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Abstract

Background: Illumina’s second-generation sequencing platform is playing an increasingly prominent role in

modern DNA and RNA sequencing efforts. However, rapid, simple, standardized and independent measures of run

quality are currently lacking, as are tools to process sequences for use in downstream applications based on read-

level quality data.

Results: We present SolexaQA, a user-friendly software package designed to generate detailed statistics and at-a-

glance graphics of sequence data quality both quickly and in an automated fashion. This package contains

associated software to trim sequences dynamically using the quality scores of bases within individual reads.

Conclusion: The SolexaQA package produces standardized outputs within minutes, thus facilitating ready

comparison between flow cell lanes and machine runs, as well as providing immediate diagnostic information to

guide the manipulation of sequence data for downstream analyses.

Background

Second-generation technologies are rapidly coming to

dominate modern DNA and RNA sequencing efforts

[1]. Among the available systems, Illumina sequencing

(known informally as Solexa) is playing an increasingly

prominent role. However, the error profiles of high-

throughput short read sequencing technologies differ

markedly from traditional Sanger sequencing [2]; they

tend to exhibit a steep, exponential increase in error

rates along the read length, and are susceptible to a

wider range of chemistry and machine failures (such as

air bubbles in system fluidics). Although the quality of

second-generation sequencing data affects downstream

applications, monitoring and diagnosis of data quality

has not kept pace with the rapid rate of improvement

seen in other aspects of the technology.

Owners of Illumina machines have access to on-board

diagnostic tools, which give detailed information about

data quality for each lane, tile and nucleotide position.

However, these tools are not available to most users, the

majority of whom now outsource data collection to

dedicated sequencing centers. In our experience, these

centers do not usually release data quality information,

although we advocate strongly that they should. Lacking

this information, users must turn to publicly available

software packages to quantify data quality. The R pack-

age TileQC [3], which offers similar functionality to Illu-

mina’s proprietary software, can help identify some

problems at the level of tiles (e.g., air bubbles), and in

many cases, can even track variation at individual read

positions. However, the underlying algorithm relies on

errors determined from read mapping, thus requiring a

reference genome sequence. TileQC is less useful for

the many sequencing projects now being performed on

non-model organisms. Several other software packages

offer similar functionality for assessing data quality [4,5],

but seldom in a quick, automated way that can easily be

run by users with limited bioinformatics skills and/or

computer resources.

In complementary fashion, software has been written

to help correct sequences containing some of these

errors, such as image boundary effects [6] - at least for

earlier versions of the Illumina technology. However,

the ever-increasing quantity of data produced by Illu-

mina sequencers seldom makes such detailed analysis of

individual tiles feasible, or indeed, a cost effective use of

expensive (and often limited) bioinformatics resources.

Nevertheless, major quality defects, particularly failures
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of entire tiles or individual nucleotide positions must

still be accommodated in downstream analyses (i.e., by

exclusion, or preferably, selective trimming of reads).

Simple tabular and graphical summaries of run quality

are therefore a necessary prerequisite for any down-

stream analysis.

Here, we present SolexaQA, a user-friendly software

package that provides rapid, at-a-glance assessment of

read quality for data generated using Illumina’s sequen-

cing technology.

Implementation

Programs, manuals and example datasets for the Solex-

aQA package can be downloaded from the project web-

site http://solexaqa.sourceforge.net/.

SolexaQA has minimal runtime requirements, but is

nevertheless designed primarily for use on the high-per-

formance UNIX machines that are necessary for analyz-

ing Illumina sequence data. SolexaQA is primarily

written in Perl, but integrates graphical capability from

the statistics package R [7] and the heatmap visualizer

matrix2png [8]. By default, the program produces tables

summarizing data quality, but R and matrix2png must

be installed for proper functioning of the package’s gra-

phical features. Note that matrix2png also requires a

working installation of the GD graphics library http://

www.libgd.org/.

SolexaQA inputs one (or multiple) sequence read files

in Solexa- or Illumina-style FASTQ format, which con-

tains information about base calls as well as associated

quality scores [9]. We checked whether these quality

scores match actual error rates by mapping reads back

to a haploid reference sequence that was de novo

assembled from the same read dataset. We found that

the quality scores returned by the Illumina pipeline (ver-

sion 1.4) are quite accurate, and if anything, slightly

conservative.

SolexaQA reads in FASTQ sequence files containing

any number of cycles (i.e., nucleotide positions) or tiles

(i.e., subunits of a flow cell lane), including those pro-

duced by early versions of the Illumina pipeline, right

up to current pipeline version 1.6. The package also

accommodates the virtual tiles employed by the latest

revisions to Illumina’s sequencing technology (e.g., the

HiSeq 2000).

