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ABSTRACT

We have developed an axisymmetric steady-state solar wind model that describes properties of the large-scale solar
wind, interplanetary magnetic field, and turbulence throughout the heliosphere from 0.3 AU to 100 AU. The model
is based on numerical solutions of large-scale Reynolds-averaged magnetohydrodynamic equations coupled with
a set of small-scale transport equations for the turbulence energy, normalized cross helicity, and correlation scale.
The combined set of time-dependent equations is solved in the frame of reference corotating with the Sun using a
time-relaxation method. We use the model to study the self-consistent interaction between the large-scale solar wind
and smaller-scale turbulence and the role of the turbulence in the large-scale structure and temperature distribution
in the solar wind. To illuminate the roles of the turbulent cascade and the pickup protons in heating the solar
wind depending on the heliocentric distance, we compare the model results with and without turbulence/pickup
protons. The variations of plasma temperature in the outer heliosphere are compared with Ulysses and Voyager 2
observations.
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1. INTRODUCTION

The physical processes that determine the structure and
properties of the solar wind have been under study since Parker
first published his theory (Parker 1958). A large difference in
thermal pressure between the coronal and interstellar plasma led
Parker to predict that the solar corona streams outward to form
a wind that becomes supersonic at a few solar radii. Parker’s
theory implied a source of internal energy that extended far
out into space. Originally, to account implicitly for this source,
Parker postulated that the solar corona was isothermal up to
some distance from the Sun. Later he employed a polytropic
energy equation with polytropic index γ �= 5/3 as a proxy
for the non-adiabatic energy transport and demonstrated that
in the framework of that model, solar-wind-type (transonic)
solutions do not exist for γ = 5/3 (Parker 1960). Subsequent
spacecraft observations have confirmed the existence of the
supersonic solar wind (Neugebauer & Snyder 1962) and that it
cools with distance at a rate that is significantly slower than the
adiabatic rate (Smith & Wolfe 1979; Marsch et al. 1981; Gazis
& Lazarus 1982). However, the sources of the internal energy
needed to establish this non-adiabatic expansion have remained
uncertain.

Spacecraft observations have also revealed that the solar
wind is often structured into a slow wind (∼300–400 km s−1)
that is usually relatively variable and dense, and a fast wind
(∼700–800 km s−1) that is typically more steady and tenuous
(e.g., Phillips et al. 1995). The fast solar wind is known to
originate in coronal holes that are associated with unipolar
magnetic field, while the slow wind is typically observed in
the vicinity of magnetic sector boundaries (Balogh et al. 1995).
The characteristics of slow wind are relatively easy to replicate
in Parker’s polytropic model (e.g., Leer et al. 1982). On the other
hand, to reproduce the fast wind, an additional source of thermal
energy or momentum must be included in Parker’s equations
(Munro & Jackson 1977; Leer et al. 1982; Barnes et al. 1995).
Otherwise, models invariably predict a ratio of 1 AU density to

a coronal base density that is too high (Hundhausen 1972; Leer
et al. 1982).

The overwhelming majority of models of the solar wind
employ a non-adiabatic polytrope (see, for example, the three-
dimensional models by Linker et al. 1990; Usmanov 1993a,
1993b; Mikić & Linker 1996; Linker et al. 1999; Riley et al.
2001; Roussev et al. 2003; Hayashi 2005; Cohen et al. 2007).
Other models introduce ad hoc source functions into the energy
equation (Groth et al. 2000; Nakamizo et al. 2009). The non-
adiabatic polytropic index γ for the solar wind is usually
calibrated using spacecraft observations (e.g., γ = 1.17 by
Sittler & Scudder (1980) from Voyager 2 and Mariner 10 data,
γ = 1.46 by Totten et al. (1995) from Helios proton data, or
γ = 1.28 by Whang (1998) from Voyager 2 data).

Parker’s non-adiabatic index implies an unspecified source
of internal energy for each flow element. Close to the Sun,
where magnetic forces dominate over the sub-Alfvénic coronal
expansion, the magnetic field is capable of redistributing the
energy around the Sun to produce higher outflow speeds
in open field regions and slower wind above closed field
structures (e.g., Pneuman & Kopp 1971; Steinolfson et al.
1982). However, to generate the observed fast–slow wind
contrast, an additional mechanism is required that deposits
momentum/energy primarily into the fast wind. The physics
of this mechanism is not well understood.

The solar wind is a weakly collisional plasma composed
primarily of electrons and protons, with a small admixture
(∼5%) of heavier ions, mostly ionized helium. The electrons and
protons generally have notably different temperatures. While
the protons in fast wind are typically about twice as hot as
the electrons (e.g., Feldman et al. 1996), protons are usually
colder than the electrons in slow wind (Hundhausen 1972). One
source of heat to the solar wind arises from thermal conduction
from the 106 K corona that is carried primarily by electrons.
Another source of heat is provided by the dissipation of waves
and/or turbulent fluctuations in the solar wind (see, e.g., Axford
& McKenzie 1992; Verma 1996; Matthaeus et al. 1999). If
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the fluctuations are responsible for the added dissipation and
heating, how does this occur and how large an effect is it?

Turbulent fluctuations over a wide range of temporal and
spatial scales are ubiquitous in the solar wind (see, e.g., the
reviews by Goldstein et al. 1995; Bruno & Carbone 2005). In
fast wind, the turbulence has the appearance of large-amplitude
Alfvénic fluctuations that propagate away from the Sun (Unti
& Neugebauer 1968; Belcher & Davis 1971). In slow wind, the
fluctuations are typically less Alfvénic (i.e., the velocity and
magnetic field variations are less correlated) and, consequently,
the dominance of outward propagation is reduced. Because the
fast-wind Alfvénic correlations suggest outward propagation,
it is natural to assume that their source resides on the Sun or
inner corona, below the Alfvénic critical point. The fluctuations
cascade, dissipate, and heat the corona and solar wind. The
turbulent heating typically leads to an increased outward thermal
pressure gradient, and therefore to an indirect acceleration of
the wind. The fluctuations are also able to accelerate the bulk
flow directly by outward wave pressure gradient (ponderomotive
force) even in the absence of wave damping (Belcher 1971;
Alazraki & Couturier 1971).

There are two approaches to model the evolution of fluc-
tuations in the solar wind. The first is based on a statistical
description of fluctuations, using, e.g., the short-wavelength
Wentzel–Kramers–Brillouin (WKB) approximation (Belcher
1971; Alazraki & Couturier 1971), non-WKB two-scale de-
composition (Marsch & Tu 1989; Zhou & Matthaeus 1990),
large eddy simulation (LES; Shimomura 1991; Chernyshov
et al. 2006, 2007), or Reynolds decomposition and averaging
to follow large scales together with evolution/transport equa-
tions that describe unresolved small-scale effects of turbulence.
The second approach is direct numerical simulation (DNS) of
the magnetohydrodynamic (MHD) equations with explicit ac-
counting for injection, propagation, and evolution of the fluctu-
ations. While the statistical description is computationally less
intense than DNS, it requires a closure condition, i.e., the equa-
tions contain terms that require separate modeling. On the other
hand, while DNS avoids the closure problem, it is challenging
due to computational speed and memory requirements. For the
foreseeable future, direct multi-dimensional high-resolution nu-
merical simulations of the solar wind will be unable to compute
accurately both large-scale expansion and small-scale turbu-
lence (e.g., Yokoi et al. 2008). Thus, it appears reasonable to
turn to a statistical small-scale modeling approach to incorpo-
rate the physical effects of small-scale MHD turbulence into a
large-scale MHD solar wind model.

