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+e quantification of climate change impacts on several human activities depends on reliable weather data series, without gaps and
long enough to build up future climate. Based on that, this study aimed to evaluate the performance of temperature-based models
for estimating global solar radiation and gridded databases (AgCFSR, AgMERRA, NASA/POWER, and XAVIER) as alternative
ways for filling gaps in historical weather series (1980–2009) in Brazil and to project climate change scenarios based on measured
and gridded weather data. Projections for mid- and end-of-century periods (2040–2069 and 2070–2099), using seven global
climate models from CMIP5 under intermediate (RCP4.5) and high (RCP8.5) emission scenarios, were performed. +e
Bristow–Campbell model was the one that best estimated solar radiation, whereas the XAVIER gridded database was the closest to
observed weather data. Future climate projections, under RCP4.5 and RCP8.5 scenarios, as expected, showed warmer conditions
for all scenarios over Brazil. On the contrary, rainfall projections are more uncertain. Despite that, the rainfall amounts will be
reduced in the North-Northeast region and increased in Southern Brazil. No significant differences between projections using the
observed and XAVIER gridded database were observed; therefore, such a database showed to be reliable for both to fill gaps and to
generate climate change scenarios.

1. Introduction

Given the projections of global climate changes, simulation
models can be used to estimate the impact of historical and
future climates on human activities, mainly in crop growth
and yield and food availability [1]. For proper simulations,
these models require high-quality and long-term historical
daily weather data [2]. However, the major difficulty regarding
historical weather data in Brazil is the low density of weather
stations, associated with the reduced number of measured
variables and the large amount of missing data [3–5].
To overcome the lack of reliable weather data series,

missing data can be filled in with estimated or interpolated
data. Among the different approaches used to fill weather
data gaps in, the main methods are climatic generators,
which generate stochastic sequences of daily data, such as
WGEN [6] and SIMMETEO [7] generators; empirical
correlations using commonly measured meteorological

variables present in the observed data [8–10]; and the use of
the gridded weather database, based on satellite and/or
surface data [2, 4, 11].
Once the historical data series have been filled, these can

be used for generating future climate scenarios, derived from
projections of climate models, which can be global (GCMs)
or regional (RCMs). Despite the finer resolution of RCMs,
considering the continental dimension of Brazil, GCMs
(which would provide the RCM boundary conditions) offer
insight into the general characteristics of future climate
[12, 13].
Due to the uncertainties associated with the GCM

projections, different models can indicate different climate
responses, and one way to reduce such an uncertainty is by
considering an ensemble modeling approach [14], with the
projections being obtained from multiple models, resulting
in more reliable scenarios than if the models are considered
individually [15].
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�ese future changes can be projected based on GCMs
generated by the Coupled Model Intercomparison Project
Phase 5 (CMIP5 [16]), under different greenhouse gases
emissions that follow distinct representative concentration
pathways (RCPs) [17–19], assessed in the Fifth Assessment
Report (AR5) of the Intergovernmental Panel on Climate
Change (IPCC) [20]. For South America and specifically for
Brazil, the first projections have indicated an increase in
temperatures and an uncertain pattern in the rainfall dis-
tribution [12, 13]. Such patterns have been confirmed in the
more recent studies of Chou et al., Sánchez et al., and
Salviano et al. [21–23].

Given the great importance of historical weather data for
assessing the impacts of climate change on human activities,
mainly agriculture, in addition to the fact that Brazil has
a low weather station density, with a large amount of missing
data [3–5], the general objective of this study was to evaluate
the performance of different alternatives to fill in weather
data gaps and, based on that, to create climate change
scenarios for Brazil. More specifically, this study aimed (i) to
evaluate the performance of temperature-based models for
estimating solar radiation and gridded databases, such as
AgCFSR, AgMERRA, NASA/POWER, and XAVIER, as
procedures to fill in gaps of weather data (maximum and
minimum air temperature, solar radiation, rainfall, wind
speed, and relative humidity) for the period of 1980–2009;
(ii) to generate, from the complete historical weather data,
climate change scenarios, over the medium-term (2040–
2069) and long-term (2070–2099) periods, based on seven
GCMs of CMIP5, under intermediate (RCP4.5) and high

(RCP8.5) emission scenarios; and (iii) to identify patterns of
climate change in air temperature and rainfall in different
Brazilian regions to define the expected trends in relation to
the historical climate.

2. Materials and Methods

�e present study was developed according to different steps
and in a logical sequence presented in the flow chart of
Figure 1 and in the following sections.

2.1. Sites and Weather Data. Historical daily measured
weather data of maximum and minimum air temperature,
sunshine hours, rainfall, wind speed, and relative humidity,
from 1980 to 2009, were obtained from the Brazilian Na-
tional Institute of Meteorology (INMET). �irty-one sites
well distributed in the country were considered, as presented
in Figure 2. More detailed description about the percentage
of missing values for each weather variable is in Table S1 of
Supplementary Materials.

