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Abstract
The inherent capabilities of solar sails and the fact

that they need no onboard supplies of fuel for propul-
sion make them well suited for use in long-term,
multiple-objective missions. They are especially well
suited for the exploration of asteroids, where one
spacecraft could rendezvous with a number of aster-
oids in succession. The orbital mechanics of solar sail
operations about an asteroid, however, have not yet
been studied in detail. Building on previous stud-
ies that consider the equations of motion, we find
both hovering points and orbiting trajectories about
various sized asteroids using equations of motion for
a solar sail spacecraft. These hovering points are
stabilizable using feedback control to sail attitude
alone. The orbiting trajectories are stable and offer
good coverage of the asteroid surface, although re-
strictions on sail acceleration are needed for smaller
asteroids.

Introduction
The concept of the solar sail has been known for

more than a century, but it has only been with
the advent of micro-technologies and thin films that
solar sailing appears to be a practical mode of
spaceflight3. Because of the long history and proven
usefulness of conventional spacecraft, solar sails will
never be considered as a replacement technology for
conventional propulsion; however, there are some
mission applications for which sails are particularly
well-suited. Long-term, multiple-objective missions
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such as those to more than one asteroid is just such
an application. These missions have not yet been
studied in detail and, in particular, solar sail behav-
ior about asteroids has not been studied. This paper
is a first step in this direction.

Relying on solar propulsion instead of convential
propulsion allows us flexibility in studying aster-
oids. With a solar sail spacecraft, we are not limited
by carrying onboard supplies of fuel for propulsion.
Depending on sail performance in the space envi-
ronment, several asteroids could be visited in suc-
cession and orbited for extended periods of time.
Thus, a spacecraft of this type could enhance our
understanding of asteroids by shortening the period
of time between missions.

We derive a model for solar sail dynamics about an
asteroid and consider a number of possible options
for operations in the asteroid environment. We find
limits on feasible sail operations as a function of sail
parameters, asteroid parameters, and asteroid orbit.
Both orbital and hovering options are considered.
For the purposes of this study, we focus only on the
behavior of the solar sail spacecraft after rendezvous
has been achieved.

For our model we assume a spherical, point mass
asteroid, a perfectly reflecting solar sail, and a cir-
cular asteroid orbit about the sun. These assump-
tions can be relaxed in future studies. We first de-
velop the basic equations of motion for the system.
We then consider the constraints and feasibility of
hovering sail trajectories, complementing the stud-
ies made by Mclnnes2. We find a continuum of hov-
ering points which would allow station-keeping for
long periods of time. At these points, the spacecraft
could hover while a lander deploys to the surface
to collect samples or where the craft could monitor
the asteroid at a particular phase angle for extended
lengths of time. Next, we consider the constraints
and feasibility of orbital operations about an aster-
oid, from which we develop a number of basic criteria
for necessary sail acceleration as a function of aster-
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oid parameters. The orbital trajectories are found
to be stable and to offer good coverage of the aster-
oid surface. These trajectories would be very useful
for mapping purposes.

Model

To model the dynamics of a sail close to an aster-
oid we can apply the Hill approximation with appro-
priate generalizations to account for the solar sail's
force vector. The Hill approximation applies very
well to the motion of spacecraft about asteroids, due
to the small mass of asteroids relative to the sun, and
due to the proximity that the craft maintains to the
asteroid6. The Hill approximation can also be easily
modified to account for the effect of solar radiation
pressure8.

Figure 1: Model schematic for a solar sail spacecraft
about an asteroid.

With the Hill approximation the equations of mo-
tion for a spacecraft including the solar radiation
pressure are:

(1)

(2)

(3)

where the origin of the rotating reference frame is
centered at the asteroid with the positive x-axis in
the anti-solar direction, the 2-axis normal to the as-
teroid orbit ecliptic, and the y-axis according to the
right hand rule. This frame rotates about the 2-axis
with angular velocity fi = vVsun/aLtJ where fj.sun
is the sun's gravitational parameter (~ 1.34 x 1011

km3/s2), and aasi is the asteroid's heliocentric orbit
radius in km. The gravitational parameter of the
asteroid is denoted as /u.