The simplest statistical approach to account for the effects of
noninteracting Alfvén waves is to apply the short-wavelength
WKB approximation (e.g., Dewar 1970; Belcher 1971; Jacques
1977; Hollweg 1990). This approach permits a model to in-
clude effects of waves on the background flow and vice versa.
The WKB approximation was extensively exploited in one-
dimensional models with specified flow tube geometries (e.g.,
Jacques 1978; Hollweg 1978; Esser et al. 1986; Wang 1993)
and proved that waves can provide additional acceleration.
WKB wave acceleration was incorporated in two- and three-
dimensional solar wind models by Usmanov (1996), Usmanov
et al. (2000), and Usmanov & Goldstein (2003). The models
demonstrated an agreement with the Wang–Sheeley empirical
model (Wang & Sheeley 1990; Wang et al. 1997) and reproduced
a bimodal solar wind structure consistent with Ulysses observa-
tions. The WKB wave-driven approach was lately implemented
in a number of two- and three-dimensional solar wind models

(e.g., Chen & Hu 2001; Hu et al. 2003; Li et al. 2004; Lionello
et al. 2009).

The models of Usmanov et al. produced useful results, but
continued to employ a non-adiabatic polytropic index and ad
hoc heating terms. Furthermore, WKB theory is unable to
account for any sunward propagating waves and it predicts
an equipartition of kinetic and magnetic fluctuation energy,
while the observed magnetic energy is usually twice the kinetic
energy (e.g., Matthaeus & Goldstein 1982; Yokoi et al. 2008).
Also, WKB waves are noninteracting, which allows for neither
turbulent cascades nor self-consistent heating.

In the present study, we relax the WKB approximation
in the super-Alfvénic flow region and address the physical
origin of the non-adiabatic polytrope by (1) incorporating
Hollweg’s “collisionless” approximation for the electron heat
flux (Hollweg 1974, 1976) into the energy equation and by (2)
employing turbulence transport theory to describe statistically
the effects of the transport, cascade, and dissipation of MHD
turbulence (Zhou & Matthaeus 1990; Matthaeus et al. 1994;
Hossain et al. 1995; Zank et al. 1996; Matthaeus et al. 1996b,
1999; Smith et al. 2001; Isenberg et al. 2003; Matthaeus et al.
2004; Smith et al. 2006; Breech et al. 2008; Isenberg et al. 2010;
Yokoi 2010). In the theory, a phenomenological description
of turbulent cascade is merged with transport equations to
describe turbulence in a weakly inhomogeneous system such
as the scale-separated solar wind (Marsch & Tu 1989; Zhou
& Matthaeus 1990; Marsch & Tu 1993; Tu & Marsch 1993;
Matthaeus et al. 1994). Initial two-equation turbulence transport
theory (Zhou & Matthaeus 1990; Matthaeus et al. 1994; Zank
et al. 1996; Matthaeus et al. 1996b) has evolved to include
temperature effects (Matthaeus et al. 1999; Smith et al. 2001),
cross-helicity effects (Matthaeus et al. 2004; Breech et al.
2005; Yokoi 2010), electron effects (Breech et al. 2009), and
more recently the solar wind deceleration by pickup protons
(Isenberg et al. 2010). With the selection of appropriate pickup
ion driving, shear constants, and boundary values, the transport
theory has been able to quantitatively account for Helios and
Ulysses proton temperature observations (Matthaeus et al. 2004)
as well as Voyager data from 1 to more than 60 AU (Zank
et al. 1996; Matthaeus et al. 1999; Smith et al. 2001, 2006).
Breech et al. (2008) applied the turbulence transport theory to
an axially symmetric heliosphere with a constant speed and
specified large-scale solar wind properties. Integrating one-
dimensional turbulence transport equations along a number of
radial lines with latitudinally varying boundary data inferred
from observations, Breech et al. obtained a distribution of
turbulence throughout the heliosphere.

In this paper, we attempt to bridge the gap between large-
scale solar wind modeling and transport studies of small-scale
turbulence by developing a model that is based on a self-
consistent solution of the combined set of solar wind and
turbulence transport equations. By including the turbulence
transport model in a self-consistent way in our large-scale solar
wind model, we are able to understand details of how turbulence
influences the heating and large-scale solar wind properties and
how the large-scale structure and properties of the solar wind
affect the distribution of turbulence throughout the heliosphere.

To develop the model and achieve the required separation of
small- and large-scale dynamical effects, we employ a straight-
forward Reynolds-averaging scheme. This may be regarded as
a significant step beyond the WKB theory of noninteracting
waves that has been more traditional in solar wind research.
However, from a turbulence modeling perspective the present
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approach cannot be regarded as complete because the large-
scale flow fields can in principle directly lose energy to small
scales through cascade. This direct contribution to the “eddy
viscosity” is not captured by Reynolds-averaging method. To
include such effects would therefore require an extension such
as a spectral theory of eddy viscosity (Lesieur et al. 2005) or
use of a multiple averaging scheme (e.g., Germano et al. 1991).
This is beyond the scope of the present paper but may be a
fruitful direction for future efforts in multiple scale solar wind
simulation.

An important restriction of the present study is that the
heliospheric structure is assumed to be north–south and axially
symmetric. This assumption is appropriate for the solar wind
structure near solar minimum when the large-scale magnetic
field on the Sun can be approximated by a dipole aligned with
the solar rotation axis and the solar wind consists of a slow belt
near the helioequator and fast wind streams at higher latitudes.
The axial symmetry also implies that we neglect the longitudinal
dependence of the interstellar neutral hydrogen effect on the
heliospheric structure.

The plan of the paper is as follows: in Section 2, we describe
the governing equations and discuss in detail the initial and
boundary conditions used. The results of the simulation are
discussed in Section 3, which also contains a comparison of
the model calculations with Ulysses and Voyagers 2 data. A
summary in Section 4 concludes the paper.

2. MODEL FORMULATION

In this paper, we apply the traditional one-fluid description
of the solar wind as a fully ionized plasma, composed of
comoving electrons and protons, and assume the number density

ñ = np = ne (charge neutrality), the temperature T̃ = Tp = Te,

and the pressure P̃ = Pp +Pe = ñkB(Tp +Te), where subscripts
p and e refer to electrons and protons, respectively, and kB

is Boltzmann’s constant. We neglect the electron mass me

compared to the proton mass mp, so that the mass density
ρ̃ = nmp.

