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Abstract. Conventionally, solid finite elements have been looked upon 

as just generalizations of two-dimensional finite elements. In this article 

we trace their development starting from the days of their inception. 

Keeping in tune with our perceptions on developing finite elements, without 

taking recourse to any extra variational techniques, we discuss a few of 

the techniques which have been applied to solid finite elements. Finally 

we critically examine our own work on formulating solid finite elements 

based on the solutions to'the Navier equations. 
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1. Introduction 

Development of the finite element method (FEM) as an analysis tool for continuum 

problems coincided with the advent of powerful digital computers. Using this method 

it is possible to establish and solve equations pertaining to complex systems in a very 

simple manner. It is precisely because of these reasons that today FEM has come to 

stay as a powerful tool in engineering analysis and design encompassing many diverse 

fields including structural mechanics, fluid mechanics, solid mechanics, electromag- 

netism etc. In fact it has emerged as a very popular analysis tool in interdisciplinary 

problems. The popularity of the method can also be attributed to the ease with which 

complex domains can be handled, requiring no additional techniques. 

As in the case of all original development it is difficult to pinpoint exactly when 

FEM was discovered. It could be attributed to three separate groups - mathematicians 

(Courant 1943; Collatz 1950; Courant & Hilbert 1953), physicists (Synge 1957) and 

engineers (Turner et al 1956). Very good surveys of the origins of FEM exist and 

are today commonly found in introductory chapters in many textbooks (Zienkiewicz 

1973; Yang 1986). As is often the case with diverse groups working far removed from 

one another, emphasis on the various aspects of the study has been different for 

both engineers and mathematicians. Engineers were not deterred by the lack of an 

elegant mathematical theory, while mathematicians concerned themselves with those 

aspects of the problem which interested them more, like convergence. 
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Today, FEM has been put on a relatively more sound mathematical footing. 

Extensive literature exists on its mathematical foundations and many aspects can be 

found elegantly represented in books (Ciarlet 1978; Oden 1983). FEM (as used 

by both mathematicians and engineers) involves a series of approximations. While 

it has generally been accepted that any procedure of discretization will involve a 

series of approximations, the approximations of FEM are more far reaching than 

others. For example, the breaking up of an elastic continuum itself is an approximation, 

for these elements are joined together only at the nodes. 

Amongst the many other approximations made by the method, the most crucial 

one appears to be that of assuming that the displacements within the element can be 

expressed as a linear function of the nodal point displacements. This seems to have 

an overriding impact on the formulation of successful finite elements. We call this 

functional relationship from now on as the "interpolation function". This relationship 

is also referred to by various names in literature like shape functions, basis functions 

etc. 

The choice of the geometry of the element and the interpolation function leaves a 

great deal of scope to the ingenuity and skill of the engineer designing finite elements. 

Solutions obtained would obviously depend a great deal on the exercise of this skill. 

FEM is normally implemented as the minimization of a functional. For example 

the popular displacement based approach, uses the principle of minimization of 

the total potential. The solutions obtained on minimization of the functional would 

then be obviously constrained by the choice of the assumed displacement field. Various 

types of interpolation functions are used in the literature. There have also been many 

methods and functionals used for formulation of finite elements. It is beyond the 

scope of this article to examine all of them. We shall therefore restrict ourselves to 

examining the methods and interpolation functions used in the formulation of three- 

dimensional finite elements for elastostatics. 

2. 3-Dimensional dement formulations and interpolation functions 

Conventionally finite elements are formulated by strictly adhering to three cardinal 

principles, known as the "convergence criteria". 

2.1 The convergence criteria 

The assumed interpolation functions limit the infinite degrees of the system to a 

function with finite degrees of freedom. Therefore the minimum of the functional will 

not represent the correct equilibrium configuration as it would largely depend on 

number of degrees of freedom chosen. This will be true in spite of the fineness of the 

finite element mesh and the number of subdivisions used. Therefore, conventionally, 

in order to ensure convergence to the correct solution, certain criteria are required 

to be satisfied by the interpolation functions. They are the following (Zienkiewicz & 

Taylor 1989). 

(1) "The displacement function chosen should be such that it does not permit strain- 

ing of an element to occur when the nodal displacements are caused by a rigid 

body displacement." 