The spacecraft is propelled by solar radiation flux
incident on the sail, which is herein assumed to be
perfectly reflecting and planar. The sail receives an
action force from incident sunlight and a reaction
force from the reflected light so that the net force is
directed normal to the surface of the sail and point-
ing away from the sun. The acceleration vector of
this force is denoted as a = [ax ay az] = ap(l • n)2n.

The unit vector 1 defines the direction of the in-
cident light, while n is the unit normal to the sail.
In the rotating reference frame 1 will always equal
[1 0 0] and n will be [cos <j> cos a sin <j> cos a sin a],
where a is the sail pitch angle with respect to the
sun-line and 0 is the orientation angle about the z-
axis. The direction of the SRP force can never be
pointed toward the sun so the sail attitude is con-
strained such that 1 • n > 0.

The parameter ap is called the characteristic accel-
eration and is represented as

IP Rl 1
cRl R2 a (4)

for a perfectly reflecting solar sail. P/R2 is the solar
radiation intensity (1368 W/m2 at 1 AU), c is the
speed of light (3 x 108 m/s), R0 is the distance from
the sun to the earth (1.5 x 10s km), R is the distance
from the sun to the sail in km, and a is the mass to
area ratio of the sail (kg/m2) or sail loading. At 1
AU

2P I

and, in general,

(5)

(6)

Thus, SRP varies as 1/.R2 about the sun (but see
discussion in Mclnnes 3).

Multiplying and dividing by the sun's gravitational
parameter fj,aun, we have

2P /*„,„ 1 ...ap = ———-™-~ (7)

(8)

where /3 = a" ja is the nondimensional sail loading
parameter, called the sail lightness number, defined
to be the ratio of the solar radiation pressure accel-
eration to the solar gravitational acceleration. The
critical sail loading parameter a" — 2P/c/zstm is a
constant whose value is approximately 1.53 g/m2.

The value of the characteristic acceleration varies
with both the efficiency and size of the sail3. For
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example, Mclnnes3 shows that a typical value for
a 98 x 98 m square sail which carries a payload of
25 kg is 1 mm/s2. At this acceleration, a solar sail
spacecraft has trip times to asteroids comparable to
conventional spacecraft. It yields a sail loading pa-
rameter of 9.12 g/m2, or a sail lightness number of
0.1678. This parameter can be reached with a sail
film thickness of 2 pm.

Solar sail hovering constraints
and dynamics

Given the basic equations of motion, we search for
conditions under which the spacecraft can be placed
into an artificial equilibrium point - found by set-
ting all the time derivatives to zero and finding the
combination of SRP acceleration and natural forces
that will yield no net acceleration acting on the sail.
This is a specialization of the analysis carried out
by Mclnnes2 for the restricted 3-body problem, now
applied to the Hill problem. Following the Hill equa-
tions we find the equations of motion of a solar sail
spacecraft to be as in (l)-(3).

Because the sail normal is required to point in
the anti-solar direction, we are limited to —Tr/2 <
a < 7T/2. The problem is symmetric about the
angle a = 0, however, so we need only consider
0 < a < 7T/2. When a = ir/2 the sail is edge on
to the sun. In this situation, we effectively Eire "in
irons," i.e., have no SRP component at all. While
there may be instances when this effect would be de-
sirable, we do not consider this case explicitly. Thus,
we limit our discussion to 0 < a < 7r/2.

Likewise, in order to satisfy the constraint 1-n > 0,
we only consider $ limited to —?r/2 < <f> < Tr/2. The
problem is also symmetric about <j> = 0; therefore,
we consider <j> such that 0 < <f> < n/2 for the same
reasons stated for a above.