The single-fluid ideal MHD equations describing the solar
wind plasma and magnetic field in the frame of reference
corotating with the Sun can be written in the form

∂ρ̃

∂t
+ ∇ · (ρ̃ṽ) = 0, (1)

ρ̃

[

∂ ṽ

∂t
+ (ṽ · ∇)ṽ

]

− 1

4π
(∇ × B̃) × B̃ + ∇P̃

+ ρ̃

[

GM⊙
r2

r̂ + 2Ω × ṽ + Ω × (Ω × r)

]

= 0, (2)

∂B̃

∂t
= ∇ × (ṽ × B̃), (3)

∂P̃

∂t
+ (ṽ · ∇)P̃ + γ P̃ (∇ · ṽ) = − (γ − 1)∇ · qH + Q(r), (4)

where t is the time and r is the heliocentric position vector. The

dependent variables ρ̃, ṽ, B̃, and P̃ are the plasma density, the
flow velocity in the corotating frame, the magnetic field, and
the thermal pressure, respectively. M⊙ is the solar mass, Ω is
the solar angular velocity vector, G is the gravitational constant,
r̂ is a unit vector in the radial direction, and γ is the ratio
of specific heats. In addition to the inertial, Lorentz, thermal
pressure gradient, and gravitational forces, the momentum

Equation (2) includes the Coriolis and the centrifugal forces. The
pressure (energy) Equation (4) contains the heat conduction flux
density qH that we will approximate by Hollweg’s “collisional”
expression (Section 2.5) and a source term Q(r) that we will
attribute to turbulent dissipation (Section 2.2).

2.1. Large-scale (Reynolds-averaged) Equations

To account for turbulence effects, we apply the Reynolds
decomposition to Equations (1)–(4) by splitting the dependent
variables into large-scale (ensemble average) and small-scale
(fluctuating) components ã = a + a′ according to the rule
a = 〈ã〉, 〈a′〉 = 0, where a is any of the physical variables
and 〈· · ·〉 is the ensemble average. In the present study, we as-
sume that ρ ′ ≡ 0, i.e., that the small-scale turbulence is locally
incompressible, while the large-scale flows are fully compress-
ible. We will temporarily retain, however, terms involving P ′

to show how such effects might enter for next order theories
of “near incompressibility.” By applying the ensemble averag-
ing to Equations (1)–(4), we arrive at the following large-scale
Reynolds-averaged equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, (5)

∂(ρv)

∂t
+ ∇ ·

[

ρvv − 1

4π
BB +

(

P +
B2

8π
+

〈B ′2〉
8π

)

I

+ 〈ρv′v′ − 1

4π
B′B′〉

]

+ ρ

[

GM⊙
r2

r̂ + 2Ω × v + Ω × (Ω × r)

]

= 0, (6)

∂B

∂t
= ∇ × (v × B + 〈v′ × B′〉), (7)

∂P

∂t
+ (v · ∇)P + γP (∇ · v) + ∇ · 〈v′P ′〉 + (γ − 1)〈P ′∇ · v′〉

= − (γ − 1)∇ · qH + Q(r), (8)

where the momentum Equation (2) is now cast in a conservation
form (6) and I is the identity matrix.

In the Reynolds-averaging approach, the quantities that repre-
sent the influence of small-scale fluctuations on the large-scale
flow are treated as subgrid-scale entities and their evolution must
be described using turbulence models. We need to define the
following terms in Equations (5)–(8) that involve turbulent fluc-
tuations: the MHD Reynolds stress tensor R = 〈ρ(v′v′ − b′b′)〉,
where b′ = B′/(4πρ)1/2, and the fluctuation magnetic pres-
sure 〈B ′2〉/8π in Equation (6), the mean turbulent electric field
〈v′ × B′〉 in Equation (7), the flux of mean turbulent pressure
〈v′P ′〉, and the pressure-dilatation term (γ − 1)〈P ′∇ · v′〉 in
Equation (8). The relations of these terms with large-scale flow
parameters will be discussed in Section 2.3.

2.2. Small-scale Equations

Subtracting Equations (6) and (7) from Equations (2) and (3),
respectively, and making use of Equation (5), the following
evolution equation for the small-scale variables expressed using
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the Elsässer variables, z± = v′ ± b′ (Elsasser 1950), can be
obtained:

∂z±

∂t
+ [(v ∓ VA) · ∇]z± +

z± − z∓

2

[

∇ ·
(u

2
± VA

)]

+ (z∓ · ∇)(u ± VA) ∓ VA

2ρ
(z± · ∇)ρ +

1

ρ
∇P̄ ′

+ Ω × z± = NL± + S±, (9)

where VA = B/(4πρ)1/2 is the Alfvén velocity, u = v + Ω × r
is the velocity in the inertial frame of reference, P̄ ′ is the
fluctuation of the sum of thermal and magnetic pressures, and
NL± and S± consolidate local nonlinear and source terms,
respectively. Since Equation (9) does not assume ∇ ·v′ = 0 (see
discussion in Zhou & Matthaeus 1990), it differs slightly from
that given by Zhou & Matthaeus (1990) or Breech et al. (2008).
In addition, Equation (9) is written in the corotating reference
frame, so an extra term due to the Coriolis force appears in
Equation (9) (the last term on the left-hand side). Starting
from Equation (9) and applying the formalism and assumptions
discussed by Breech et al. (2008), a generalized version of
the small-scale turbulence transport equations appropriate for
super-Alfvénic flow (u ≫ VA) can be derived in the form (see
Appendix A for details)

∂Z2

∂t
+ (v · ∇)Z2 +

Z2

2
∇ · u + σDZ2M = − αf +(σc)Z3

λ
+ ĖPI,

(10)

∂(Z2σc)

∂t
+ (v · ∇)(Z2σc) +

Z2σc

2
∇ · u − 2ǫm√

4πρ
· (∇ × u)

= − αf −(σc)Z3

λ
, (11)

∂λ

∂t
+ (v · ∇)λ = βf +(σc)Z − βλĖPI

αZ2
. (12)

Here, the dependent variables are statistical descriptors of
the turbulence: Z2 = 〈v′2〉 + 〈b′2〉 is twice the incompress-
ible turbulent energy (flow plus magnetic) per unit mass,
σc = 2〈v′ · b′〉/(〈v′2〉 + 〈b′2〉) is the normalized cross helic-
ity (or Alfvénicity), and λ is the similarity (correlation) length
scale. σD = (〈v′2〉 − 〈b′2〉)/(〈v′2〉 + 〈b′2〉) is the normalized
energy difference or the residual energy. Following Zhou &
Matthaeus (1990), we treat σD as a parameter and use its value
from observations. Typically, σD is observed to be ≈ −1/3
(Matthaeus & Goldstein 1982; Tu & Marsch 1995; Yokoi et al.
2008). ǫm = −〈v′ × B′〉 is the mean-induced electric field α
and β are the Kármán–Taylor constants of order unity associated
with the local phenomenology (Hossain et al. 1995; Matthaeus
et al. 1996b). f ±(σc) = (1 − σ 2

c )1/2[(1 + σc)1/2 ± (1 − σc)1/2]/2
is the function of cross helicity. M is a scalar “mixing” term
that depends on the type of turbulence symmetry assumed. For

transverse to B and axisymmetric turbulence M = ∇ ·u/2− B̂ ·
(B̂ · ∇)u, where B̂ is a unit vector in the direction of magnetic
field and for isotropic turbulence M = ∇ · u/6.

ĖPI is an energy supply rate due to waves originating from
newborn interstellar pickup protons. Following Williams et al.

(1995), Isenberg et al. (2003), Smith et al. (2004, 2006), and
Breech et al. (2008), we define ĖPI as

ĖPI = fDuVAnH

n0τion

exp

(

− Lcav

r

)

,

where fD is a parameter that accounts for the kinetic details of the
isotropization process of pickup protons, nH is the interstellar
hydrogen number density, n0 is the number density of solar wind
protons at 1 AU, τion is the neutral ionization time at 1 AU, and
Lcav is the characteristic scale of the ionization cavity around
the Sun.