(2) "The displacement function has to be of such a form that if nodal displacements 
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are compatible with a constant strain condition such constant strain will in fact 

be obtained." 

(3) "The displacement functions should be so chosen that the strains at the interface 

between elements are finite." 

Of course all the three criteria are needed to be satisfied only in the limit when 

the element sizes shrink to zero. Earlier they (or slightly modified versions of them) 

went by the names commonly referred to as continuity, compatibility, and a third 

criterion of completeness. Mathematical statements encompassing them exist in the 

name of "functional completeness" (de Arrantes Oliveira 1968; Strang & Fix 1973). 

Unfortunately they do not speak about the rates of convergence, except recognizing 

that in the limit as element sizes go to zero (thereby calling for repeated mesh 

refinement), solutions converge. In fact it can been shown that all elements which 

have been formulated by rigorously adhering to the above criteria will converge 

(Strang & Fix 1973). However, these criteria could not explain the phenomenon of 

locking and the resulting loss in convergence. 

2.2 Solid elements satisfying the convergence criteria 

We first consider solid elements developed by adhering to the above convergence 

criteria. 

2.2a Tetrahedral elements: The first formulation of a simple tetrahedral element 

was by Gallagher et al in 1962 and was used in the stress analysis of heated complex 

shapes. Early elaborations of tetrahedral elements were by Melosh (1963), Argyris 

(1965) and Clough (1969). One of the early extensive numerical studies is due to 

Rashid (1969, 1970). 

In these studies (and future elements to be discussed) tetrahedral elements were 

formulated in terms of volume coordinates similar to the triangular elements which 

were formulated in area coordinates, and were simple generalizations of the triangular 

elements. These elements were numerically integrated to obtain the element matrices. 

As can be easily deduced the first of the tetrahedral elements (Gallagher et al 1962) 

was a C o continuous, 4-node, 12-degree-of-freedom (d.o.f.) constant strain tetrahedron, 

with linear shape functions along the three orthogonal cartesian directions. 

Clough (1969) used a C °, 10-node, 30d.o.f. linear strain tetrahedron by adding 

midside nodes. This tetrahedron used complete quadratic polynomials in the three 

directions. Other higher order elements have also been formulated. Argyris et al 

(1968b) obtained a C °, 20-node, 60 d.o.f, quadratic strain tetrahedron by adding nodes 

at the one- and two-third points of each of the six sides of the tetrahedron. The inter- 

polation function was a complete twenty-term cubic polynomial in volume coordinates. 

Rashid et al (1969) used a C °, 16-node, 48 d.o.f, tetrahedron by omitting the centroidal 

face nodes. Argyris et al (1968c) proposed the TEA8 element with 8 nodes and 60 d.o.f. 

This element has four centroidal nodes in addition to the four vertex nodes. Each 

vertex node has the following degrees of freedom: u, Ou/~x, ~u/~y, ~u/~z and similar 

d.o.f~ in the v and w directions. Hughes & Allik (1969) and Fjeld (1969) have formulated 

and used a 4-node, 48 d.o.f, tetrahedron by using the four vertex;nodes and with d.o.f. 

of u, v, w and their derivatives in the x, y and z directions at each node. Being a 

higher order element with derivative degrees of freedom, this element required higher 

order continuity, and as could be expected "this is the most advantageous tetrahedron 

introduced" (Yang 1986) till its date of publication. 
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Comparative studies on the above tetrahedral elements abound (in a partial sense - 

upto their dates of publication) and the interested reader is referred to the work of 

Fjeld (1969). Initial work regarding the development of tetrahedral elements were 

hampered due to the manual input of data required. With the advent of high speed 

computer graphics many algorithms can be found (Pammer & Szabo 1981; Nguyen 

1982) which aid the user in developing the data for the analysis. 

2.2b Rectangular hexahedral elements based on the convergence criteria: Initial 

work on conforming hexahedral elements tended to be restricted to rectangular ones. 

This could be attributed to two reasons. (a) The generalized coordinate approach 

could yield geometries which were not invertible and (b) since the faces and sides of 

the rectangular elements are orthogonal to one another, such elements can be formulated 

using non-dimensional local coordinate systems. A number of such elements have 

been formulated. Amongst the first of these was a C °, 8-node, 24d.o.f. linear dis- 

placement rectangular hexahedron (Melosh 1963; Clough 1969). The element used 

"trilinear" displacement interpolation functions in the three orthogonal directions. 

