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Abstract

Structural properties and solar radiative fluxes for broken, inhomogeneous

cloud fields (primarily fairweather cumulus) are examined from the point. of view

of sub--grid parameterization for global climate models (GCMs). AVHRR satellite

visible and infrared radiances (256x256 kIn images) display almost identical one

and two-dimensional wavenumber spectra. For scales greater than ",4 km,

radiance spectra follow k-1 to k-5/3 where k is wavenumber (at scales greater

than ",40 kIn, radiance spectra for stratocumulus and stratocumulus of open

polygonal cells behave as white noise). At scales between ",4 Ion and ",2 km,

spectra follow ",k-4. Aircraft observations of cloud microphysics and temperature,

however, .suggest that these fields follow closely Kolmogorov's classic k-5/3 law

down to at least ",120 m. The dramatic scaling change in radiance fields may,

t h e r ~ r o r e , be due to horizontal variation in the vertical integral of liquid water

content.

Based on the empirical data, a phenomonological scaling cloud field model

which produces three different forms of a cloud field is developed and

demonstrated. The cloud fields produced by this model are used ultimately in a

three-dimensional atmospheric Monte Carlo photon transport model which is

developed and validated. Also, two methods of including an underlying reflecting

surface are developed and validated.

Using the models mentioned above, fluxes for various scaling, random,
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regular, and plane-parallel broken cloud fields are compared. Scaling cloud fields

span a spectrum from white noise fields to plane-paralleL If most cloud fields scale

between k--Q.5 and k-5/3 over regions the size of GeM grids, as they probably do,

neither the plane-parallel nor the random array models yield adequate flux

esth:: ~ates.

H a scaling cloud field with horizontally variable optical depth is

transformed so that all cells with optical depth greater than zero are replaced by

cells with optical depth equal to grid-averaged optical depth, reflectance is

increased by 10 to 20%. This is due to the non-linearity of radiative transfer and

the fact that photons are more likely to encounter liquid water in the homogenized

case. Accounting for variable geometric depth of cloud may be important in warm

regions where substantial towering clouds occur regularly. Also, at GeM gridbox

scales it is probably just as important to account for low frequency whitish noise in

cloud fields as it is to account for high frequency smoothing at scales below typical

cloud cell diameter.

The convenient Lambertian surface approximation is probably adequate for

most broken cloud scenarios. Expected errors in fluxes probably will not exceed a

few percent. A method is developed for calculating cloudbase reflectance in a

Monte Carlo simulation. For the widely used geometric sum formulae for flux

calculation to be applicable, cloudbase reflectance must be independent of the

number of internal reflections. For broken scaling clouds, however, this is violated.

Fortuitously and fortunately, if cloudbase reflectance in the geometric sum

formulae is set to the spherical albedo of the cloud field, errors in flux estimates

should be small ( ~ 5%) in most cases. Finally, it is shown analytically that

reduction in system albedo due to the introduction of broken, non-absorbing

clouds is possible but highly unlikely to occur with any importance on Earth.
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