In addition to postulating local incompressibility of fluctua-
tions (ρ ′ = 0), the following assumptions were made in deriving
Equations (10)–(12): parameterization of the energy difference
tensor by a constant normalized energy difference σD (which
enters Equation (10) as a free parameter), structural similarity
of the correlations (each element of the correlation function ten-
sor is separately proportional to the trace), and single similarity
scale λ (which is identified with the correlation scale). For more
details on these assumptions, see Breech et al. (2008). The first
term on the right-hand side of Equation (11) is the turbulent
energy decay that is assumed to go into the internal energy of
the solar wind plasma. Consequently, the source of the internal
energy in Equation (8) takes the form

Q(r) = (γ − 1)αf +(σc)ρZ3

2λ
. (13)

2.3. Modeling the Turbulence Terms

Assuming that turbulence is transverse to the mean magnetic
field B and axisymmetric about it, the Reynolds stress tensor in
Equation (6) takes the form

R = 〈ρ(v′v′−b′b′)〉 = ρ

2
(v′2−b′2)(I−B̂B̂) = σDρZ2

2
(I−B̂B̂),

where I− B̂B̂ is a projection tensor into the plane perpendicular
to B. In the case of an isotropic turbulence, a similar calculation
provides R = σDρZ2I/3. Obviously, the mean fluctuating
magnetic pressure in Equation (6) can be expressed through
the turbulent energy and the energy difference as 〈B ′2〉/8π =
(1 − σD)ρZ2/4. As for the mean turbulent electric field, one of
the simplest options is to assume ǫm = α̂ZB, where α̂ is the
dynamo parameter of order unity (Matthaeus et al. 1986). The
flux of the mean turbulent ram pressure, 〈v′P ′〉, and the dilatation
term (γ − 1)〈P ′∇ · v′〉 in Equation (8) will be just neglected
in the present work, as we shall treat the local turbulence as
incompressible.

We recall briefly that there are numerous indications that
fluctuations in the solar wind are mainly of the incompressible
variety. The fluctuations are observed to be transverse, quasi two
dimensional, and “Alfvénic” (Belcher & Davis 1971; Matthaeus
et al. 1990), each of which is suggestive of low compressional
activity. Furthermore, from a theoretical perspective, magne-
tosonic modes are strongly damped for solar wind parameters
(Barnes 1979). Under such circumstances, it is possible to un-
derstand that turbulence in a compressible medium can evolve in
a nearly incompressible fashion and such a description is consis-
tent with numerous observational features (Zank & Matthaeus
1992). Although a refined description would take compressional
fluctuations into account (e.g., Yoshizawa 1992), these obser-
vations and theoretical ideas amply motivate the use of local
incompressibility as a useful approximate description of solar
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wind turbulence at scales smaller than the turbulence outer scale
(typically < 0.01 AU near Earth orbit).

2.4. The Governing System of Equations

The combined system of large- and small-scale equa-
tions (5)–(12) can be re-written in a quasi-conservation form
as

∂W

∂t
+ ∇ · F = S, (14)

where W = (ρ, ρu, B, E,Z2, Z2σc, ρλ)T ,

F =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρv

ρvu − η

4π
BB + P̄ I

vB − Bv

vE + uP̄ − ηB(u · B)

4π
+ qH

Z2v

Z2σcv
ρλv

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

− ρ

(

GM⊙
r2

r̂ + Ω × u

)

−∇ × ǫm

− ρVA · (∇ × ǫm) +
ρĖPI

2

Z2

[∇ · u

2
− σDM − αf +(σc)Z

λ

]

+ ĖPI

Z2σc

2
∇ · u +

2ǫm · (∇×u)√
4πρ

− αf −(σc)Z3

λ

ρβ

[

f +(σc)Z − λĖPI

αZ2

]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where E is the total energy density that involves kinetic, thermal,
magnetic, gravitational, and turbulent components

E = ρu2

2
+

P

γ − 1
+

B2

8π
− ρGM⊙

r
+

ρZ2

2
,

and P̄ = P +B2/8π +Pw is the total pressure, including the tur-
bulent pressure Pw. In the case of transverse and axisymmetric
turbulence, Pw = (σD + 1)ρZ2/4 and η = 1 + 2πσDρZ2/B2,
and for isotropic turbulence Pw = (σD + 3)ρZ2/12 and η = 1.
The derivation of the momentum and total energy equations in
Equation (14) is given in Appendix B.

2.5. Hollweg’s Heat Flux

Within the solar wind, the electron heat flux is directed
primarily along the magnetic field. In the inner corona (r �

5–10 R⊙, R⊙ is the radius of the Sun), where the collisions
between particles are relatively frequent, the heat flux can be
approximated by the classical collision-dominated model of
Spitzer & Härm (1953). Beyond the inner corona, the plasma is
virtually collisionless and the electron heat flux is dominated by
a non-local suprathermal tail of electron distribution (Scudder
& Olbert 1979). Because a collision-dominated model is not
applicable in this case, Hollweg (1974, 1976) proposed a
“collisionless” approximation

qH = 3
2
aPev, (15)

where a is a parameter of order unity. The formula (15) was later
recovered by Canullo et al. (1996) from their solution of the
Fokker–Planck equation in the limit r � 6 R⊙ for suprathermal
electrons originating near the solar corona base. It was also
demonstrated recently by Cranmer et al. (2009) that Hollweg’s
approximation (15) with a = 1.05 matches closely Helios
observations from 0.3–1 AU (Pilipp et al. 1990) and Ulysses
observations beyond 1 AU (Scime et al. 1999). In this paper,
we describe the electron heat flux explicitly by incorporating
Hollweg’s expression (15) into the energy equation (8).

Because our approach is one fluid and assumes that the
pressures (and temperatures) of protons and electrons are equal,
Pe = Pp = P/2, Equation (15) takes the form qH = (3/4)aP v.
Note that in steady-state case, applying this expression is
mathematically identical to assuming a polytropic law, with
the polytropic index γ that depends on a as γ = (5 + 3

2
a)/(3 +

3
2
a) (Jacques 1978; Meyer-Vernet 2007). It is interesting that

according to this formula, the empirical value a = 1.05 of
Cranmer et al. (2009) corresponds closely to γ = 1.46 inferred
by Totten et al. (1995) from Helios proton data, which means that
in one-fluid solar wind models, using Totten et al.’s empirical
index is almost equivalent to employing Hollweg’s heat flux.

2.6. Numerical Approach, Initial, and Boundary Conditions

In the context of the present study, we are interested in steady-
state solutions of the time-dependent system (14). For this
purpose, we apply a time-relaxation method, i.e., integration of
the governing equations in time until a steady state is reached. To
integrate Equation (14) numerically in time, we use the Central
Weighted Essentially Non-Oscillatory (CWENO) scheme of
Kurganov & Levy (2000) with a global smoothness indicator
(Levy et al. 1999). The CWENO scheme is a spatially third-
order, semi-discrete method that applies a piecewise polynomial
reconstruction and smoothness indicators. In smooth regions,
the polynomial reconstruction guarantees the maximum order of
accuracy, but in the presence of a discontinuity it automatically
switches to the best one-sided stencil, which generates the least
oscillatory reconstruction. For the time evolution, the strong
stability-preserving (SSP) Runge–Kutta discretization (Gottlieb
et al. 2001) of third order has been implemented. To maintain the
∇ · B = 0 constraint, the relaxation code implements the eight-
wave scheme of Powell (1994) that requires adding source terms
of the form − B(∇ · B)/4π , − v(∇ · B), and − (B · u)(∇ · B)/4π
into the right-hand side of the momentum, induction, and total
energy equations, respectively.