The stiffness matrix was explicitly given by Melosh (1963). The addition of one node 

to the midpoints of each of the 12 sides of the hexahedron gives a C °, 20-node, 

60d.o.f. quadratic displacement hexahedron. Just like the trilinear element used 

incomplete cubic polynomials, this element used incomplete quartic ones. This element 

was first enunciated by Clough (1969) and highlighted by Rigby & McNeice (1972) 

and Pawsey & Clough (1971). The addition of two nodes, at the 1/3 and 2/3 points 

of the edges yields a C °, 32-node, 96 d.o.f, cubic displacement rectangular hexahedron, 

which uses incomplete quintic polynomials, see Ergatoudis et al (1968). Other higher 

order elements have also been formulated. The addition of four facial nodes on each 

of the 6 faces of the hexahedron in addition to the 32-node hexahedron above and 

the addition of 8 interior nodal points yields a 54-node, 192d.o.f. C o hexahedral 

element, first used by Argyris & Fried (1968). Here the interpolation function can be 

obtained by taking the product of 3 cubic polynomials in 3 directions. This of course 

leads to an incomplete higher-order field (such elements are known as Lagrangian 

elements). Another commonly used rectangular Lagrangian element is the one obtained 

by taking the product of quadratic polynomials in three orthogonal directions to 

obtain a 27-node, 54 d.o.f, hexahedron with a centroidal node. Since no loads could 

be applied on the centroidal node, the d.o.f, corresponding to this node are statically 

condensed. 

The Lagrangian elements have a disadvantage in that the interpolation functions 

require the use of unusually large degrees of the polynomial for interpolation. 

The use of first derivative degrees of freedom (along the 3 directions x, y and z) 

yields a 8-node brick with 12 d.o.f, at each node (96d.o.f). For such an element the 

displacement functions could be assumed in the form of Hermitian polynomials as 

in Argyris et al (1968b) or an incomplete fifth order field as used by Zienkiewicz et al 

(1970). 

On account of the fact that 3-dimensional elements require large matrices to be 

stored and enormous computational effort, numerical experiments concerning these 

solid elements have by and large been "spotty" (Yang 1986) as compared to their 

2-dimensional counterparts. But it is obvious from the above discussion that a large 

number of elements of both tetrahedral and hexahedral geometries can be formulated. 

Some numerical comparisons do exist in literature. The interested reader is referred 

to studies by Melosh (1963), Rashid (1970), Hughes & Allik (1969), Fjeld (1969), 
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Chacour (1972) and Ferguson & Clark (1979). For a brief idea (in tabular form) of 

the relative performance of each element (accuracy/unit computational time) the 

reader is referred to Yang (1986). 

One other hexahedral element which has been formulated, though not frequently 

used is a fourteen-noded brick obtained by the use of 6 facial nodes in addition to 

the 8 vertex nodes. This element suffers from the drawback that it is very difficult to 

obtain a frame invariant element. Irons & Ahmad (1979) have noted that even though 

the element was very promising as it would produce a small bandwidth/frontwidth 

for analysis "there is something wrong with this element". Kidger (1990) and Smith 

& Kidger (1992) using averaging along three directions have produced 14-node 

hexahedral elements and obtained success with some problems. 

2.2c Other elements: Finite elements of shapes other than tetrahedra and hexahedra 

have also been formulated. Some of these are wedge-shaped and pentahedral elements. 

For example, in the wedge-shaped (triangular prisms) the interpolation functions can 

be obtained as a product of the Lagrange approach and the serendipity approach. 

See Zienkiewicz (1977) for the interpolation functions used in formulating the 6-node- 

18 d.o.f., 15-node-45 d.o.f, and 26-node-78 d.o.f, triangular prism elements. Many 

forms of pentahedral elements also exist. For one of these elements the reader is 

referred to Haggenmacher (1993). 

2.3 Solid elements based on hierarchic interpolation functions 

So far in all the elements mentioned above, we find that we need to increase the 

number of nodes when we want to increase the order of the interpolating polynomial 

or alternately use elements with derivative degrees of freedom. Yet another means of 

generating interpolating functions for elements is to use hierachic approximations. 