2.2. Filling Gaps in the Meteorological Database. Due to the
large percentage of missing data in the historical weather
databases, ranging from 1 to 46% (Figure 2 and Table S1 of
Supplementary Materials), weather variables were gener-
ated by temperature-based models (solar radiation) and
gridded databases (all variables), as alternatives to fill these
gaps in.
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Figure 1: Flow chart of the steps used in the present study for filling in gaps in historical weather series and to generate future climate
scenarios.
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2.2.1. Temperature-Based Solar Radiation Models. As solar
radiation is not commonly recorded by conventional
weather stations, its values were calculated from sunshine
hours (n) data, following the model proposed by Ängström
[8] and Prescott [24], with coefficients as suggested by
Glover and McCulloch [25], and then admitted as the ref-
erence values (Table 1). �e temperature-based models for
estimating solar radiation use maximum and minimum air
temperatures as inputs to estimate atmospheric trans-
missivity [10], which is affected by cloudiness. Five solar
radiation models (Hargreaves (Ha), Hunt (Hu), Annandale
(An), Bristow–Campbell (BC), and Donatelli–Campbell
(DC)) were assessed as presented in Table 1.

2.2.2. Daily Gridded Database. Gaps in measured weather
data (maximum and minimum air temperature, solar

radiation, rainfall, wind speed, and relative humidity) were
also filled in with data from the following four gridded
databases:

(a) AgCFSR and AgMERRA datasets [11], developed as
a part of the Agricultural Model Intercomparison
and Improvement Project (AgMIP) [31], to provide
consistent, daily time series with global coverage
of climate variables. �ey are result of a combina-
tion of NCEP’s reanalysis of the Climate Fore-
cast System Reanalysis (CFSR) [32] and NASA’s
Modern-Era Retrospective Analysis for Research
and Applications (MERRA) [33] with observed
datasets from weather stations’ networks and satel-
lites, available on a daily temporal scale, for the period
between 1980 and 2010, at 0.25°× 0.25° horizontal
resolution.
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Figure 2:Weather stations from the Brazilian National Institute ofMeteorology used in the present study, with total percentage ofmissing data
(maximum and minimum air temperature, sunshine hours, rainfall, relative humidity, and wind speed), in the period from 1980 to 2009.

Table 1: Solar radiation-estimating models based on maximum and minimum air temperature.

Model Equation∗ Coefficients Reference

Ha Qg � a × ΔT0.5 × Q0 a [9]
Hu Qg � b × ΔT0.5 × Q0 + c b and c [26]
An Qg � d × (1 + 2.7 × 10−5 × Alt) × ΔT0.5 × Q0 d [27]
BC Qg � e × (1− exp(−f × ΔTg)) × Q0 e, f, and g [10]
DC Qg � h × (1− exp(−i × ΔTj/ΔTm)) × Q0 h, i, and j [28]
∗Qg: solar radiation (MJ·m−2·d−1); Q0: extraterrestrial solar radiation (MJ·m−2·d−1); ΔT: thermal amplitude (Tmax−Tmin) (°C); ΔTm: 7-day moving average of
ΔT (°C); a, b, c, d, e, f, g, h, and j: coefficients to be adjusted for eachmodel. For BC and DCmodels, e and h coefficients were determined by a relationship with
altitude, a � 0.75 + 2 × 10−5 × Alt, as proposed by Allen et al. [29].Q0 andN are astronomical values calculated according to Allen et al. [30]. Ha: Hargreaves;
Hu: Hunt; An: Annandale; BC: Bristow–Campbell; DC: Donatelli–Campbell.
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(b) National Aeronautics and Space Administration
database developed by the Prediction of Worldwide
Energy Resource (NASA/POWER) [34], composed
by satellite data, radiosondes, surface observations,
and numerical modeling from data assimilation. +e
meteorological variables are available on a daily
world scale, but in a grid of lower resolution, that is,
of greater horizontal spacing, with 1°× 1° horizontal
resolution, for the period from 1983 to the near
present. Just for rainfall, the historical series started
in 1997.

(c) Gridded dataset developed by Xavier et al. [4], re-
ferred to as XAVIER that includes only daily ob-
served data from rain gauges and conventional and
automatic weather stations for the period of 1980–
2013, available on a spatial resolution of 0.25°× 0.25°

only for Brazil.

2.2.3. Evaluation of Solar Radiation Models and Daily
Gridded Database for Filling in Weather Data Gaps.
Concerning the solar radiation models, two independent
datasets were considered with two years each, for the cali-
bration and evaluation of the adjusted coefficients. To avoid
inconsistencies in the analysis, two consecutive years with
less than 2% of missing data (temperature and sunshine
hours) were chosen. For the evaluation of the gridded
weather data, the entire database was employed for the
period between 1980 and 2009.
+e performance of temperature-based solar radiation

models and gridded databases for filling in daily data gaps
was assessed by comparing estimated and measured data on
a daily basis, using the common model performance eval-
uation indices, such as the coefficient of determination (r2)
as a measure of precision; agreement index (d) [35] as
a measure of accuracy; confidence index (c) [36] (being
classified as great for values higher than 0.85, very good for
values between 0.76 and 0.85, good between 0.66 and 0.75,
median between 0.61 and 0.65, suffering between 0.51 and
0.60, bad between 0.41 and 0.50, and terrible for values lower
than 0.41); mean error or bias (Bias) that indicates the
tendency of error; and mean absolute error (MAE), which
gives the magnitude of the errors [37].