Equations (10)–(12) are valid only assuming that u ≫ VA

and therefore following the approach of Breech et al. (2008),
we have chosen to place our inner boundary far enough from the
Sun at 0.3 AU where the solar wind flow is already highly super-
Alfvénic. To specify the dependent variables at the boundary
and throughout the computational region in the initial state,
we use the output from the model of Usmanov & Goldstein
(2003), which is based on solving the MHD equations for a
single-fluid polytropic flow driven by thermal and WKB Alfvén
wave pressure gradients. The density, velocity, magnetic field,
and thermal pressure at the inner boundary are directly taken
from a solution of Usmanov & Goldstein (2003) for a source
dipole field on the Sun aligned with the solar rotation axis.
Z2 is calculated from the WKB Alfvén wave energy density
E (see Usmanov & Goldstein 2003) as Z2 = 2E/ρ on the
boundary, and Z2 is set to be independent of θ and to decrease
as r−2 throughout the rest of the domain in the initial state. The
boundary conditions for λ and σc are specified similarly to those
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Figure 1. Boundary profiles of plasma/magnetic field and turbulence variables at 0.3 AU as a function of heliolatitude.

used by Breech et al. (2008): λ is set to vary from 0.03 AU in the
fast wind to 0.015 AU in the slow one, while σc is ±0.8 in the fast
wind (plus or minus depending on the sign of the radial magnetic
field) and changing sign on the equator. Figure 1 illustrates the
boundary conditions prescribed at 0.3 AU.

The convenience of solving the governing equations (14) in
the rotating reference frame is that the boundary values are
simply fixed in time. It is worth noting that the momentum and
energy equations included in Equation (14) were transformed
from Equations (5)–(8) using the substitution v = u − Ω × r
that notably simplifies the equations (see Appendix B for details)
and permits one to advance in time the inertial momentum ρu
(instead of the linearly increasing rotating frame momentum
ρv) and the inertial total energy E.

The numerical code that we have developed for integrating
Equation (14) is fully three- dimensional and it uses a composite
grid of spherical coordinates that consists of a main spherical
grid and two “patches” covering the norther and souther po-
lar caps and partially overlapping with the main grid (Usmanov
1996; Usmanov & Goldstein 2003). The main grid encompasses
all longitudes within a latitude range (extending to 67.◦ 5 of lat-
itude) that is not significantly affected by the spherical coor-
dinate singularity near the poles. The composite grid approach
has been developed to circumvent the specific difficulty of the
geometrical singularity on the pole axis and the condensing of
grid points in spherical coordinates toward the poles.

In the present study, we apply the code for an axisymmetric
problem in the spherical shell extending from 0.3 to 100 AU.
There are 300 grid points in the radial direction with a logarith-
mic increase of the spacing from 0.06 AU to ∼1.8 AU at the
outer boundary. The latitudinal grid resolution is 1◦. The model
includes a number of parameters that were taken as follows:
γ = 5/3, Hollweg’s parameter a = 1, the Kármán–Taylor con-
stants α = 2β = 0.8 (Smith et al. 2006), the normalized energy
difference σD = −1/3, the isotropization parameter fD = 0.25,
the interstellar neutral hydrogen density nH = 0.1 cm−3, the
neutral ionization time at 1 AU τion = 106 s, and the scale of
the ionization cavity around the Sun Lcav = 8 AU. Most of the

parameters listed above are the same as in Breech et al. (2008).
Also, in what follows we neglect the turbulent electric field
(α̂ = 0). Furthermore, we restrict our attention to turbulence
having its vector components perpendicular to the mean mag-
netic field. Such turbulence is sometimes called “transverse” or
“Alfvén mode” (Belcher & Davis 1971; Goldreich & Sridhar
1995) in view of its apparent correspondence to wave theory
(Barnes 1979). However, transverse turbulence also emerges in
nearly incompressible turbulence theory and simulations (Zank
& Matthaeus 1992; Matthaeus et al. 1996a) and is a central
element of weak turbulence (Galtier et al. 2000).

The outer boundary conditions at 100 AU were chosen to be
of open type, which is usually approximated by a first-order
(linear) extrapolation.

3. SIMULATION RESULTS AND ANALYSIS

Starting from the initial distribution of plasma, magnetic
field, and turbulence parameters at time t = 0, the system is
allowed to relax for 12,000 hr or ∼1.4 yr. Because the initial
state is merely a superposition of the solution from Usmanov
& Goldstein (2003; for ρ, u, B, and P) on the one hand, and
of some initial distribution of the turbulence parameters (Z2, σc,
and λ) on the other, the system evolves in time toward a state
in which all forces are balanced. In the supersonic and super-
Alfvénic flow that we deal with, all disturbances propagating
in any direction are convected outward, so the relaxation time
is essentially the time for the slowest plasma parcel to traverse
the computational domain in the radial direction. When the
transient is exiting the domain, the linear extrapolation that we
use for assigning boundary conditions on the outer boundary
can, at times, produce negative values of density. Should that
happen, the linear extrapolation is temporarily switched over to
a zero-order extrapolation.

An example of the “relaxation transient” is shown in
Figure 2. The transient forms in the initially (t = 0 hr) latitude-
independent distribution of Z2 (although Z2 varies with latitude
on the inner boundary; see Figure 1), it propagates outward and
leaves behind a steady-state structure with maximum values of
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Figure 2. Relaxation of the initially (t = 0) latitude-independent distribution of Z2 (km2 s−2) in the meridional plane between the pole (vertical edge) and the equator
(horizontal edge). Contour maps are shown for t = 0, 2000, 4000, and 8000 hr.

Z2 at ∼30◦ of heliolatitude. At t = 8000 hr, the relaxation is
complete at all latitudes except for the slow wind region near
the equator.