In this method one needs to associate the monomial term in each interpolating 

polynomial with just a parameter and not to one with an obvious physical meaning. 

The only constraint associated with these hierachic functions is that they need to 

have zero values at the end of the range - in this case the vertices or nodal points 

along the edge under consideration. Using these polynomials one can arrive at a 

variety of interpolation functions for elements of different geometries. In fact it is 

possible to obtain a general form for interpolation functions, as demonstrated by 

Peano (1976). For 3-dimensional elements "a simple identification of the hierarchic 

parameters on the interfaces will automatically ensure C O continuity of the approxi- 

mation" (Zienkiewicz & Taylor 1989). In order to obtain optimal forms of hierarchical 

functions - those that result in a diagonal equations system, it can be shown that such 

interpolations can be obtained using orthogonal polynomials, for example Legendre 

polynomials. The products of these interpolation functions in three directions can 

yield interpolation functions useful for 3-dimensional elements (Zienkiewicz et al 1983). 

2.4 lsoparametric elements 

It is obvious from the above discussion, that it is possible to generate a large number 

of solid finite elements very easily. Despite the ease of formulation, all the above 

mentioned dements suffer from one particularly severe drawback - their poor curve 

fitting ability. This ability is severely tested when modelling real life problems with 

complex curved geometries. 
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In order to overcome this drawback isoparametric elements are used. The method 

allows for the use of a nonlinear transform, mapping of a given finite element geometry 

to a "parent" one. "The interpolation of the element coordinates and the element 

displacements using the same interpolation functions, which are defined in the natural 

coordinate system, is the basis of the isoparametric element formulation" (Bathe & 

Wilson 1976). In addition another particular drawback of the generalized coordinate 

method is also overcome, namely, the excessive care which is to be exercised in order 

to express the generalized coordinates in terms of nodal point displacements involving 

the inversion of a matrix (which for certain geometries could be singular). Also it 

overcomes the increased computational effort required in the generalized coordinate 

approach to transform element matrices from the element ~local) coordinate system 

to a global one - this is more easily done in the case of isoparametric elements. These 

advantages are achieved by the direct use of interpolation functions used for the 

displacement. Isoparametric elements are today very popular. The first isoparametric 

element was developed by Taig (Robinson 1985) in 1958, but the first work was 

published by Irons (1966). Since then many publications comparing one set of 

isoparametric elements with another and highlighting the advantages of these with 

respect to the generalized coordinate elements have appeared (Ergatoudis et al 1968; 

Clough 1969; Zienkiewicz et al 1969; Ahmad et al 1970). The interpolation functions 

used in the formulation were similar to those described in the previous section, except 

that interpolation functions for the displacement field were directly used. 

The basic problems of using isoparametric elements (as in non-isoparametric 

formulations) are two fold (Zienkiewicz et al 1971; Pawsey & Clough 1971; Wilson 

et al 1973). "Firstly excessive shear strain energy is stored in these elements and, 

secondly, as the element becomes "thin" (for example, very large lid ratios in the case 

of analysis of plates and shells) the stiffness coefficients corresponding to the transverse 

degrees of freedom are larger than those of longitudinal displacements, which results 

in numerical ill-conditioning" (Bathe & Wilson 1976). 

3. Extra-variational techniques 

Most of the elements mentioned in the above sections were derived by adhering 

strictly to the convergence criteria (except the ones using hierarchic interpolations). 

The behaviour of these elements in situations - such as bending or near incompres- 

siblity (especially the lower-order elements) left a lot to be desired. These problems, 

depending on the type being solved and the element under consideration, are known 

by various names. Three-dimensional elements are known to suffer from delayed 

compressibility locking respectively. Here, the term "locking" will be used to "denote 

an indefinite decay of accuracy in displacement recovery" (Naganarayana 1991). 

