. 

             Z is the output impedance in ohms. 

The summary of the threshold (min to max) values is shown 

in Table II. In which, PPL, Voc, Isc, Irr, Z and temperature 

parameters are tabulated for all types of faults in the PV 

module. It can be noticed from Table II when the number of 

hot spots increases, PPL increases, VOC, and ISC reduces with 

a higher degree but, Z increases with a higher degree. 

C. ANALYSIS OF PPL, VOC, ISC, IRR, Z, TEMPERATURE 
PARAMETERS 

From the analysis of the threshold values for all types of 

faults, only a minimum drop of PPL occurs in the PV module 

affected by micro-cracks. Also, an average PPL is equal to 

10.47%. Furthermore, in the PV module with one  

hotspot case, an average PPL is 10.56 % and for two hot spot 

cases, it is 13.67 %. Also, for the PV module affected by 

more than two hotspots category, an average PPL is 19.23%. 

Thus, the result reveals that, if the number of hot spots in a 

PV module increases, then PPL also increases. These results 

are obtained from 93% of hot-spotted PV modules and 7% 

of micro-crack PV modules. Interestingly, when the hotspot 

of the PV module increases, the panel will suffer a great drop 

in its output power, therefore we can experience the increase 

of PPL. All the formulated PPL data are required to train the 

classifiers while detecting the type of fault that occurred in 

the PV module. Usually, the output impedance parameter is 

the resistance offered to the flow of current from the voltage 

source and it gets affected during the fault condition. 

While analyzing the impedance of the investigated PV 

panels, it is well known that there is an increase in impedance 

for an increase in the number of hot spots or cases of micro 

cracks. For the PV modules in a healthy condition, average 

impedance is equal to 15.63%. Likewise, average impedance 

of PV modules affected by one hot spot is 17.19% and for 

two hot spotted solar cells is 13.67%. Similarly, for more 

than two hot-spotted PV modules, an average impedance is 

19.23%. Comparatively, there is high output impedance 

during internal bus failure. The obtained output impedance 

of the PV panels during the faulted condition is used to train 

the FFBPNN and SVM classifiers. The average irradiation 

and temperature values (36.650C and 532 W/m2) in micro 

cracked modules are notably less compared with healthy and 

other hot spotted modules. 

Additionally, the parameters like open circuit voltage 

‘Voc’ and short circuit currents ‘Isc’ are also gets affected. It 

is found that the value VOC and ISC in more than two hot 

spotted solar cells get reduced when compared to the healthy 

panels. As shown in Fig. 2, the thermal images captured from 

the PV panels show the reduction of Voc and Isc due to the 

rise in the number of hotspots. The captured parameters are 

more helpful in developing a comparative PV fault detection 

system. The implementation of a comparative PV fault 

detection system is discussed in the next section. 

 

 

TABLE II 

SUMMARY OF THRESHOLD VALUES (MIN TO MAX) FOR ALL TYPES OF FAULTS 

 

III. FAULT DETECTION USING ANN and SVM 

 The fault detection mechanism using ANN and SVM is 

elaborated in this section. 

A. DETECTION USING ARTIFICIAL NEURAL NETWORK 

Artificial Neural Network (ANN) is an information processing 

unit used for the classification and grouping of input data. The 

function of ANN is similar to the neural architecture of the 

brain. Similar to the brain, the neural network can perform 

functional operations like classifications and pattern 

recognition. Precisely, ANN is  

Health Status Temp (0C) Irr (W/m2) VOC (V) ISC (A) Z (Ω) PPL (%) 

Min Max Min Max Min Max Min Max Min Max Min Max 

Healthy 33.3 44.2 365 900 9.9 10.8 0.5 0.95 10.61 20.22 0 0 

One Hotspot 33.3 48.4 365 900 9.7 10.3 0.45 0.9 11.41 22.33 3.5 28.1 

Two Hotspots 33.3 49.6 403 900 9.9 10.3 0.4 0.9 11.38 25.12 5.5 29.6 

More Than Two 

Hotspots 

33.3 52.1 403 900 9.9 10.4 0.35 0.9 11.57 28.6 4.1 43 

Micro Crack 34.5 38.8 334 730 9.1 10.2 0.42 0.55 18.52 21.78 0.9 23.9 
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well noted to be more flexible and suitable for fault diagnostic 

system. Usually, ANN consists of three layers namely the 

input layer, hidden layer, and output layer. The hidden layer 

lies between the input and output layer which translates the 

nonlinear activation functions in between the nodes. The 

nodes are arranged in a sequential parallel layer interconnected 

by weighted connections. For fault identification, a single 

artificial neural network does not provide a precise solution. 