Figure 3 presents the result of relaxation at t = 12,000 hr.
The solar wind structure is typical for solar cycle minimum: a
band of slow wind near the equator and a fast (∼800 km s−1)
and relatively uniform wind at higher latitudes. The lowest
speed at the inner boundary is ∼370 km s−1, so neglecting the
(insignificant) solar wind acceleration beyond 0.3 AU it takes
∼1.3 years for a “relaxation” transient to propagate through and
to leave the computational domain at 100 AU. The magnetic
field magnitude B is relatively small on the polar axis where
the azimuthal magnetic component Bφ = 0 and B = 0 on
the helioequator that separates inward and outward magnetic
field sectors (Br = 0 and therefore Bφ = 0). As a result, B
has a maximum at latitudes of ∼15◦, which along with the
latitudinal profile of n translates into variations of the pickup-
proton driving term, ĖPI, and the turbulence energy, Z2, with a
maximum at ∼30◦. The distribution of Alfvén speed depends
on latitude in a similar way, but it is essentially independent of
heliocentric distance beyond ∼10 AU. The plasma temperature
T is relatively low near the helioequator and reaches a maximum
at ∼30◦ as well. The heating effect of pickup protons is obvious
from the T plot: the temperature increases with the heliocentric
distance beyond ∼30 AU except near the pole and the equator.
The variations of T, Z2, λ, and σc are generally similar to the
results of Breech et al. (2008; cf. with their Figures 8, 10, 12,
and 14, respectively). In particular, both models show higher
levels of turbulence around the transition between slow and fast

solar wind, while turbulence is depressed both over the poles
and in slow wind near the equator, where the turbulence drivers,
especially stream shear, are small. The details of the distributions
are however noticeably different between the two models. For
example, the results shown in Figure 3 are smoother than the
analogous results of Breech et al. (2008) due to the latitudinal
effects that the present model describes self-consistently. Also
shown in Figure 3(h) is the projection of Voyager 2 trajectory on
the meridional plane. The excursion of the spacecraft into the
southern hemisphere began at ∼30 AU after its encounter with
Neptune in 1989.

Figure 4 demonstrates the radial variations of the flow and
turbulence parameters for heliolatitudes spaced by 30◦ from
the pole to the equator. B is zero on the equator because in
our axisymmetric model, it coincides with the current sheet
where all components of B are equal to zero. On the pole, B is
determined by the radial component Br that varies with radius
as r−2, while at lower latitudes the main contribution is from
the azimuthal component Bφ ∼ r−1. The plot for ur illustrates
again the uniformity of fast solar wind as evidenced by the
slight difference between the radial curves at 30◦, 60◦, and 90◦.
After a steep fall inside 1 AU, the Alfvén speed VA shows little
dependence on radius beyond ∼10 AU. (Note that VA = 0
on the equator in our case.) At higher latitudes, the flattening
appears at smaller distances. The plasma density n decreases
with distance as r−2 at all latitudes. The temperature profiles at
various latitudes in fast wind are indistinguishable below 20 AU,
but the rise beyond 20 AU differs as a function of latitude as
determined by the latitudinal dependence of the driving term
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Figure 3. Contour plots in the meridional plane from 0.3 to 100 AU of the following model variables: the radial velocity ur , number density n, magnetic field magnitude
B, Alfvén velocity VA, turbulent energy Z2, cross helicity σc , correlation length scale λ, and plasma temperature T. The yellow line in the T plot depicts the projection
of the Voyager 2 trajectory on the meridional plane.

ĖPI, which causes slight increases in thermal pressure that can
also be seen in the plot of P. In fast wind, the turbulence energy
Z2 is not dependent on latitude up to ∼10 AU, while the profiles
of the cross helicity σc and of the similarity scale λ become
different at ∼5 AU. The value of Z2 on the equator is more than
an order of magnitude smaller than it is in fast wind, due to both
variations in the inner boundary, which has small values near
the equator and also due to the smaller driving effect of pickup
protons. In fast wind, σc changes slowly from −0.8 to −0.6
up to ∼5 AU and then the curves diverge abruptly with larger
decreases at lower latitudes. (Note that σc = 0 on the equator
in our case.) The radial variations of λ show a maximum that
moves to larger distances at higher latitudes. The maximum is a
result of the interplay between the first and second terms in the
right-hand side of Equation (12).

Comparisons between the one-dimensional model results of
Breech et al. (2008) and the present model are shown in Figure 5.
The solutions of Breech et al. (2008) use the same boundary
values at 0.3 AU shown in Figure 1. The comparisons are
presented for a high latitude (θ = 15◦) and demonstrate two
sets of plots: one comparing against normal Breech et al.’s

parameters, including a free parameter of the strength of shear
driving Csh = 0.5 and, second, with Csh dropped to 0.20. The
solutions for Z2 and T look comparable in both cases. The
solutions for λ and σc demonstrate better agreement for the
lower value of Csh. Csh is introduced into the constant-velocity
model of Breech et al. (2008) as a measure of the turbulence
driving due to a presumptive instability of large-scale sheared
flows that generates additional small-scale turbulence energy.
The present model does not appear to require such a parameter
because sheared flows are explicitly present in the solution, but,
as follows from the comparison, the shear driving is generally
weaker than in the typical one-dimensional solution of Breech
et al. (2008). This contrast may be due to terms that are absent in
the Reynolds decomposition approach. We discuss this further
in the summary section.

Figure 6 shows comparison of the model results presented in
Figure 3 with Ulysses data collected during Ulysses’ first fast
latitude scan in 1994–1995 for latitudes from −80.◦2 to +80.◦2
and for the range of heliocentric distances from 1.3 to 2.3 AU.
As is evident from Figure 6, there is rough agreement between
the computed and observed curves in each plot. Both latitude
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0.20 (b).

and intensity variations of the computed quantities are similar
to those in the Ulysses data. The bimodal structure of the solar
wind with the relatively uniform and tenuous fast wind is fairly
well reproduced by the model.

Figure 7 shows radial variations of the computed temperature
along the trajectory of Voyager 2 with the proton temperature
observed by Voyager 2. To produce this comparison, the model
structure was artificially tilted by 10◦ with regard to the solar
rotation axis, to account for the tilt typical around solar minima.
There is generally good agreement between the model and
Voyager 2 observations with the evident inflection point at
∼35 AU. The important factor that influences the temperature
profile is the southward displacement of Voyager 2 (Figure 7(c))
outside 30 AU. Figure 7(a) shows an additional model profile
computed along the projection of the Voyager trajectory on the
helioequatorial plane. The deviation of the model curves along
the Voyager 2 trajectory and along its equatorial projection
gives an estimate of the latitudinal effect in the Voyager 2
observations. Another essential aspect of the comparison is
that the Voyager observations cover the period of 30 years,
or almost three solar cycles (Figure 7), so that the present
model constructed for solar minimum conditions is a very rough
approximation.

The temperature profiles computed without Hollweg’s heat
flux (qH = 0), without any turbulence effects (Z2 = 0), for
zero tilt, and without pickup proton effects (ĖPI = 0) are shown
in Figure 7(b). Comparison of the solutions demonstrates that,
in the present model, the major heating effect is associated
with the heat flux. The effect of the turbulent cascade is
relatively small in comparison with the heating by pickup
protons.
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4. SUMMARY

We have presented the first results of a novel approach
to modeling the super-Alfvénic solar wind together with the
distribution of turbulence throughout the heliosphere. The
mass, momentum, induction, and energy equations for the
large-scale solar wind flow have been solved simultaneously
with the transport equations for turbulence energy, normalized
cross helicity, and correlation scale. The model was applied to
simulate the self-consistent interaction between the large-scale
solar wind and smaller-scale turbulence. The two-scale approach
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Figure 7. Radial variations of the model temperature (27 day running averages)
computed along the trajectory of Voyager 2 and along its pseudo-trajectory
assuming that the spacecraft remained in the helioequatorial plane superimposed
on 27 day running averages of Voyager 2 proton temperature data from 1977
to 2007 (a). The model temperatures computed without the electron heat flux
(qH = 0), with no turbulence effects (Z2 = 0), with zero tilt, and without the
effect of pickup protons (ĖPI = 0) are shown in (b). The bottom panel (c) shows
the monthly sunspot numbers and heliographic latitude of Voyager 2. Note that
the 10◦ tilted dipole model is appropriate only for periods of low solar activity.

was used to study the effects of turbulence dissipation and
pickup-proton-associated heating on the plasma temperature.
We have also compared the simulation results with Ulysses
and Voyager 2 observations and have shown that the model
agrees with the Ulysses data and follows the Voyager 2 observed
temperature evolution fairly well despite the fact that the model
is best suited for solar minimum conditions.