Locking is prevalent in other structural problems also, like shear locking in fiat 

plates/shells (see Bathe & Dvorkin (1985) and Donea & Lamain (1987)) and membrane 

locking in curved beam and shell structures (Stolarski & Belytschko 1981; Prathap 

1985). Other common problems encountered are "violent stress oscillations" (Prathap 

1992) and "delayed convergence" (Naganarayana 1991). It will not be wrong to suggest 

that the various new elements which are formulated lately address themselves to 

tackling these problems. In fact there does not appear to be any solid element which 
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is totally divorced from these problems. Since the early days of the finite element 

method, the development of such elements has been the source of both a challenge 

as well as a motivation for element developers. 

Many techniques do exist in literature to get around these problems rather than 

attempt to solve them. (Consistency (Prathap 1992) is an attempt at solving the 

problem, though not fully successful for solid elements.) These techniques have 

been labelled variously as "tricks" (Prathap 1992) by some or "variational crimes" 

(Strang 1972) by some others, for they do not strictly adhere to the exact rules laid 

down by the variational principles on which the mathematical model is based. Many 

of these techniques can be categorized as "ad-hoc" (Naganarayana 1991), for their 

success in some problems does not necessarily imply the same when extrapolated to 

other problems. The list of these techniques is very large and continues to grow 

even today. "The task of developing good finite elements never seems to be finished. 

Designers return, again and again, to the same basic configuration of nodes and find 

some way to eke out an improvement" (MacNeal 1992). 

It would be a Herculean task to list the entire set of these techniques individually. 

We list below only some of the above mentioned techniques, representing a good 

sample of select procedures which over the years have come to stay - these techniques 

have been regarded as the "milestones" (MacNeal 1992) of progress in the FEM. 

(1) Reduced/selectiveintegration: This is among the first ofthe so called "variational 

crimes" discovered. In this method the strain energy is not integrated exactly. For 

example, the 8-node solid element is integrated using a 2 x 2 x 2 Gauss rule and the 

20 node brick by a 3 x 3 x 3 Gauss rule. The 27 node Lagrangian element uses a 

3 x 3 x 3 order rule. It is well-known that an n point rule in one dimension can be 

used to integrate a polynomial of order 2n + 1 exactly (Stroud 1971; Conte & de Boor 

1980). So a 3 x 3 x 3 rule is required to integrate the cubic interpolation function in 

the 8-node element exactly. But it has been observed that in practice the reduced 

integrated element converges faster to the exact solution. This technique which is 

widely used in the FEM is called reduced integration. These rules need to be used 

with care. A very low order rule can lead to mechanisms (Brassioulis 1989), while 

the use of a very high order one leads to delayed convergence. One common type 

of mechanism encountered during reduced integration is the presence of hour glass 

modes. Various methods have been proposed in order to control these modes for 8 

noded hexahedral solid elements (Flaganan & Belytschko 1981; Schulz 1985) and for 

20-noded solid elements (Kelen 1989). Such rules have proved their mettle in many 

problems, particularly related to plate and shell flexure (Pawsey & Clough 1971; 

Zienkiewicz et al 1971) and also when solid elements are degenerated into flat plate 

and curved shell elements. Explicit integration for such degenerated elements have led 

to difficulties, which require the use of special techniques (Vlachoutsis 1990). The 

success of this techniques has led to efforts to include the experience gained into 

updating finite element codes (Case & Vandegrift 1986; Case et al 1986). Many 

explanations have been sought for the success. Some are heuristic. Others have been 

based on more scientific arguments. Prathap and co-workers (1992) have looked upon 

this technique as a method to obtain "field consistency". Zienkiewicz & Taylor (1989) 

attribute the success to the fact that the Gauss points being used in reduced integration 

are exactly the optimal points for stress recovery. "However, the main reason for 

success does not lie here but is associated with the fact that it provides the necessary 

singularity of the constraint part of the matrix, which avoids locking" (Zienkiewicz & 
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Taylor 1989). It should also be noted here that for mapped elements (like the iso- 

parametric ones) full integration will not exactly integrate a deformed element (Cook 

et al 1989). 

(2) Addition of bubble modes (Wilson et al 1973; Wilson 1973): This technique 

involves the addition of certain degrees of freedom not associated with any node (like 

the hierarchic functions mentioned previously). This brought into use, incompatible 

elements, where the displacement fields are not continuous across element boundaries. 

The variables associated with the nodeless degrees of freedom are later condensed 

out using a static condensation procedure. 