The preceding definitions lead us to, in the most
general case, define the the equations of motion for
hovering points to be:

+ 3n2z + ox (9)

+ av (10)

r3

with the components of a as
ox = Op cos2 </> cos2 a cos $ cos a
ay = ap cos2 <j> cos2 a sin <j> cos a
a- = ap cos2 4> cos2 a sin a
and the vector r as
r = r[cos0cos«/> cosOsinip sin6}

(11)

(12)
(13)
(14)

where 9 is the declination angle measured from the
zy-plane toward the z-axis and ip is the right ascen-
sion angle measured in the xy-plane from the +x-
axis.

Hovering points with no SRP force

We first consider the hovering points for the system
with no SRP force. In this case, ox = ay = a- = 0.
It is obvious that y and z must also be 0 to satisfy
(10) and (11), respectively. Thus, from (9), n/r3 =
3H2 at equilibrium. Solving for r, we find

1/3
(16)

which becomes

The value (3^5-) is called the Hill radius and de-
noted TJJ herein. We use this radius to normalize
the hovering point radii throughout our analysis.

Hovering points along the x-axis

We consider next the simplest situation for the
model, when the sail is along the z-axis. Here, tj>,
tp and a are all 0 since there are no components in
the y or z directions. In this case, the equations of
motion become:

(17)

(18)

where rn is the nondimensionalized value for r nor-
malized by the Hill radius TH, i.e., rn = T/TH-

In this case there are two equilibrium points, one
for x positive and one for x negative. When x is
positive (i.e., on the planetary night side), rn must
be less than 1, which means that the hovering radius
is less than the Hill radius. When x is negative (on
the planetary day side), rn must be greater than 1,
which means that the hovering radius is greater than
the Hill radius.

Hovering points in the zz-plane

Now consider when the sail is in the xz-plane.
Here, 4> and if> are both 0 while a varies from 0 to
7T/2 as discussed above. In this case, the equations
of motion are as in (9)-(ll) where

ax = ap cos a cos a
ay = 0
a, = a,, cos2 a sin a

(19)
(20)
(21)

(15) We see immediately that y must be 0 from (10).
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Letting x = rcosd and z = rsinfl, we can solve
for angle a and ap in terms of r and 6. Rewriting
(9) and (11) they become

(4 -3H2) rcos9 = ap cos2 a cos a

(4 + n2)rsin0 = ap cos2 a sin Q

which gives

(22)

(23)

(24)

Multiplying the numerator and denominator by
j., we have

' 1+ i ftana =
1 — r3
A '

(25)

which gives the sail orientation as a function of sail
position.

Using the identity sec2 a = 1 + tan2 a, (9) becomes

4(l-rT
3,)cos0 = ap(l + tan2 a)"3/2 (26)

r'
and, substituting in (25) and solving for ap, we have

rt —— _______ v>

1 3/2

(27)

which gives the necessary sail acceleration as a func-
tion of sail position. We can normalize ap completely
by dividing by p./r^. We then find

'" - (28)

- r3 )2 cos2 B
3/2

- r3)2

3/2

(29)

(30)

where xn = rn cos 8 and zn = rn sin 6.
When rn < 1, i.e., the solar sail is close to the

asteroid compared to its ideal Hill radius, then
/ 4 \

tan a ~ tan6 1 + -r3 + ... (31)

and
(32)

In this case the perturbation due to the solar tidal
terms has a small effect on the motion of the space-
craft and is characterized by the value of r3.

Out-of-plane hovering points

For out-of-plane hovering points, we must take into
consideration the most general form of the equations
of motion at equilibrium with the equations for SRP
and the equation for r as given above, viz.

ax (33)

(34)

(35)

(36)
(37)
(38)

(39)

+ ay

- Q2r sin0 + o-

with

ax — ap cos2 0 cos2 a cos <j> cos a
ay = ap cos2 0 cos2 a sin <j> cos a
a- = ap cos2 <t> cos2 a sin a

Dividing (34) by (33), we find that

——— r-
1 — rA * »>

tan to

Prom this equation, we see that angle 0 is related to
angle if> alone, which indicates that as the sail moves
out of the xz-plane it must also turn so that the
sail normal is always pointing approximately radially
outward from the asteroid.