It should be noted that the amount of turbulent heating in the
model of Breech et al. (2008) differs from the present model by a
factor of two. The difference arises from the one-fluid formalism
of the present model that assumes that the cascading energy
gets split between electrons and protons instead of feeding only
protons as in Breech et al. (2008). In this respect, the present one-
fluid model seems to be similar to the two-fluid model of Breech
et al. (2009) in which the cascading energy is also split between
protons and electrons, and thus the protons receive much less
heating (60%) than in the Breech et al. (2008) model. It is easy
to show that the two-fluid formulation of Breech et al. (2009) is
reduced to the present formulation of the energy equation if the
temperatures of protons and electrons are assumed to be equal.

The model presented in this paper can be applied to the
problems of solar modulation of galactic cosmic rays and
propagation of solar energetic particles (SEPs). The computed
large-scale plasma/magnetic field parameters and turbulence
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quantities are precisely what is needed for a realistic study of
the propagation of energetic particles in the heliosphere. These
are natural applications in that scattering of energetic charged
particles depends upon details of the large-scale heliospheric
fields as well as on the spatial distribution of the turbulence. For
this reason, we suggest that it is important to further develop
models such as the present one, as this model self-consistently
provides both of these classes of information.

As the next major step with the present model, we plan
on extending it to fully three-dimensional case to perform
simulations with the source dipole on the Sun tilted with respect
to the solar rotation axis. Other planned developments include
turning on and studying effects of a turbulent electric field,
allowing the fluctuations to be compressible by relaxing the
assumption that ρ ′ = 0, and including pickup protons as
a separate fluid (with a separate mass and energy equation,
following the approach of Usmanov & Goldstein 2006). Another
development of the model will be to generalize the turbulence
transport equations and boundary conditions to make them
appropriate for studying sub-Alfvénic solar wind. Such an
extension will extend the model by placing the inner boundary
at the coronal base.

Finally, we recall that the present straightforward Reynolds-
averaged scheme does not include large-scale couplings that
drain energy from large scales and directly excite small-scale
modes. In this sense, the Reynolds-averaged approach is not
complete for cases in which, for example, large-scale convection
(u · ∇)u directly drives small-scale fluctuations. Such a “direct
supply” term replenishes turbulence and is typically employed
in hydrodynamics LES schemes (see e.g., Germano et al. 1991;
Lesieur et al. 2005). We are currently studying extensions to the
present model that would take into account this direct supply
of small-scale turbulence by non-equilibrium large-scale MHD
fields.
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APPENDIX A

SMALL-SCALE EQUATIONS FOR Z2 AND Z2σc

The derivation follows the procedure and assumptions de-
scribed in details by Breech et al. (2008). The first step is to
form the correlation functions

R±
ij (r, ζ ) =

〈

z±
i (r) z±

j (r + ζ )
〉

=
〈

z±
i z±⋆

j

〉

, (A1)

where 〈· · ·〉 is the Reynolds-averaging operator and the star
superscript denotes the displaced position r + ζ . By writing
Equation (9) in component form for z±

i and z±⋆
j , multiplying

(on the left) the two-component equations by z±⋆
j and z±

i ,

respectively, and then adding the resultant equations, we have

∂

∂t

(

z±
i z±⋆

j

)

+ [(v∓VA) ·∇]
(

z±
i z±⋆

j

)

+
2z±

i z±⋆
j − z±

i z∓⋆
j − z∓

i z±⋆
j

2

×
[

∇ ·
(u

2
± VA

)]

+
(

z±⋆
j z∓

k

)∂(ui ± VAi)

∂rk

+
(

z±
i z∓⋆

k

)∂(uj ± VAj )

∂rk

∓
VAiz

±⋆
j

2ρ
z±
k

∂ρ

∂rk

∓ VAjz
±
i

2ρ
z±⋆
k

∂ρ

∂rk

+
1

ρ

(

z±⋆
j ∇iP̄

′ + z±
i ∇j P̄

′) + z±⋆
j (Ω × z±)i + z±

i (Ω × z±⋆)j

= z±⋆
j

(

NL±
i + S±

i

)

+ z±
i

(

NL±
j + S±

j

)

. (A2)

Applying the Reynolds averaging to Equation (A2) leads to the
equation for the correlation functions

∂R±
ij

∂t
+ [(v ∓ VA) · ∇]R±

ij + R±
ij

[

∇ ·
(u

2
± VA

)]

+ Π
±
ij = NL±

ij + S±
ij , (A3)

where Π
±
ij is the mixing tensor

Π
±
ij = −

〈

z±
i z∓⋆

j

〉

+
〈

z∓
i z±⋆

j

〉

2

[

∇ ·
(u

2
± VA

)]

+
〈

z±⋆
j z∓

k

〉∂(ui ± VAi)

∂rk

+
〈

z±
i z∓⋆

k

〉∂(uj ± VAj )

∂rk

∓ VAi

2ρ

〈

z±
k z±⋆

j

〉 ∂ρ

∂rk

∓ VAj

2ρ

〈

z±
i z±⋆

k

〉 ∂ρ

∂rk

+
1

ρ

〈

z±⋆
j ∇iP̄

′+z±
i ∇j P̄

′〉+
〈

z±⋆
j (Ω×z±)i+z±

i (Ω×z±⋆)j
〉

. (A4)

Since we are primarily concerned with describing the trans-
port of energy in fluctuations, we will further deal with the
equation for the trace of the correlation tensor

∂R±
ii

∂t
+ [(v ∓ VA) · ∇]R±

ii + R±
ii

[

∇ ·
(u

2
± VA

)]

+ Π
±
ii = NL±

ii + S±
ii . (A5)

Here and further on, summation over repeated indices is as-
sumed. Introducing the energy difference tensor RD

ij ≡ 〈v′
iv

′⋆
j −

b′
ib

′⋆
j 〉 and the cross-correlation tensor Rvb

ij ≡ 〈v′
ib

′⋆
j −v′⋆

j b′
i〉, we

can re-write the trace of the mixing tensor (A4) in the form

Π
±
ii = −RDs

ii

[

∇ ·
(u

2
± VA

)]

+ 2
(

RDs
ik ∓ Rvb−a

ik

)∂(ui ± VAi)

∂rk

∓ VAi

2ρ

(

R±
ki + R±

ik

) ∂ρ

∂rk

+
1

ρ

〈(

z±⋆
i + z±

i

)

∇iP̄
′〉, (A6)

where RDs
ij = (RD

ij + RD
ji)/2 is the symmetric part of the

energy difference tensor and Rvb−a
ij = (Rvb

ij − Rvb
ji )/2 is the

anti-symmetric part of the cross-correlation tensor. Note that
contributions of the last two “Coriolis” terms in Equation (A4)
are canceled out in Equation (A6). As discussed by Zhou
& Matthaeus (1990), the term 〈(z±⋆

i + z±
i )∇iP̄

′〉/ρ) can be

neglected. If the displacement ζ = 0 then Rvb−a
ik ∂ui/∂rk =

11
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ǫm · (∇ × u/
√

4πρ), where ǫm = −〈v′ × B′〉 is the mean-
induced electric field, and for transverse to B and axisymmetric
turbulence we have

R±
ij = R±

kk(δij − B̂iB̂j )/2 =
Z2

±
2

(δij − B̂iB̂j ),

where Z2
± = 〈|z±|2〉 = R±

ii (ζ = 0) are the Elsässer energies.