Hence, a three-layered feed-forward back propagation 

network is used in this work for fault identification. The 

architecture of this proposed system is shown in Fig. 3. 

 

H1

H2

H8

X1

X2

Y1

Y2

X6
Y5

Input 

Layer

Hidden 

Layer
Output 

Layer

 
 

 
FIGURE 3.  Architecture of the Proposed Feed Forward Back 

Propagation Neural Network Method 

 
The feed-forward back propagation technique was 

introduced by Rumelhart in the year of 1986. If the back 

propagation algorithm is applied to the feed-forward 

multilayer neural network it is called Feed Forward Back 

Propagation Neural Network (FFBPNN). Since this neural 

network follows the error-correction rule, this network is 

also known as an error back propagation network. Here, the 

function signals will flow in the forward direction and error 

signals will flow in the backward direction. The parameters 

such as solar irradiation, panel temperature, Voc, Isc, Z, and 

PPL are obtained, and given as input (x1 to x6) to train the 

FFBPNN.  The network is trained with all set of training 

pairs even in extreme conditions, and the input parameters 

are considered as target outputs by the FFBPNN. 

To train the network, we must feed the network with 

output variables (y1 to y5) known as the target for a 

particular input variable. And the output variables here are 

our five classifications – healthy, one hotspot, two hotspots, 

more than two hotspots, and micro cracks. Once the network 

is trained, it can provide the desired output for any set of 

input patterns. In the initialization step, the weights are set 

randomly in the network. The weighted inputs can be 

computed using (3). 

 

𝑌𝑛𝑒𝑡 = ∑ 𝑋𝑖 ∗ 𝑊𝑖
𝑛
𝑖=1 + 𝑊𝑂   (3) 

 

Where Xi is the input parameters, Wi is the weighted 

coefficient of each input parameters and W0 is the bias. After 

initialization, the sums of the weighted input are transferred 

by an activation function as given in (4),  

 

𝑌𝑜𝑢𝑡 = 𝑓(𝑦𝑛𝑒𝑡) =
1

1+ 𝑒−𝑦𝑛𝑒𝑡
   (4) 

 

Where Ynet is the summation of weighted inputs, Yout is 

the response of a system, f (Ynet) is the nonlinear activation 

function. The output obtained ‘Yout’ from the above equation 

may not be the expected target due to random weights.  

To adjust the weights, the error has to be calculated. The 

difference between target and actual output gives the error as 

expressed in (5). 

 

𝐸 =
1

2
∑ (𝑦𝑜𝑏𝑠 − 𝑦𝑜𝑢𝑡)2𝑘

𝑖=1          (5) 

 

Where, Yobs is the observed output value, and E is the 

error between the target value and actual output. The 

obtained error is used to change the weights so that, the error 

can be minimized. This training process is repeated until the 

target value is reached. 

B. VALIDATION USING FEED FORWARD BACK 
PROPAGATION NEURAL NETWORK 

The classification accuracy of various attributes using the 

FFBPNN fault detection system is given in Table III. 

According to the work reported in this paper, the input data 

is divided into a ratio of 70:30. Therefore, out of 100% data, 

70% data are used for training and 30% data are utilized for 

testing. To evaluate the performance of the FFBPNN system, 

the data from various case studies are collected. The PV 

module is subjected to various fault conditions to produce 

different hotspots whereas; micro-cracks are created 

manually. Moreover, the panels are exposed to different 

temperature conditions and solar irradiations. The measured 

output parameters are given as the input to the FFBPNN 

detection system. An average accuracy of 87% is achieved 

while analyzing the individual condition’s accuracies. 

Among various health statuses in the Table III, the healthy 

and more than two hotspot conditions show better accuracy. 