Next, we want to solve for angle a and ap as in
the previous section, so we again use the identity
1 + tan2 <j> = sec2 <j> to find that

I1/2

(1 -
(40)

Dividing (35) by (33) we arrive at the relation

tana = 1 + -r-
*

[(1 - r3,)2 + tan2 Vr

Solving for ap from (33), we have

(41)

Op(l + tan2 0r3/2(l + tan2 a)~3/2

which becomes

r2(l-r3)2cos20cos2i/>

(42)

(43)

(44)
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And, after normalizing completely by dividing by
l-t/r^f as before, we have

1
(45)

rnj^(2 - r3) (46)

again giving the sail acceleration and orientation as
a function of sail position. In this case, however, we
define the normalized position coordinates as xn =
rn cos 0 cos i/>, yn = rn cos 6 sin t/i, and zn = rn sin 0.

Once again, when rn <3C 1, we can expand each
function about rn and find

(47)

tan a - tan 9 x
o

3 cos2[3

( 1 + 3 cos2 ̂ ) sin2

(48)

(49)

(50)

Notice that when ̂  = 0 the approximations for tan Q
and av revert back to those found in the xz-plane.

Practical consideration of the equilibrium
points

The maximum characteristic acceleration possible
for the spacecraft upon leaving earth is determined
by the mass to area ratio of the sail. In close prox-
imity to the asteroid, the maximum characteristic
acceleration varies inversely with the square of the
asteroid's distance from the sun. For a given sail
acceleration ap, (30) or (45) determine the position
of the sail needed to hover above the asteroid. This
result fully accounts for the effect of the tidal forces
acting on the sail, since the general formula gives us
results up to rn ~ 1.

Focusing on the in-plane case, from (30), for equi-
libria which lie on the asteroid night side, we see
that it takes an infinitely large ap to hover around
the point where rn = 1, unless zn = 0, in which case
the necessary ap will drop to 0. This happens at
the equilibrium point along the +x-axis which lies
in the planet's shadow. It is highly unstable since
small errors in the necessary sail acceleration will
create large changes in position. We can also see
from (30) that we cannot hover outside of the "Hill
radius," rn = 1, as the tidal and SR.P forces then
cause the sail to escape. We can understand how ap
approaches oo as rn goes to 1 by looking at (25). As

rn approaches 1, tana tends to oo, which implies
that a goes to n/2 as we approach this radius.

Conversely, on the planetary day side, i.e., Tr/2 <
$ 5: T) Tn must be greater than 1 in order to achieve
equilibrium since tan 6 is negative in this region. As
rn approaches 1 from the left, ap again goes to in-
finity unless zn is 0. This occurs at the equilibrium
point on the —z-axis, indicating a high sensitivity
of the hovering point to errors in the vicinity of this
point.

The normalized sail acceleration ap is only a func-
tion of the sail's characteristic acceleration and the
asteroid's gravitational parameter, and is indepen-
dent of the asteroid's distance from the sun. We see
this by expanding the definition for ap:

which, when we combine with (6), gives

(51)

(52)

For an asteroid in a circular orbit, however, we have
Therefore, the relation becomes

(53)

or, in terms of the sail lightness number from (8),
1/3

ap = /3 /^sun (54)

This form of ap relates the normalized value of ap to
the asteroid mass and the sail's characteristic accel-
eration.

Now, for a given asteroid mass and sail position
(xn,2n), a range of characteristic accelerations can
be obtained as shown in Figure 2. These results are
comparable to the contours of sail lightness numbers
which Mclnnes2 found.

A sail with a given characteristic acceleration
(which is transformed into an ap at a given asteroid)
can ideally move along lines of constant contour by
modifying the orientation of the sail. Thus, the line
of constant ap defines the hovering positions that a
sail can have at an asteroid. The asteroids which we
are using for the purposes of this paper have ap val-
ues of approximately 170 for Vesta, 533 for Eros, and
1331 for Ida with corresponding /3 values of 0.1686,
0.0169, and 0.0843, respectively.