SolexaQA calculates a range of summary statistics for

a subset of reads drawn randomly from each tile at each

nucleotide position; by default, 10,000 reads (typically

about 3% of reads at time of writing) are sampled per

cycle and tile, but users can tune this parameter via a

command line flag. From our observations, we suggest

that summary statistics should be calculated from no

fewer than 5,000 reads per cycle and tile; the accuracy

of statistical calculations begins to erode quickly when

fewer reads are sampled. SolexaQA only calculates mean

quality scores by default, but users may also request var-

iances, as well as the minimum and maximum quality

scores observed. For convenience, the software returns

these summary statistics in tabular form. However,

SolexaQA also produces graphical displays of mean

quality per tile and cycle. This information is presented

both as a heat map (Figure 1) and a line graph (Figure 2);

the latter also indicates global mean quality for the entire

dataset.

SolexaQA also produces a histogram of maximized

read lengths (i.e., the distribution of longest contiguous

read segments for which base quality scores exceed a

user-defined threshold) (Figure 3). Users can select a

quality threshold (i.e., a Phred quality score, or its asso-

ciated probability value); otherwise, the software defaults

to P = 0.05 (or equivalently, Q ≈ 13, or 1 base call error

every 20 nucleotides). This histogram (and associated

tabular file) can be considered one representation of the

‘usable’ information content of a given dataset. For con-

venience, an additional program, DynamicTrim, has

been released as part of the SolexaQA package. This

software trims each read to its longest contiguous read

segment (from either or both ends) where quality scores

exceed a user-defined threshold, and writes this infor-

mation to a standard Solexa- or Illumina-style FASTQ

file [9]. A more detailed discussion of the trimming

algorithm is provided online at the project website.

Finally, we note that sequence quality is often

described in terms of log probabilities. For instance, Q =

30 is the equivalent of P = 0.001 (i.e., a 1-in-1000 prob-

ability of observing an incorrectly called base). This

notation is convenient for computational reasons; ASCII

characters can readily encode log probabilities rounded

to integer values (e.g., the character “^” in this particular

example). However, although this shortcut is convenient

for reducing file sizes, log probabilities are not particu-

larly intuitive. Indeed, some summaries of data quality

can even be misleading when calculated as log values

(e.g., consider the difficulty of interpreting variances or

summations of log probabilities). For this reason, the

tables and graphs produced by SolexaQA report actual

probabilities of error, not log-based quality scores.

Results and Discussion

Example dataset

Using default settings (recommended for most users),

SolexaQA can process a single FASTQ input file (~4

gigabytes) in under 5 minutes with negligible memory

demands on a computer with a fairly standard 2.93 GHz

Xeon processor. To illustrate the package’s capabilities,

we consider the first read of a 75-bp paired-end run

generated on the Genome Analyzer II (i.e., with 75

cycles and 100 tiles). This example dataset can be
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Figure 1 Example heat map showing several commonly observed quality defects. Nucleotide positions 1-75 are plotted from left-to-right

along the x-axis; tiles 1-100 are ranked from top-to-bottom along the y-axis. (These numbers may vary for other datasets). The scale depicts the

mean probability of observing a base call error for each tile at each nucleotide position. The defects evident in this dataset (see text for details)

are atypical of Illumina sequencing; this dataset was chosen specifically to illustrate the capabilities of SolexaQA.
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Figure 2 Distribution of mean quality (probability of error, y-axis) at each nucleotide position (x-axis) for each tile individually (dotted

black lines) and the entire dataset combined (red circles). Note the considerable variance in data quality between tiles. The defects evident in

this dataset (see text for details) are atypical of Illumina sequencing; this dataset was chosen specifically to illustrate the capabilities of SolexaQA.

Figure 3 Distribution of longest read segments passing a user-defined quality threshold (here, P = 0.05, or equivalently, Phred quality

score Q ≈ 13, or a base call error rate of 1-in-20). Note that reads in this dataset would be trimmed on average to ~25 nucleotides (i.e., only

approximately one-third of the initial 75 nucleotide read length). The defects evident in this dataset (see text for details) are atypical of Illumina

sequencing; this dataset was chosen specifically to illustrate the capabilities of SolexaQA.
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represented by a heat map (Figure 1), and illustrates sev-