2.3. Climate Change Projections. Climate change scenarios,
based on measured weather data fulfilled with the best al-
ternative, were projected by models that are publicly
available through the CMIP5 [16], based on two RCPs [18]:
intermediate emission scenario (RCP4.5) and high emission
scenario (RCP8.5). As suggested by Ward et al. [38], the
intermediate scenario appears as the most likely future for
planning purposes, in which observed fossil fuel trajectories
show up to be consistent, whereas the high emission scenario
represents the extreme conditions.
+e future scenarios were generated based on the delta

method [39], in which simulated mean monthly changes are
imposed for the baseline for all sites by adding temperature
changes and multiplying precipitation changes, without

changing the variability within a month (e.g., the number of
rainy days), following the procedure as described by Hudson
and Ruane [40]. All other variables were kept unchanged.
Projections were performed for mid-of-century (2040–

2069) and end-of-century (2070–2099) periods, for the
following CMIP5 GCMs: CNRM-CM5 [41], CSIRO-Mk3-6-
0 [42], GISS-E2-R [43], HadGEM2-ES [44, 45], INMCM4
[46], MIROC-ESM [47], and MPI-ESM_LR [48]. +e use of
seven different GCMs was adopted since the uncertainties
are inherent to the climate system, as a result of nonlinear
interactions and the intrinsic complexity of the natural at-
mospheric phenomena [49]. +erefore, for the same emis-
sion scenario, different models produce diverse projections
of climate change, and one way to minimize these un-
certainties is through a set of global and/or regional models,
known as an ensemble approach [15]. In this sense, the
climate projection presented here for each variable is an
average of the outputs of seven GCMs.
As an alternative to the use of gridded historical climate

data for future climate projections, we analyzed climate
projections based on measured weather data compared to
the climatology provided by the best alternative method,
considering only the nine sites which had a percentage of
missing data on air temperature and rainfall lower than 10%,
as presented in Table S1 of Supplementary Materials.

3. Results

3.1. Filling Gaps in Measured Weather Data

3.1.1. Solar Radiation Models. Table 2 presents the average
daily annual coefficients of the temperature-based solar
radiation models for all Brazilian locations assessed. +e Ha
model displayed adjusted coefficients varying from
0.10°C−0.5 to 0.18°C−0.5, differing from the original values of
0.16°C−0.5 and 0.19°C−0.5 obtained by Hargreaves and Samani
[50] for continental and coastal regions, respectively. +e
adjusted b coefficient for the Hu model ranged from 0.04 to
0.22. However, the c coefficient of this model showed quite
distinct values, ranging from −7.70 and 9.98.+e coefficients
e of the BC model and h of the DC model were similar,
ranging from 0.75 to 0.77 in both models; however, the
coefficients f and g of the BC model were smaller than the
coefficients i and j of the DC model, whereas f and g of
the BC model were, in average, 0.03 and 1.63 and i and j of
the DC model were 0.07 and 2.24.
Statistical indices for each temperature-based model

assessed are presented in Figure 3. For more detailed re-
sults, see Tables S2 and S3 of Supplementary Materials. As
presented in Figure 3, r2 for the BC model ranges between
0.32 and 0.79, with a mean value of 0.62. For the DCmodel,
r2 values range from 0.26 to 0.76, with an average value
of 0.59.
+e estimated solar radiation values presented d between

0.44 and 0.93 for the Ha and Hu models and from 0.55 to
0.92 for the An model, with a mean value of 0.79, for all of
them. For the BC and DC models, this index ranged from
0.62 to 0.93 and from 0.60 to 0.93, respectively, with average
values of 0.86 and 0.85 (Figure 3; Tables S2 and S3).
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+e confidence index (c) ranged from 0.31 to 0.81, with
an average of 0.61 for the Ha and An models, and from 0.25
to 0.82 for the Hu model, with an average of 0.62 (Figure 3).
For the BC model, c ranged from 0.35 to 0.82, while for the
DC model, c ranged from 0.32 to 0.80, with an average of
0.68 and 0.66, respectively. Considering the average values
for all sites, the models of Ha, Hu, and An presented per-
formances classified as “median,” whereas the performances
of BC and DCmodels were classified as “good,” according to
the Camargo and Sentelhas [36] classification.