In planning multiple-objective missions to aster-
oids, it would be best to determine the sail acceler-
ation necessary for the desired radial distance from
the largest asteroid first. Once the maximum char-
acteristic acceleration is chosen nothing can be done
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-1 -0.5

Figure 2: Spacecraft position contours for different
values of av. All parameters are nondimensionalized.

to increase it. At the same time, the necessary sail
acceleration at the smallest target asteroid must be
considered to see what needs to be done for a de-
sired radial distance in terms of either sail attitude,
changes in sail area, or both.

Once the target asteroid is determined, we can
loosely infer its gravitational acceleration p. from
ground-based observations. In order to find equi-
librium points in the rz-plane for a particular sail
acceleration, we can solve for r cos8 from (32) which
gives

rcos# = ./— (55)

or, dividing by the mean asteroid radius r0, we have

— cos 9 = (56)

established similarly here since Mclnnes' results sat-
isfied equations which took into account a general
form for the potential.

The existence and position of equilibrium points
is of interest for station-keeping purposes. These
points could be used, for example, in sample return
missions where a sail may hover for some period of
time while a lander gathers samples and then re-
docks with the spacecraft. These points also provide
positions in which the spacecraft could monitor one
area of the asteroid at a constant phase angle for a
substantial length of time.

Orbital constraints and dynamics
We now explore orbital options for the sail about

the asteroid. We look for orbits which are stable
in the sense that they neither impact the asteroid
nor escape. Here we use results from Mignard and
Henon4, Richter and Keller5, and Scheeres7 to iden-
tify a family of stable orbits for a solar sail. There
are constraints on the orbit geometry and orbit size
(as a function of the sail acceleration) for these tra-
jectories to be feasible. These constraints are pre-
sented as a function of basic asteroid parameters and
heliocentric orbit. When these constraints are met
and the orbits are feasible they have a number of fea-
tures that make them attractive - including better
asteroid coverage and nearly trivial station-keeping
costs. In this section we will assume a = (f> = 0
so that the sail is face-on to the sun. For this case,
then, a = [ap 0 0].

Sail constraints for bounded orbits

A sufficient condition for the orbit semi-major axis
of a spacecraft subject to large solar radiation pres-
sure perturbations to be orbitally bound to an as-
teroid can be derived to be (Hamilton and Burns1,
Scheeres and Marzari 8):

Equilibrium points can be found when r/r0 > 1 This
means that even if n is small compared to the sail
acceleration, angle 8 can be chosen large enough so
that equilibrium points can be found out of the as-
teroid orbital plane. Similar but more complicated
solutions exist for the 3-dimensional case, e.g., (47)-
(50).

The equilibrium points found here correspond to
the stationary solutions located near the earth found
by Mclnnes2. Mclnnes also determined that these
hovering points were unstable in the Lyapunov sense
but controllable using feedback control to sail atti-
tude alone. Instability and controllability can be

(57)

where aac is the orbit semi-major axis and d is the
asteroid-sun distance in AU. This equation places a
restriction on the size of an orbit as a function of
the asteroid mass, distance from the sun, and the
characteristic acceleration of the sail.

Let us define the normalized semi-major axis asc —
aac/r0 and the maximum sail acceleration for feasi-
ble orbital operations:

16 r' (58)
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Then we can define a limiting value of the sail's
characteristic acceleration as a function of the maxi-
mum sail acceleration a^ and the desired orbit semi-
major axis asc:

Oibit About Vesta Using Solar Sail Spacecraft

< M (59)

where asc > 1 in general. Some characteristic values
of the parameter a^ are shown for different aster-
oids in Table 1. This indicates that smaller asteroids
will require low values of sail acceleration for orbital
options to be feasible about them.

Vesta
Eros
Ida

km
ra

244.27
8.87
15.65

TH

116,680
2,308
9,064

km3/s"
V

14.2568
0.0005
0.0038

AU
d

2.36
1.46
2.86

Vesta
Eros
Ida

mm/s2

a»!