eral different types of errors. Firstly, the heat map shows

the failure of an entire tile; no reads in tile 75 (Figure 1,

grey horizontal bar) passed the quality threshold

required by Illumina’s pipeline software. Secondly, indi-

vidual tiles suffered cycle specific failures, as indicated

by dark squares in cycles 9, 26 and 27 (Figure 1, lower

left). These drops in data quality are often due to tile-

specific air bubbles, although they can be caused by

other factors as well (e.g., oil loss or spills on the Gen-

ome Analyzer II series of machines). Finally, tiles on this

version of the Illumina platform are arranged in a

U-shape: spatially, tiles 1 and 100 are located together at

one end of the flow cell, tiles 50 and 51 lie together at

the other end, and tiles 25 and 75 fall together in the

middle. The clustered association of darkened horizontal

lines around tiles 25 and 75 indicates that data quality

in this particular run eroded near the middle of the flow

cell, but improved towards either end. For some applica-

tions (e.g., de novo read assembly), one or more of these

defects may require manipulation of sequence reads. In

some instances, these issues may be sufficiently disrup-

tive to require data collection to be repeated. Here,

these various data defects are readily apparent after very

simple quality analysis using the SolexaQA package. The

generally poor quality of this particular dataset, which

was chosen solely for didactic purposes, is also captured

in graphs that show mean data quality per nucleotide

position (Figure 2), as well as the distribution of longest

contiguous read segments for which base quality scores

have an error rate less than 1-in-20 (Figure 3). Never-

theless, we emphasize that some proportion of good

quality data can usually be obtained even from very

poor quality runs. Dynamic trimming (described in the

following section) is one way to extract these high qual-

ity reads. Finally, we note that we have observed no

association between cluster density and read quality

within the current standard working range of cluster

density.

Examples of good and bad datasets can be down-

loaded from the project website http://solexaqa.source-

forge.net/.

Effects of dynamic read trimming

To determine the benefits of dynamic trimming on

downstream applications, we briefly explored one such

application: the effects of read trimming on de novo

assembly. Here, miscalled bases will produce k-mers

(i.e., sequences with a word length of k) that do not

reflect the true genome sequence. These false k-mers

unnecessarily complicate the de Bruijn graph, and might

be expected to produce poorer assemblies. To test this,

we examined a dataset containing the genomes of 20

bacterial isolates from two closely related species,

Campylobacter coli and C. jejuni, which were sequenced

as indexed (i.e., individually bar-coded) samples using

50-bp single-end sequencing on an Illumina Genome

Analyzer II. These data were pre-processed with Illumi-

na’s proprietary pipeline software (version 1.4), which

yielded ~3 million reads per genome (~90-fold average

nucleotide coverage). Individual reads were either

trimmed dynamically using DynamicTrim or submitted

unaltered to Velvet (version 0.7.60) [10] for de novo

assembly. In both cases, we explored a k-mer parameter

sweep of 17 to 49, with a fixed coverage cutoff of 5, and

expected k-mer coverage inferred from the number of

reads used and the expected genome size. De novo

assemblies were summarized using N50 and the maxi-

mum contig size.

Mean values of these summary statistics, normalized

by the number of reads used in each assembly, are

plotted in Figure 4. On average, dynamic read trimming

produced larger N50 and maximum contig sizes. Impor-

tantly, fewer trimmed reads were used to produce these

assemblies, and the genome sequences therefore

assembled much more quickly and required fewer com-

putational resources. As expected, the benefits of

dynamic trimming are reduced for extremely good data-

sets - if data quality is high, there is little difference

between trimmed and untrimmed datasets.

We have also encountered instances of run- and spe-

cies-specific assembly effects. In our experience, the

same library preparation sequenced on the same

machine on different occasions can produce data of

quite different quality. We have also noticed that read

Figure 4 Effect of dynamically trimmed versus untrimmed

reads on de novo assembly with the Velvet assembler.

Dynamically trimmed reads (solid symbols) relative to untrimmed

reads (open symbols) yield improved N50 values (red squares) and

maximum contig sizes (blue triangles). Summary statistics were

averaged across de novo assemblies for 20 isolates of Campylobacter

coli and C. jejuni, and normalized by the total number of reads

employed in each assembly.
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quality often differs between species, even where sample

quality is similar and samples are run - as indexed reads

- in exactly the same flow cell lane. We suspect that the

specific characteristics of individual genomes, such as G

+C content and repeat prevalence, have important

effects on sequence data quality. These anecdotes illus-

trate the idiosyncratic nature of individual datasets and

emphasize the need to test a range of assembly algo-

rithms and data manipulations (including no read trim-

ming) before settling on a final assembly. Generally

speaking, however, we found that dynamic trimming of

reads produced better de novo assemblies of several

Campylobacter genomes using the Velvet assembler,

and we have noted similar improvements in other

downstream applications for a range of prokaryotic and

eukaryotic datasets. For instance, dynamically trimmed

reads appear to improve the signal-to-noise ratio sub-

stantially when calling single nucleotide polymorphisms

(SNPs).

Conclusions

The SolexaQA package produces tabular and graphical

summaries of data quality for sequence datasets gener-

ated with Illumina’s second-generation sequencing

machines. This package aims, firstly, to create standar-

dized diagnostic information to help identify low-quality

data rapidly and easily, and secondly, to provide a

dynamic trimming function to manipulate sequence

data at the level of individual reads. The SolexaQA

package processes even large files within minutes, and

produces trimmed datasets that yield significant

improvements in downstream analyses, including SNP

calling and de novo sequence assembly.