3.1.2. Gridded Database. Table 3 presents the performance
of the different daily gridded databases used to fill the gaps in
the historical weather series. All databases showed high
accuracy (d≥ 0.89) for maximum air temperature (Tmax),
with XAVIER also showing very high precision (r2�1).
Except for AgCFSR, all models underestimated Tmax. Among
all databases, XAVIER was the best one for estimating Tmax,
with MAE� 0.17°C, whereas NASA/POWER presented the
highest MAE of 2.46°C.
All databases showed high accuracy (d≥ 0.93) and good

precision (r2≥ 0.77) for minimum air temperature (Tmin). As
to Tmax, XAVIER showed the best performance, with the

lowest Bias (0.06°C) and MAE (0.30°C). On the contrary,
NASA/POWER presented the worst performance, with

Bias � 0.76°C and MAE � 1.74°C. Both AgCFSR and

AgMERRA presented similar Bias and MAE, as well as

similar c index, respectively, of 0.84 and 0.86 (Table 3).
For global solar radiation (Qg), NASA/POWER and

XAVIER presented the best performance, with the latter
presenting the highest accuracy (d� 0.97) and precision
(r2� 0.94), resulting in a c index of 0.94, classified as great [36].
NASA/POWER showed r2� 0.76 and d� 0.93. All databases
underestimated Qg, with Bias ranging from −0.58 to
−1.32MJ·m−2·d−1. In terms of MAE, XAVIER was the data-
base with the best performance, with MAE� 1.57MJ·m−2·d−1.
For the rainfall (Rain), AgCFSR, AgMERRA, and

NASA/POWER showed poor performance with r2 ≤ 0.25,
d ≤ 0.67, c ≤ 0.33, and MAE ≥ 4.48mm·d−1. On the con-
trary, XAVIER presented good precision (r2 � 0.88) and

high accuracy (d � 0.96), resulting in an optimum perfor-

mance (c � 0.90), with a slight underestimation tendency

(Bias �−0.10mm·d−1) and the lowest error magnitude
(MAE � 1.51mm·d−1).
XAVIER also presented the best performance for esti-

mating relative humidity (RH), with high precision

Table 2: Average daily annual coefficients of Hargreaves (Ha), Hunt (Hu), Annandale (An), Bristow–Campbell (BC), and Donatelli–
Campbell (DC) temperature-based solar radiation models for each of the Brazilian locations considered in this study.

Model Ha Hu An BC DC

Coefficients a b c d e f g h i j

RSPE 0.18 0.19 −1.12 0.18 0.75 0.07 1.29 0.75 0.14 1.98
RSCA 0.17 0.19 −2.08 0.17 0.76 0.02 1.73 0.76 0.06 2.29
SCCN 0.17 0.18 −1.49 0.17 0.77 0.04 1.52 0.77 0.14 1.94
SCCH 0.17 0.18 −1.06 0.17 0.76 0.03 1.64 0.76 0.11 2.08
PRCA 0.10 0.11 −0.63 0.10 0.77 0.05 1.02 0.77 0.15 1.57
PRLO 0.12 0.13 −1.46 0.12 0.76 0.03 1.30 0.76 0.09 1.88
SPAV 0.17 0.16 0.66 0.16 0.77 0.04 1.44 0.77 0.16 1.89
SPFR 0.18 0.12 1.79 0.13 0.77 0.04 1.32 0.77 0.11 1.86
SPVP 0.17 0.16 1.70 0.17 0.76 0.03 1.65 0.76 0.08 2.20
MGBA 0.14 0.16 −1.86 0.14 0.76 0.05 1.26 0.76 0.09 2.00
MGUB 0.17 0.16 0.99 0.17 0.76 0.01 1.98 0.76 0.03 2.57
MGPM 0.17 0.16 0.94 0.16 0.77 0.02 1.79 0.77 0.04 2.42
MGUN 0.16 0.16 −0.51 0.16 0.76 0.02 1.75 0.76 0.04 2.46
MSIV 0.17 0.19 −2.00 0.17 0.76 0.02 1.82 0.76 0.07 2.27
MSPA 0.18 0.20 −3.19 0.17 0.76 0.02 1.79 0.76 0.06 2.39
MTDI 0.15 0.14 1.56 0.15 0.76 0.04 1.39 0.76 0.10 2.03
GOCA 0.17 0.17 0.23 0.17 0.77 0.02 1.81 0.77 0.04 2.46
GOJA 0.15 0.16 −0.76 0.15 0.76 0.05 1.32 0.76 0.10 2.02
DFBR 0.18 0.15 3.08 0.17 0.77 0.03 1.71 0.77 0.06 2.36
BABJ 0.18 0.18 0.12 0.18 0.76 0.03 1.72 0.76 0.06 2.39
BABA 0.17 0.18 −1.26 0.17 0.76 0.03 1.60 0.76 0.05 2.38
BARR 0.18 0.21 −3.08 0.18 0.76 0.01 2.23 0.76 0.02 2.94
PIBJ 0.11 0.04 9.98 0.11 0.76 0.03 1.25 0.76 0.08 1.88
MAAP 0.17 0.19 −2.88 0.17 0.76 0.02 1.79 0.76 0.04 2.52
MACA 0.18 0.20 −2.27 0.18 0.75 0.03 1.71 0.75 0.05 2.42
MABC 0.16 0.22 −7.70 0.16 0.75 0.01 2.04 0.75 0.02 2.75
TOTA 0.17 0.16 1.05 0.17 0.76 0.02 1.83 0.76 0.04 2.52
TOPN 0.17 0.20 −3.77 0.16 0.75 0.03 1.58 0.75 0.06 2.31
TOPA 0.17 0.20 −2.89 0.17 0.75 0.03 1.68 0.75 0.07 2.30
PASF 0.13 0.11 2.84 0.13 0.75 0.03 1.35 0.75 0.07 2.02
PAMA 0.17 0.22 −5.29 0.17 0.75 0.02 1.92 0.75 0.04 2.51
Mean 0.16 0.17 −0.66 0.16 0.76 0.03 1.62 0.76 0.07 2.24
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Figure 3: Boxplot of the statistical indices and errors of Hargreaves (Ha), Hunt (Hu), Annandale (An), Bristow–Campbell (BC), and
Donatelli–Campbell (DC) temperature-based solar radiation models, when compared to measured solar radiation data of 31 Brazilian sites.
Boxes denote the lower (25%) to upper quartile (75%) values, with a horizontal line at the median and crosses at mean values.
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(r2� 0.90) and accuracy (d� 0.97) and small errors
(Bias� 0.18% and MAE� 3.76%), whereas the other systems
underestimated RH, with MAE higher than 11%.
Despite the poor performance of all databases for esti-