Following Breech et al. (2008), we assume RDs
ij ≈ σDRij . Then

the mixing term takes the form

Π
±
ii = σDZ2

[∇ · u

2
− B̂ · (B̂ · ∇)(u ± VA)

]

∓ 2ǫm · [∇ × (u ± VA)]√
4πρ

,

and for u ≫ VA we get

∂Z2
±

∂t
+ (v · ∇)Z2

± +
Z2

±
2

∇ · u + σDZ2M

∓ 2ǫm · (∇ × u)√
4πρ

= NLZ2
± + SZ2

± , (A7)

where M = ∇ · u/2 − B̂ · (B̂ · ∇)u. Finally, adding and
subtracting Equations (A7), we obtain the sought-for equations
for Z2 = (Z2

+ + Z2
−)/2 and Z2σc = (Z2

+ − Z2
−)/2:

∂Z2

∂t
+ (v · ∇)Z2 +

Z2

2
∇ · u + σDZ2M = NL1 + S1

∂(Z2σc)

∂t
+(v·∇)(Z2σc)+

Z2σc

2
∇·u−2ǫm · (∇ × u)√

4πρ
= NL2+S2.

Note that the nonlinear (NL1 and NL2) and source (S1 and S2)
terms are modeled separately (see Breech et al. 2008). The
equation for the evolution of the correlation length retains the
form (12) of Breech et al. (2008). It is easy to show that for the
case of isotropic turbulence M = ∇ · u/6.

APPENDIX B

MOMENTUM AND TOTAL ENERGY EQUATIONS IN
THE ROTATING FRAME OF REFERENCE

In the case of transverse to B and axisymmetric turbulence,
the momentum equation (6) can be re-written as

∂(ρv)

∂t
+ ∇ ·

(

ρvv − η

4π
BB + P̄ I

)

= − ρ

[

GM⊙
r2

r̂ + 2Ω × v + Ω × (Ω × r)

]

, (B1)

where η = 1 + 2πσDρZ2/B2 and P̄ = P + (1 + σD)ρZ2/4 +
B2/8π is the total pressure. Let us now transform the terms
containing the velocity in the rotating frame v using the
substitution v = u − Ω × r, where u is the velocity in the
inertial frame. Using the following vector identities ∇ · (FG) ≡
G(∇ · F) + (F · ∇)G, (F · ∇)(Ω × r) = Ω × F, where F and G
are arbitrary vectors, and ∇ · (Ω × r) = 0, it can be shown that

∂(ρv)

∂t
+ ∇ · (ρvv) + ρ[2Ω × v + Ω × (Ω × r)]

= ∂(ρu)

∂t
+ ∇ · (ρvu) + ρΩ × u.

Then we obtain the momentum equation in the form

∂(ρu)

∂t
+∇ ·

(

ρvu − η

4π
BB + P̄ I

)

= − ρ

(

GM⊙
r2

r̂ + Ω × u

)

,

(B2)
and making use of Equation (5), a non-conservation form of
Equation (B2):

ρ

[

∂u

∂t
+ (v · ∇)u

]

− 1

4π
(∇ ×B)×B+∇ ·

[

P +
(1 − σD)ρZ2

4

]

+ ∇·
[

σDρZ2

2
(I − B̂B̂)

]

= − ρ

(

GM⊙
r2

r̂ + Ω × u

)

. (B3)

Using Equation (B3), we can derive a conservation equation for
the total energy

E = ρu2

2
+

P

γ − 1
+

B2

8π
− ρGM⊙

r
+

ρZ2

2
. (B4)

Carrying out a time derivative on Equation (B4), we find

∂E

∂t
=

(

u2

2
− GM⊙

r
+

Z2

2

)

∂ρ

∂t
+ ρu · ∂u

∂t

+
1

γ − 1

∂P

∂t
+

B

4π
· ∂B

∂t
+

ρ

2

∂Z2

∂t
.

Making use of Equations (5), (B3), (7), (8), and (10), we obtain
after some algebra

∂E

∂t
= − ∇ ·

[

vE + uP̄ − ηB(u · B)

4π

]

− B

4π
· (∇ × ǫm) +

ρĖPI

2
.

(B5)

We should emphasize that although we apply the substitution
v = u − Ω × r, which relates the inertial and rotating frame
velocities, Equations (B2), (B3), and (B5) are still written in the
coordinates rotating with the Sun.
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Elsässer, W. M. 1950, Phys. Rev., 79, 183
Esser, R., Leer, E., Habbal, S. R., & Withbroe, G. L. 1986, J. Geophys. Res.,

91, 2950
Feldman, W. C., Barraclough, B. L., Phillips, J. L., & Wang, Y. M. 1996, A&A,

316, 355
Galtier, S., Nazarenko, S. V., Newell, A. C., & Pouquet, A. 2000, J. Plasma

Phys., 63, 447
Gazis, P. R., & Lazarus, A. J. 1982, Geophys. Res. Lett., 9, 431
Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. 1991, Phys. Fluids A, 3,

1760
Goldreich, P., & Sridhar, S. 1995, ApJ, 438, 763
Goldstein, M. L., Roberts, D. A., & Matthaeus, W. H. 1995, ARA&A, 33, 283
Gottlieb, S., Shu, C. W., & Tadmor, E. 2001, SIAM Rev., 43, 89
Groth, C. P. T., De Zeeuw, D. L., Gombosi, T. I., & Powell, K. G. 2000, J.

Geophys. Res., 105, 25053
Hayashi, K. 2005, ApJ, 161, 480
Hollweg, J. V. 1974, J. Geophys. Res., 79, 3845
Hollweg, J. V. 1976, J. Geophys. Res., 81, 1649
Hollweg, J. V. 1978, Rev. Geophys. Space Phys., 16, 689
Hollweg, J. V. 1990, J. Geophys. Res., 95, 14873
Hossain, M., Gray, P. C., Pontius, D. H., Matthaeus, W. H., & Oughton, S.

1995, Phys. Fluids, 7, 2886
Hu, Y. Q., Li, X., & Habbal, S. R. 2003, J. Geophys. Res., 108, 1378
Hundhausen, A. J. 1972, Coronal Expansion and Solar Wind (Berlin: Springer)
Isenberg, P. A., Smith, C. W., & Matthaeus, W. H. 2003, ApJ, 592, 564
Isenberg, P. A., Smith, C. W., Matthaeus, W. H., & Richardson, J. D. 2010, ApJ,

719, 716
Jacques, S. A. 1977, ApJ, 215, 942
Jacques, S. A. 1978, ApJ, 226, 632
Kurganov, A., & Levy, D. 2000, SIAM J. Sci. Comput., 22, 1461
Leer, E., Holzer, T. E., & Flå, T. 1982, Space Sci. Rev., 33, 161
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