The remaining condition accuracy rate implies that there is a 

lesser confusion in classification. The implementation of the 

FFBPNN system is shown in Fig.4. The architecture of 

FFBPNN consists of six input layers, nine hidden layers, and 

five output layers. To achieve a better result, the hidden 

neurons, learning rate, and momentum rate must be taken 

into consideration. For processing the hidden layer, a 

quadratic activation function is chosen. Also, the number of 

neurons is randomly varied from 3 to 9 and finally, nine 

hidden neurons are fixed for better recognition. The 
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maximum accuracy is obtained at a learning rate of 0.6 and 

a momentum rate of 0.4. The best validation performance of 

FFBPNN is depicted in Fig 5 in which, the best validation 

value of 0.0696 is reached at epoch 0. 

 

 

 
TABLE III 

CLASSIFICATION RESULTS USING FEED FORWARD BACK PROPAGATION NEURAL NETWORK METHOD 

 

 

 

 PV Modules

Temperature (0C)

Irradiation (W/m2)

Open circuit voltage (V)

Short circuit current (A)

Impedance (Ω)

Percentage Power Loss (PPL)

Neural 

Network/

SVM

Healthy modules

One hotspot modules

Two hotspot modules

More than two hotspot 

modules 

Micro crack modules

 
 

FIGURE 4.  Implementation of the Fault Detection System 
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FIGURE 5.  Performance Validation Curve using FFBPNN 

 

 

 

 

 

 

Health Status 

Classification and Misclassification (%) % Accuracy 

Healthy One Hotspot Two Hotspot More than two 

Hotspot 

Micro Crack 

Healthy 94.8 3.9 0.8 0.3 0.3 94.8 

One Hotspot 14.9 80.9 2.3 1.4 0.6 80.9 

Two Hotspots 2.9 5.7 88.0 2.9 0.6 88.0 

More than two Hotspots 1.9 3.2 3.2 91.4 0.3 91.4 

Micro crack 3.8 7.6 7.6 1.0 80.0 80.0 

Average Accuracy= 87 % 
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C. DETECTION USING MULTI-CLASS SUPPORT 
VECTOR MACHINE SYSTEM 

Support Vector Machine System is a supervised 

machine learning algorithm mostly applicable for 

classification problems. The Support Vector Machine 

(SVM) system is inherently a binary classifier normally 

applied for a two-class problem. But in the real case, to solve 

a problem with more than two classes, a multi-class SVM is 

required for classification. It is formed with multiple two-

class classifiers.  

The features obtained from the P-V and I-V 

characteristic curves are fed at each step of multi-class SVM. 

The input vector ‘X’ is mapped into high dimensional feature 

space ‘Y’ is given in the form 

 

𝐹𝑆𝑉𝑀 = 𝑤𝑇𝜑(𝑋) + 𝑏               (6) 

 

Where, ‘w’ is a weight factor and ‘b’ is the bias function, 

these parameters are learned by using the training data set. 

The non-linear decision boundary for a training sample ‘X’ 

follows the condition. 

 

𝑤𝑇𝜑(𝑋) + 𝑏 ≥ 1 − 𝜉                (7) 

 

Where, ξ is the slack variable that provides a nonlinear 

constraint in SVM. The optimization problem in SVM uses 

the kernel function ‘k’. This function maps the input space 

(Xi, Yj) to the kernel space 𝜑(𝑋𝑖), 𝜑(𝑌𝑗) as: 

 

𝑘 = 𝜑(𝑋𝑖)𝑇 , 𝜑(𝑌𝑗)           (8) 

     

Here, Radial Basis Function (RBF) kernel is used for fault 

detection can be expressed as: 

 

𝑘(𝑋𝑖 , 𝑌𝑗) = 𝑒𝑥𝑝 (−
‖𝑋𝑖−𝑌𝑗‖

2

2𝜎2 )       (9) 

Where, ‖𝑋𝑖 − 𝑌𝑗‖
2

 represents squared Euclidean distance 

between the two featured vectors, 
1

2𝜎2
= γ Gamma 

function. Three parameters kernel ’k’, Gamma ‘γ’ and 

regularization parameter ‘c’ are important to be considered 

in SVM implementation. Here RBF kernel function is used 

for the decision region. The ‘γ’ parameter decides the spread 

of the kernel to form the decision region. If ‘γ’ is low, the 

decision boundary curve also becomes low. 

Therefore, the region is very broad. If ‘γ’ is high, the 

decision boundary curve is high, which forms a region of 

islands. Similarly, the ‘c’ parameter avoids the 

misclassification of data points. When ‘c’ is small, the bias 

‘b’ will take a high value, and provides an accepted 

misclassification of data points. If ‘c’ is large, the bias ‘b’ 

value is low and the curve bends and avoids any 

misclassification of data points. 