mating wind speed (WS2m), XAVIER displayed the best sta-
tistical indices, with r2� 0.47, d� 0.79, and c� 0.54, and the
smallest error, with MAE� 0.49m·s−1, which, however, is still
classified as suffering according to Camargo and Sentelhas [36].

3.2. Climate Change Projections. Based on the historical
measured weather data fulfilled with the XAVIER gridded
database, the ensemble of climate change projections was
performed for RCP4.5 and RCP8.5 emission scenarios on 31
sites from 1980 to 2009, from mid- to end-of-century pe-
riods. Annual maximum and minimum temperatures
showed an increase in tendency, while for rainfall, the South
region will mostly experience increases (annually), and the
North and Northeast regions will experience decreases, as
presented in Figures 4–6. More details can be found in
Tables S4 and S5 of Supplementary Materials.
Annual average changes, for all 31 sites, of maximum

temperature showed increases in medium- and long-term
projections of 2.01 and 2.52°C for RCP4.5 and 2.70 and

4.61°C for RCP8.5, while for minimum temperature, the
increases will be of 1.79 and 2.25°C for RCP4.5 and 2.56 and
4.45°C for RCP8.5 (Table 4). Under the same emission
scenarios and future projected periods, higher increases will
occur for maximum than for minimum temperatures. As
expected, increases under the RCP8.5 scenario will be higher
than those under RCP4.5. However, such increases are much
more pronounced in the long-term projections, with the
mean increase achieved between 2.39 and 4.48°C, under
intermediate and high emission scenarios.
Rainfall projections for the 31 sites showed a decrease

of −6.18 and −6.68% for RCP4.5 and −4.34 and −8.62%
for RCP8.5 for the medium- and long-term projections
(Table 4); however, these changes must be analyzed carefully,
since rainfall is a variable of high spatial variability and with
distinct distribution patterns over the country.
+emonthly climate changes projected for all 31 sites for

the RCP8.5 scenario in a long term (2070–2099) are pre-
sented in Figure 7. Temperature changes will vary between 2
and 7°C for Tmax (Figure 7(a)) and between 2 and 5.5°C for
Tmin (Figure 7(b)). +e highest temperature increases will
occur in the second semester of the year, mainly in October,
for both. +erefore, as shown before, higher temperatures
are expected on future climate projections, with increases

Table 3: Statistical evaluation of daily gridded databases for maximum air temperature (Tmax), minimum air temperature (Tmin), solar
radiation (Qg), rainfall (Rain), relative humidity (RH), and wind speed (WS2m), considering 31 locations in Brazil.