83.17
0.79
7.83

a™

0.0494
0.0012
0.0035

H/rjf

0.0105
0.0009
0.0005

For a sail orbit that is bound, according to the
above expression, it has been found4 that the semi-
major axis of the orbit is constant, on average. The
other mean orbit elements are not constant, how-
ever, and in general will have large secular varia-
tions over time. We confirm these findings in our
numerical integrations as well.

Sail orbit dynamics about asteroids

Assuming we have a solar sail with characteristic
acceleration less than the asteroid parameter, it be-
comes feasible to discuss orbital operations of the sail
about the asteroid. The general orbital dynamics of
such a bound, highly perturbed orbit are discussed
in greater detail in Mignard and Henon4, Richter
and Keller5, and Scheeres7. In Scheeres7 a particu-
lar class of stable orbits in the highly perturbed SRP
problem were identified which are particularly well
suited to solar sails. These orbits lie in the plane per-
pendicular to the asteroid-sun line, nominally have
their periapsis aligned 90° above or below the orbit
plane and have their eccentricity chosen according
to the equation:

e = cos v (60)

(61)

n-position

Figure 3: Integrated orbit for a sail about Vesta us-
ing orbital elements asc = 13r0, e = u = i/0 = 0,
i = fi0 = 7T/2; and parameters r0 = 244.27 km,
0 < t < 116 days and apo = 1 mm/s2. Spacecraft
position units are in km.

where d0 is one astronomical unit in kilometers and
P is the orbit parameter of the asteroid, equal to
the heliocentric radius for a circular orbit. We can
rewrite this result as:

tani/ = (62)

(63)

(64)

where d is the asteroid-sun distance in astronomical
units. Some characteristic values of a™ for some
select asteroids are shown in Table 1. From these
values we note that tan v 3> 1 in general, indicating
that the stable orbits will have near zero eccentricity.

Shown in Figures 3-7 are a sample of numerically
integrated sail trajectories about an asteroid, with
the sail placed in a stable orbit as described above.
It is important to note that the integration occurs in
the frame rotating with the asteroid-sun line. This
implies that these orbits are sun-synchronous in that
they remain fixed in the sun plane-of-sky as shown in
Figure 4. We also note that the trajectory oscillates
about a circular orbit in general but appears fixed,
as shown in Figure 5.

We can extend the analytical solution of the sail
trajectory about the asteroid beyond this simple cir-
cular orbit, relying on an analytical solution to the
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-<000 -3000 -2000 -1000 0 1000 2000 3000 4000
x-posilion

Figure 4: Integrated orbit for a sail about Vesta in
the zz-plane using orbital elements and parameters
of figure 3.

Figure 5: Integrated orbit for a sail about Vesta in
the 2/z-plane using orbital elements and parameters
of figure 3.

averaged solar radiation pressure problem formu-
lated by Richter and Keller5. In this paper they
find the averaged angular momentum and periap-
sis vector of the orbit as a function of asteroid true
anomaly with respect to the sun. Taking this gen-
eral solution, we specialize it to our particular case
by assuming that the perturbation angle v -4 :r/2.
We then find the angular momentum vector and pe-
riapsis vector to be:

H = VHa C2 sin(H) + C3 cos(H) (65)
Cacos(H)-C6sm(H) J

C5 sm(H) + C6 cos(H) (66)
C2cos(^)-C3sin(ir) _

where H is an angle proportional to the asteroid
true anomaly about the sun. The constants C; can
be related to the initial osculating orbital elements
of the sail orbit as:

Ci - \/l -e2sinisinft (67)
C2 — — e sin i sin a; (68)

C3 — — \/l — e2 sin i cos ft (69)
Ci = — e[cosftcosw — cos i sin ft sin w] (70)
C5 = \/l-e2cosi (71)
Cs = —e [sin ft cos w -I- cos i cos ft sin w] (72)

From this solution it is possible to evaluate the evo-
lution of the mean orbit elements as a function of
H ~ nt/ cos v, where n is the asteroid's mean motion

about the sun, t is time, and v is the perturbation
angle again. We note that for v = 7r/2 — e, which is
our case, the angle H will increase very rapidly with
time, indicating that the mean solutions will oscil-
late rapidly. This is not necessarily desirable, as can
be seen if we take as initial conditions i = 0, e = 0,
giving Ci = Ci = C3 = O, = C6 = 0, and C5 = 1.
The solution then becomes:

e = \sin(H)\
U = ±7T/2

i = 0

(73)
(74)
(75)

meaning that the orbit will remain in the eclip-
tic plane and the eccentricity will repeatedly pass
through a value of unity, eventually causing the sail
to impact on the asteroid surface.