     There are few constructing methods in a multi-class 

SVM, such as directed acyclic graph method, Binary Tree 

(BT) method, One against One and One against All. Among 

the various methods, the Binary tree method is proposed in 

this work to detect the fault in the PV modules. The 

highlights like computational efficiency and higher 

classification accuracy make the BT-SVM method superior 

to other methods. At each node of the binary tree, the 

decision is made to assign the input data into one of two 

groups. If the grouping is not done properly, it leads to 

performance degradation. In such a case, the overlapping of 

groups is needed to improve the performance. Self-

Organizing Map (SOM) will convert a multi-class SVM into 

binary trees, and the decisions are taken by the SVM 

classifier. At each node, the input pattern is made to assign 

one of two groups. Here, the SOM provides the relationship 

among the input patterns. It is used to convert input space 

into visualized two-dimensional space. The standard SOM 

utilizes the simple Euclidian distance for mapping input 

space with kernel space. In the implementation of SVM with 

binary tree architecture for fault detection in the PV system, 

two-class SVM is implemented in four stages. In stage 1, 

SVM is activated to discriminate between healthy and 

unhealthy panels. The binary separable output is 

representing 1 as healthy and 0 to differentiate two hotspots 

as 1 and more than two hotspots as 0. Thus, all five categories 

of healthy and faulted PV modules present in a solar PV 

array are detected correctly. The working principle of this 

classifier is to discover a decision boundary with a maximum 

width that can classify two classes. 

D. VALIDATION USING BINARY TREE – SUPPORT 
VECTOR MACHINE METHOD 

To evaluate the performance using the BT-SVM method, in 

our case, we have five categories of output classes {1, 2, 3, 

4, 5} and four stages of two-class classifiers. At SVM 1 

stage, healthy {1} and unhealthy classes {2,3,4,5} is 

discriminated, At SVM 2 stage, micro-crack {5} and hot spot 

classes {2,3,4} are detected, In SVM stage 3, one hotspot {2} 

and multiple hot spot class {3,4} is identified. At the final 

SVM stage 4, two hotspots {3} and more than two hot spot 

classes {4} are classified as depicted in Fig 6. The 

classification accuracy of various attributes using the BT-

SVM method is shown in Table IV. Though we have not 

applied any overlapping of groups, this method has achieved 

an average accuracy of 99.0%. Individual accuracies for all 

these mentioned conditions are also better ranging from 

98.3% to 99.7%. Fig.7 (a) and (b) shows the input space and 

multi-class SVM. In a cluster of inputs available, the output 

five classes are classified at each SVM stage. Thus, multi-

class SVM diagram implies the result as different faults and 

healthy modules are detected and classified wisely. 
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FIGURE 6.  Binary Tree Architecture using SVM 
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TABLE IV 
CLASSIFICATION RESULTS USING BINARY TREE – SUPPORT VECTOR MACHINE METHOD 

 

IV. RESULTS AND DISCUSSIONS 

In this section, a few highlights of the proposed fault 

detection system are compared with existing literature 

(Dhimish and Badran, 2019) using fuzzy systems. Based on 

the input parameters considered, only three input parameters 

such as PPL, VOC, and ISC are considered in (Dhimish and 

Badran, 2019). But in the proposed method, six input 

parameters like IRR, PPL, Voc, Isc, Z, and temperature are 

considered. If a greater number of input features are taken for 

processing, then the computation complexity increases. Still, 

the accuracy of the detection system gets improved. 

Furthermore, in the published work dealing with photovoltaic 

hotspot fault detection algorithm using fuzzy systems 

(Dhimish and Badran, 2019), only the problem due to the 

hotspot is concentrated. Different levels of hotspot such as 

one, two, and multiple hotspots are detected successfully. But 

in this proposed system, along with cases like various 

hotspots, healthy panels, micro-cracks are also detected.  This 

capability of identifying broad categories will add a highlight 

to this detection system.  A fuzzy-based detection approach is 

implemented in (Dhimish and Badran, 2019) which is an 

efficient method to achieve 96.7% accuracy whereas 

FFBPNN architecture produces an average accuracy of 87%. 