Variable Database
Indexes

r2 d c Classification Bias (°C) MAE (°C)

Tmax

AgCFSR 0.77 0.93 0.82 Very good 0.47 1.88
AgMERRA 0.76 0.93 0.81 Very good −0.37 1.86

NASA/POWER 0.68 0.89 0.73 Good −1.18 2.46
XAVIER 1.00 1.00 1.00 Great 20.03 0.17

r2 d c Classification Bias (°C) MAE (°C)

Tmin

AgCFSR 0.80 0.94 0.84 Very good 0.71 1.63
AgMERRA 0.82 0.95 0.86 Great 0.08 1.45

NASA/POWER 0.77 0.93 0.82 Very good 0.76 1.74
XAVIER 0.98 0.99 0.98 Great 0.06 0.30

r2 d c Classification Bias (MJ·m−2·d−1) MAE (MJ·m−2·d−1)

Qg

AgCFSR 0.64 0.89 0.71 Good −0.66 2.65
AgMERRA 0.64 0.88 0.71 Good −1.32 2.79

NASA/POWER 0.76 0.93 0.81 Very good 20.58 2.19
XAVIER 0.94 0.97 0.94 Great −1.19 1.57

r2 d c Classification Bias (mm·d−1) MAE (mm·d−1)

Rain

AgCFSR 0.16 0.60 0.24 Terrible −0.03 4.88
AgMERRA 0.25 0.67 0.33 Terrible −0.03 4.48

NASA/POWER 0.20 0.65 0.29 Terrible 0.12 4.86
XAVIER 0.88 0.96 0.90 Great 20.10 1.51

r2 d c Classification Bias (%) MAE (%)

RH

AgCFSR 0.52 0.79 0.57 Suffering −2.43 14.43
AgMERRA 0.38 0.72 0.45 Bad −6.67 17.06

NASA/POWER 0.55 0.82 0.61 Median −6.75 11.14
XAVIER 0.90 0.97 0.92 Great 0.18 3.76

r2 d c Classification Bias (m·s−1) MAE (m·s−1)

WS2m

AgCFSR 0.10 0.56 0.18 Terrible 0.17 0.83
AgMERRA 0.08 0.53 0.15 Terrible 0.54 0.98

NASA/POWER 0.14 0.69 0.21 Terrible 0.64 0.86
XAVIER 0.47 0.79 0.54 Suffering 0.22 0.49
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that will persist every month [13, 22]. Rainfall reduction
especially in North and Northeast regions will occur mainly
from August to October, which coincides with the dry
season and the period of higher temperatures.

Analyzing the future climate projections, by comparing the
observed and XAVIER gridded database as a reference for
climatology, the projected annual average of maximum and
minimum temperature and rainfall was similar, with about the
same variability for both databases (Figure 8). For air tem-
perature projections, based on the observed and gridded cli-
matology, the differences were not greater than 0.06 and 0.08°C,
respectively, formaximumandminimum temperatures, in both
emission scenarios and future periods considered. Similarly, for
rainfall, the differences between the two databases did not
exceed 1%, considering all scenarios and periods.

4. Discussion

4.1. Filling Gaps in Measured Weather Data

4.1.1. Solar Radiation Models. In general, the temperature-
based models for estimating Qg presented very similar
performance after their calibration for 31 sites in Brazil

(Figure 3). However, the models which were based on three
coefficients, BC and DC, had a subtle better performance,
improving the general confidence index c above 0.6 for most
simulations. As this is the first attempt to calibrate these
models considering several locations around the country,
the calibrated coefficients (a for Ha; b and c for Hu; d for An;
e, f, and g for BC; and h, i, and j for DC) were quite different
from those obtained by other authors for specific locations
or locations within the same state, such as those presented by
Barbosa et al. [51] for the state of Minas Gerais (MG), by
Conceição and Marin [52] in the northwest of the state of
São Paulo, and by Massignam [53] in the state of Santa
Catarina. Also, the performances of these models when
considering several locations spread in the country were a bit
worse than those reported by specific locations [51–53],
which is mainly caused by the greaterQg variability observed
around the country with the different atmospheric trans-
missivity caused by diverse cloud types.

Despite the differences in performance reported above,
the present study confirmed that BC and DC are the best
temperature-based methods for estimating Qg. �e perfor-
mance of these methods, however, can vary according to the
region and the season of the year, as reported by Rivington
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Figure 4: Maximum air temperature average change from seven global climate models (GCMs), for 31 sites in Brazil, for mid-of-century
(2040–2069) and end-of-century (2070–2099) periods, under intermediate (RCP4.5) and high (RCP8.5) emission scenarios, having as
reference the historical (1980–2009) period: (a) RCP4.5 2040–2069; (b) RCP8.5 2040–2069; (c) RCP4.5 2070–2099; (d) RCP8.5 2070–2099.
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et al. [54]. In this study, it was found that the best Qg es-
timates were found in Southern and Southeastern Brazil,
where it seems to be a better correlation between nebulosity
and daily thermal amplitude. In these regions, the confi-
dence index was classified between good and very good, as
can be seen in Tables S2 and S3 of Supplementary Materials.

4.1.2. Gridded Database. �e gridded data provided by
difference sources presented distinct performances for
simulating weather conditions and variability in different
parts of Brazil. For Tmax and Tmin, as well as for Qg, the four
systems assessed presented good to great performance,
according to the classification of Camargo and Sentelhas
[36], with r2≥ 0.64, d≥ 0.88, and c index always above 0.71.
In general, XAVIER was the system that presented the best
performance for these three variables, with c always above
0.90. On the contrary, for Rain, RH, and WS2m, the per-
formances were quite variable, with AgCFSR, AgMERRA,
and NASA/POWER presenting the worst estimates, with c
equal to or below 0.33, 0.61, and 0.21, respectively, whereas
XAVIER presented great performance for Rain (c� 0.90)
and RH (c� 0.92). For WS2m, XAVIER also had a better

performance than the other sources, however, with lower
indices when compared to the other weather variables
(r2� 0.47, d� 0.79, and c� 0.54).