If instead we take initial conditions i = n/2, e = 0,
fi = Q0, we find the solution:

i = 7T/2

W = ±7T/2

e = |cosft0||sin(#)|

tanQ = cos(#)

(76)
(77)
(78)

(79)

Now the orbit plane remains normal to the aster-
oid ecliptic, the longitude of the ascending node
varies between ft0 < ft < TT — ftoj and the eccen-
tricity varies between 0 < e < |cosft0|. This is
a potentially useful generalization of the previously
discussed stable circular orbit that allows the orbit
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Orbit About Eros Using Solar Sail Spacecraft Orbit About Ida Using Solar Sail Spacecraft

y-positai -60 -50

Figure 6: Integrated orbit for a sail about Eros with
asc = 4r0; e, i, u, £10 and vu the same as in Fig. 3;
r0 = 8.87 km; 0 < t < 12 days; and afo = .1 mm/s2.

plane to move out of the sun plane-of-sky, while
bounding the maximum value of eccentricity. In
Figure 8 we show another plot of a numerically inte-
grated orbit which shows this characteristic solution.
Note that, even though the oscillations in mean el-
ements occur rapidly, it is not valid to average over
them, as the amplitude of the oscillations are large.
In Figure 9 we show how eccentricity varies with fl
and is bounded.

This family of solutions provide a viable family of
stable, sun synchronous sail orbits about asteroids
in general that require no active control to maintain
and which allows the sail to view the asteroid over
a larger range of phase angles and for long periods
of time. Since these orbits are stable, we do not
need to apply any closed loop control to stabilize
the sail, which implies that the orbital operations
will be safer and require less operational effort.

Conclusion
We have shown that both hovering and orbital op-

tions are available with a solar sail spacecraft op-
erating in close proximity to a spherical asteroid in
a circular orbit. There are a continuum of hovering
positions available near the asteroid which are unsta-
ble. They can be stabilized, however, using a feed-
back control loop to sail attitude alone. These hov-
ering points depend on sail attitude, asteroid mass,
and the characteristic acceleration of the sail. For a
given distance from the asteroid and characteristic
acceleration, the sail attitude can be determined to
maintain that position for extended periods of time.

Figure 7: Integrated orbit for a sail about Ida with
aac = 6r0; e, i, w, 00 and v0 the same as in Fig.
3; TO = 15.65 km; 0 < t < 24 days; and apo = .5
mm/s2.

It has also been shown that several orbital options
are available which offer good coverage of the aster-
oid and which neither impact the surface nor escape.
These orbits are stable and sun synchronous. A sail
could maintain orbit for extended periods of time in
such an orbit. Some asteroids (such as Eros) require
very small characteristic accelerations for orbiting
to be feasible. In such cases as these where it may
be necessary to reduce the sail acceleration, we can
make adjustments with trims in the sail area. With
the possible exception of spin-stabilized sails, the de-
ployment mechanism could be reversed so that the
sail could be partially refurled. In this way we could
decrease the sail area and thereby decrease ap, mak-
ing orbital operations about smaller asteroids possi-
ble.

Solar sails offer the advantage that long-duration
missions can be planned, visiting several solar sys-
tem objects, without the spacecraft mass and com-
plexity involved with conventional propulsion and
fuel supply. For example, after one asteroid has
been investigated, the spacecraft is capable of es-
caping from orbit, in principle under sail propulsion
alone, and traveling to another or returning to earth.
This capability offers the potential for low-cost and
flexible solar system exploration.
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