The reason behind the reduced accuracy is due to the 

application of additional parameter impedance at the input and 

micro crack in the output class. But on the other side, the SVM 

method has achieved an average accuracy of 99% which is a 

state-of-the-art approach that can perform well at any 

condition than the conventional approaches. SVM exhibit the 

advantages like assured optimality, convenience in 

implementation, applicable both in linear and -non-linear data.  

In detecting one hotspot, our SVM classifier and the literature 

mentioned fuzzy system shows the same accuracy rate 

whereas micro-cracks faults are additionally identified using 

SVM classifier with an accuracy of 99%.  The comparison of 

results based on their accuracy using proposed techniques 

FFBPNN, SVM along with the existing fuzzy method is 

shown in Fig. 8.  
From the accuracy comparison chart, it is evident that in 

healthy and micro cracks fault identification conventional 

fuzzy approach had not involved. In micro crack detection 

SVM method shows 90% accuracy whereas FFBPNN 

disclose only 80% accuracy. In hotspot detection, FFBPNN 

manifest least accuracy in all three classifications of hotspot 

as 80%, 88%, and 91% respectively in one, two and more 

than two hotspots. Although the conventional fuzzy 

approach appears closer values of accuracy percentage with 

the SVM method, SVM approach hits the slightly higher 

accuracy level in all the hotspots classification and detection.  

SVM does not have any over the fit problem when compared 

to ANN. Also, the RBF kernel provides more flexibility if 

 

Health Status 

Classification and Misclassification (%) % Accuracy 

Healthy One Hotspot Two Hotspot More than two 

Hotspot 

Micro Crack 

Healthy 99.7 0.3 0.0 0.0 0.0 99.7 

One Hotspot 0.9 98.3 0.6 0.3 0.0 98.3 

Two Hotspot 0.3 0.9 98.9 0.0 0.0 98.9 

More than two Hotspot 0.0 0.3 0.6 99.0 0.0 99.0 

Micro Crack 1.0 0.0 0.0 0.0 99.0 99.0 

Average accuracy= 99 % 
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there exist a non-linearity between the class labels and 

attributes. Besides, the faults can be identified at different 

temperatures. Fig. 9 and 10 shows the confusion matrix for 

the NN based classifier and SVM based classifier. The total 

numbers of data are 1505, in that 385 data is for healthy, 350 

for one hotspot, 350 for two hot spots, 315 for more than two 

hotspots and 105 are micro crack. A confusion matrix is a 

table layout that confesses the conception of performance of 

an algorithm also known as an error matrix. Considering 

more than two hotspot classes in FFBPNN based classifier 

among the 315 data predicted only 288 data are classified 

under more than two hotspots and the remaining data are 

spitted in other classes. In our SVM based classifier, among 

the 315 predicted data, almost a major quantity of data are 

classified correctly mentioned as 312 in the confusion matrix 

which in turn increase the accuracy rate of the SVM 

classifier. Since most of the data are classified closer to 

accuracy in SVM classifiers compared to ANN classifiers, 

SVM classifiers express 99% average accuracy.   
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       FIGURE 9.  Classification results using FFBPNN based method        FIGURE 10.  Classification results using SVM based method 
  

V. CONCLUSIONS 

Like all other power generation systems, solar 

panels are also prone to faults. These faults are required to 

be detected and classified expeditiously for the excellent 

operation of the PV system. Among the various faults in 

solar panels, failures such as hotspots and micro-cracks are 

inscribed in this work. Effect of hotspot on the performance 

of solar PV system based on the percentage of power loss, 

output impedance is analysed. A fault detecting model is 

developed with the help of MATLAB tool comprises of 

FFBPNN and Multi-SVM algorithms.        

 

 

Among the two approaches implemented, the FFBPNN 

method has achieved an average accuracy of 87%, while the 

average accuracy of the SVM method is equal to 99%. The 

proposed SVM based technique yields 3.0% higher accuracy 

in comparison with the existing fuzzy-based techniques 

(Dhimish and Badran, 2019). The proposed technique also 

detects the micro-cracks with the highest accuracy of 99% 

whereas the existing fuzzy-based techniques (Dhimish and 

Badran, 2019) did not detect it. The advantage of this fault 

detection technique is that it can be performed at any 

environmental temperature and solar irradiations. While 

implementing in large scale solar power plant drone IR 

camera can be applied to reduce the labour work. In the 
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future, it is aimed to implement the system to function under 

permanent partial shading conditions too.  
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