Similar results were found by Monteiro et al. [55] and by
Battisti et al. [5] when using NASA/POWER, XAVIER, and
AgMERRA gridded databases in several Brazilian locations.
Despite the similar performances observed by these authors
regarding the gridded data they used, both of them con-
cluded that the differences between observed and gridded
data were not enough to lead to significant differences for
estimating the potential yield of sugarcane [55] and soybean
[5]. However, when simulating the attainable yield, which
depends on the rainfall, Monteiro et al. [55] realized that the
use of observed data improved the estimates substantially,
once NASA/POWER did not represent rainfall spatial and
temporal variability very well, as also observed in the present
study (Table 3). Following the same strategy, Battisti et al. [5]
also observed that the use of rainfall data from AgMERRA
did not provide reliable results of the soybean attainable
yield, whereas XAVIER data did.

Regarding rainfall data, the major limitation for their
spatial interpolation based on satellite data, as done by
AgCFSR, AgMERRA, and NASA/POWER, is the low or
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Figure 5: Minimum air temperature average change from seven global climate models (GCMs), for 31 sites in Brazil, for mid-of-century
(2040–2069) and end-of-century (2070–2099) periods, under intermediate (RCP4.5) and high (RCP8.5) emission scenarios, having as
reference the historical (1980–2009) period: (a) RCP4.5 2040–2069; (b) RCP8.5 2040–2069; (c) RCP4.5 2070–2099; (d) RCP8.5 2070–2099.
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inadequate resolution of the images which is not good
enough to capture extreme events [56, 57] and local spatial
variability associated with the topography [58, 59]. Similarly,
the poor performance of all databases to estimate WS2m is
related to two main aspects: the small magnitude of this
variable, which leads to large errors even with small de-
viations, and its high spatial variability associated with the
topography and land cover [60]. Finally, the median to bad
AgCFSR, AgMERRA, and NASA/POWER performance to
estimate RH is related to the fact that the former two provide
RH at the time of maximum daily temperature, which is not
the daily average, which resulted in MAE between 14 and

17% in the assessed regions. NASA/POWER estimates RH
based on similar procedures employed by AgCFSR and
AgMERRA, which resulted in errors of similar magnitude,
about 11%, very close to those reported by Stackhouse et al.
[34] for several locations in the United States for a historical
weather series of 31 years.

From the results presented in Table 3, the XAVIER
gridded database was the best one to represent spatial and
temporal weather data variability in Brazil, once it is based
on data from ground stations from several sources. In ad-
dition, its high spatial resolution (0.25°) allows a reasonable
characterization of the topography and land cover effects on
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Figure 6: Rainfall average change from seven global climate models (GCMs), for 31 sites in Brazil, for mid-of-century (2040–2069) and end-
of-century (2070–2099) periods, under intermediate (RCP4.5) and high (RCP8.5) emission scenarios, having as reference the historical
(1980–2009) period: (a) RCP4.5 2040–2069; (b) RCP8.5 2040–2069; (c) RCP4.5 2070–2099; (d) RCP8.5 2070–2099.

Table 4: Overall changes of maximum, minimum, and mean air temperature and rainfall, averaged from seven global climate models
(GCMs) for 31 Brazilian sites for mid-of-century (2040–2069) and end-of-century (2070–2099) periods, under intermediate (RCP4.5) and
high (RCP8.5) emission scenarios, when compared to the historical climate conditions (1980–2009).

Period

RCP4.5 RCP8.5

Temperature (°C)
Rain (%)

Temperature (°C)
Rain (%)

Maximum Minimum Mean Maximum Minimum Mean

2040–2069 2.01 1.79 1.90 −6.18 2.70 2.56 2.63 −4.34
2070–2099 2.52 2.25 2.39 −6.68 4.61 4.35 4.48 −8.62
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surface weather variables, which are difficult to be captured
by satellite estimates, as done by AgCFSR, AgMERRA, and
NASA/POWER.

4.2. Climate Change Projections. �e temperature increases
presented in this study are in line with the projections
performed by Chou et al., Sánchez et al., Torres and Ma-
rengo, and Reboita et al. [21, 22, 61, 62]. For air temperature,
Torres and Marengo [61] projected increases exceeding 2°C
by the end of the present century in South America with
more than 90% of probability, which was confirmed by our
results (Figures 4 and 5; Table 4). For rainfall, decreases will
be expected in the northern part of the country, whereas in
the center-southern part, rainfall increase will prevail; these
results are comparable to those obtained by Sánchez et al.
and PMBC [22, 49]. �e rainfall reduction in Northern
Brazil will occur mainly from August to October, which
coincides with the dry season, and when high temperatures
predominate, it leads to higher water deficits, increasing the
risks for rainfed perennial crops as well as for annual and
perennial irrigated crops by increasing the crop water de-
mand and irrigation requirements [63, 64].