Availability and Requirements

Project name: SolexaQA

Project home page: http://solexaqa.sourceforge.net/

Operating system(s): Platform independent with pri-

mary UNIX support

Other requirements: Requires Perl http://www.perl.

org/, R http://www.r-project.org/, matrix2png http://

www.bioinformatics.ubc.ca/matrix2png/, and the GD

graphics library http://www.libgd.org/.

Programming languages: Perl and R

License: GNU GPL version 3 or later

Acknowledgements

We thank members of the Massey Genome Service for trialing earlier

versions of this software package. DAP was supported by a summer research

scholarship from the Institute of Molecular BioSciences, Massey University,

Palmerston North, New Zealand. PJB was partly supported by the Marsden

Fund of the Royal Society of New Zealand (MAU0802). We thank Nigel

French (Massey University) for pre-publication access to Campylobacter

genome data.

Author details
1Institute of Molecular BioSciences, Massey University, Palmerston North

4442, New Zealand. 2The Allan Wilson Centre for Molecular Ecology and

Evolution, New Zealand. 3The Bio-Protection Research Centre, New Zealand.
4Institute of Veterinary, Animal and Biomedical Sciences, Massey University,

Palmerston North 4442, New Zealand. 5Massey Genome Service, Massey

University, Palmerston North 4442, New Zealand.

Authors’ contributions

MPC and PJB proposed the algorithm. MPC designed the code. MPC and

DAP implemented the software. MPC, DAP and PJB performed the analyses.

MPC wrote the paper. All authors have read and approved the final

manuscript.

Received: 21 April 2010 Accepted: 27 September 2010

Published: 27 September 2010

References

1. Metzker ML: Sequencing technologies - The next generation. Nat Rev

Genet 2010, 11:31-46.

2. Dohm JC, Lottaz C, Borodina T, Himmelbauer H: Substantial biases in

ultra-short read data sets from high-throughput DNA sequencing.

Nucleic Acids Res 2008, 36:e105.

3. Dolan PC, Denver DR: TileQC: A system for tile-based quality control of

Solexa data. BMC Bioinformatics 2008, 9:250.

4. Hannon GJ: FASTX-Toolkit. 2010 [http://hannonlab.cshl.edu/fastx_toolkit/].

5. Martínez-Alcántara A, Ballesteros E, Feng C, Rojas M, Koshinsky H,

Fofanov VY, Havlak P, Fofanov Y: PIQA: Pipeline for Illumina G1 genome

analyzer data quality assessment. Bioinformatics 2009, 25:2438-2439.

6. Rougemont J, Amzallag A, Iseli C, Farinelli L, Xenarios I, Naef F: Probabilistic

base calling of Solexa sequencing data. BMC Bioinformatics 2008, 9:431.

7. R Development Core Team: R: A Language and Environment for

Statistical Computing. 2010 [http://www.r-project.org/].

8. Pavlidis P, Noble WS: Matrix2png: A utility for visualizing matrix data.

Bioinformatics 2003, 19:295-296.

9. Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM: The Sanger FASTQ file

format for sequences with quality scores, and the Solexa/Illumina FASTQ

variants. Nucl Acids Res 2010, 38:1767-1771.

10. Zerbino DR, Birney E: Velvet: Algorithms for de novo short read assembly

using de Bruijn graphs. Genome Res 2008, 18:821-829.

doi:10.1186/1471-2105-11-485
Cite this article as: Cox et al.: SolexaQA: At-a-glance quality assessment
of Illumina second-generation sequencing data. BMC Bioinformatics 2010
11:485.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Cox et al. BMC Bioinformatics 2010, 11:485

http://www.biomedcentral.com/1471-2105/11/485

Page 6 of 6

http://solexaqa.sourceforge.net/
http://www.perl.org/
http://www.perl.org/
http://www.r-project.org/
http://www.bioinformatics.ubc.ca/matrix2png/
http://www.bioinformatics.ubc.ca/matrix2png/
http://www.libgd.org/
http://www.ncbi.nlm.nih.gov/pubmed/19997069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18660515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18660515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18507856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18507856?dopt=Abstract
http://hannonlab.cshl.edu/fastx_toolkit/
http://www.ncbi.nlm.nih.gov/pubmed/19602525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19602525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851737?dopt=Abstract
http://www.r-project.org/
http://www.ncbi.nlm.nih.gov/pubmed/12538257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20015970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20015970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20015970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results and Discussion
	Example dataset
	Effects of dynamic read trimming

	Conclusions
	Availability and Requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