Comparing the future climate projections generated
from observed and XAVIER gridded databases, considered
as the historical basis for future climate projections, the
results did not show any substantial difference in the pro-
jected scenarios of temperature and rainfall, which makes
possible to use the XAVIER database for studying the im-
pacts of climate change on agriculture or any other human
activity.

5. Conclusions

�is study assessed the potential use of temperature-based
solar radiation models and gridded databases as options to
fill gaps in weather series and to project climate change
scenarios in Brazil. Among the temperature-based solar
radiation models, the one with the best performance was the
BC model, which presented the lowest errors and highest
precision and accuracy. In relation to the gridded data, the
XAVIER database was the best one to represent observed
weather series in Brazil, showing up to be reliable for both to
fill gaps in and to be used as a reference to agricultural
planning and agroclimatic risk studies for the present and
future climates. Due to its outstanding performance, the
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Figure 7: Monthly projected changes of maximum air temperature (a), minimum air temperature (b), and rainfall (c), averaged from seven
global climate models (GCMs), in 31 Brazilian locations, at the end-of-century (2070–2099) period and under a high emission scenario
(RCP8.5), when compared to the historical climate (1980–2009).
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Figure 8: Boxplot of the projected annual average of maximum air temperature (a), minimum air temperature (b), and rainfall (c), based on
seven global climate models (GCMs), for mid-of-century (2040–2069) and end-of-century (2070–2099) periods, under intermediate
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XAVIER database can also be used for studies related to the
impact of climate variability and climate change on other
human activities in Brazil.
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(MMA), Braśılia, Brazil, 2007.

[13] J. A. Marengo, T. Ambrizzi, R. P. da Rocha et al., “Future
change of climate in South America in the late twenty-first
century: intercomparison of scenarios from three regional
climate models,” Climate Dynamics, vol. 35, no. 6,
pp. 1073–1097, 2010.

[14] C. Tebaldi and R. Knutti, “+e use of the multi-model ensemble
in probabilistic climate projections,” Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 365, no. 1857, pp. 2053–2075, 2007.

[15] G. Sampaio and P. L. da Silva Dias, “Evolução dos modelos
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CNRM-CM5.1 global climate model: description and basic
evaluation,” Climate Dynamics, vol. 40, no. 9-10, pp. 2091–
2121, 2013.

[42] L. D. Rotstayn, S. J. Jeffrey, M. A. Collier et al., “Aerosol- and
greenhouse gas-induced changes in summer rainfall and
circulation in the Australasian region: a study using single-
forcing climate simulations,” Atmospheric Chemistry and
Physics, vol. 12, no. 14, pp. 6377–6404, 2012.

[43] G. A. Schmidt, M. Kelley, L. Nazarenko et al., “Configuration
and assessment of the GISS ModelE2 contributions to the
CMIP5 archive,” Journal of Advances in Modeling Earth
Systems, vol. 6, no. 1, pp. 141–184, 2014.

[44] W. J. Collins, N. Bellouin, M. Doutriaux-Boucher et al.,
“Development and evaluation of an Earth-system model–
HadGEM2,” Geoscientific Model Development, vol. 4, no. 4,
pp. 1051–1075, 2011.

[45] G. M. Martin, N. Bellouin, W. J. Collins et al., “+e HadGEM2
family of Met Office Unified Model climate configurations,”
Geoscientific Model Development, vol. 4, no. 3, pp. 723–757,
2011.

[46] E. M. Volodin, N. A. Dianskii, and A. V. Gusev, “Simulating
present-day climate with the INMCM4.0 coupled model of
the atmospheric and oceanic general circulations,” Izvestiya,
Atmospheric and Oceanic Physics, vol. 46, no. 4, pp. 414–431,
2010.

[47] S. Watanabe, T. Hajima, K. Sudo et al., “MIROC-ESM 2010:
model description and basic results of CMIP5-20c3m ex-
periments,” Geoscientific Model Development, vol. 4, no. 4,
pp. 845–872, 2011.

[48] M. A. Giorgetta, J. Jungclaus, C. H. Reick et al., “Climate and
carbon cycle changes from 1850 to 2100 in MPI-ESM sim-
ulations for the coupled model intercomparison project phase
5,” Journal of Advances in Modeling Earth Systems, vol. 5,
no. 3, pp. 572–597, 2013.

[49] Painel Brasileiro de Mudanças Climáticas (PBMC), Sumário
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com base na temperatura do ar,” Revista Brasileira de
Agrometeorologia, vol. 15, no. 1, pp. 103–107, 2007.

[53] A. M. Massignam, “Estimativa da radiação solar em função da
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