In the case of the 8-node brick element this technique when used in tandem with 

reduced integration, gives very good results and has found its way into many 

commercial finite element programs. Unfortunately, the use of this technique requires 

experience. While it is possible that certain polynomial terms can be associated with 

the element whose "shape functions" are known, no clues are available in literature 

to guide the novice as to which functions are to be or not to be chosen. The success 

of the technique appears to lie in the fact that the functions which are chosen are 

the exact ones required to remove only certain types of locking. For example, in the 

case of the 8-node brick element, the incompatible modes chosen alleviate parasitic 

shear stored during bending. It also alleviates locking near incompressible limits. 

(3) Using unequal order interpolation: This is one of the simpler techniques in use, 

espcially in the case of 1- and 2-dimensional elements. For example, Tessler & Dong 

(1981) have formulated one such Timoshenko beam element. Here the order of the 

interpolation function used for the rotational degrees of freedom is one less 

than that of the translational ones. Its success could be attributed to the fact that 

the terms dropped from the interpolation functions for the rotational degrees of 

freedom are exactly the ones which if present will cause locking. Unequal order 

interpolation has been used in the formulation of many solid finite elements, like 

transitional elements and solid elements in the analysis of plates (16-node hexahedral 

elements). 

(4) Assumed strain methods (MacNeal 1982; Olesan 1983): This techniques involves 

the use of computation of interpolation functions (of lower order) and smoothing 

them in some least square sense. It has been felt that this procedure is equivalent to 

that of reduced integration (Prathap 1992), but it has an added advantage in that the 

procedure can be used to obtain interpolation functions, while in the case of reduced 

integration, the points of reduced integration may not exist. 

(5) Residual energy balancing (Fried t974, 1975; Cook 1977): In this technique 

certain constraints contributing to locking are identified. These constraints are then 

artificially removed by the use of a constant, which the designer of the finite element 

sets to an arbitrarily small value. The point to be noted here is that the arbitrary 

constant to be used is problem dependent and it appears to be difficult to choose 

one value for a set of elements and problems. The constant is also mesh dependent, 

thereby compounding to the confusion. Stresses predicted by this method are "very 

unreliable" (Prathap 1992) and grossly dependent on the value of the scaling constant 

chosen. This technique, it is felt, is extrapolatable to solid finite elements and hence 

must be used with care. 

(6) Reduced interaction (Prathap 1992): In this case the field variable that causes 

locking is identified and replaced by a lower order interpolation field. 

(7) Elements based on variational principles other than the principle of minimum 

total potential: These will be dealt with in a later section. 
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There are a number of other ingenious techniques used to obtain better elements. 

Amongst the others are synthesis using Fourier components (Park 1984), the use of 

trigonometric interpolation functions (Heppler & Hansen 1987), use of shear constraints 

(Crisfield 1984) etc. The list appears to grow even today, as newer techniques are 

developed to obtain elements which would predict accurate solutions (for both 

stresses and displacements). Obviously, the primary reason for the development of 

these elements could be attributed to the lack of success with those previously 

developed. Even the techniques mentioned above do not appear to provide satisfactory 

explanations for their success. While, sometimes they work well is one context, they 

do not do so in others. This has led to a compounding of the already prevailing 

confusion. 

4. Some other types of interpolation functions 

In addition to the interpolation functions mentioned above, various other types are 

still being developed. The hybrid-stress elements (see § 5 below) which uses independent 

interpolations for stresses and displacements has been viewed as just another extra- 

variational technique by some authors (Prathap 1992; Andelfinger & Ramm 1993). 

Some authors have looked at the use of"rational" interpolation functions (Wachspress 

1975) for formulating a hexahedral element (Walt 1971) and its applications (Yu 1990). 

Here interpolation functions which can be defined as the ratio of two polynomials are 

used. De Freitas & Castro (1992) have proposed the use of digital interpolation 

functions (based on a class of functions known as the Walsh functions) and can be 

viewed as a method similar to the ones using trigonometric functions above. A new 

class of interpolation functions called "physical shape functions" have also been 

presented (Gilewski & Gomulinski 1990), where physical parameters and material 

parameters are interpolated in addition to displacements. Bergan & Nygard (1984) 

propose a "free formulation" where elements can be formulated by splitting up the 

displacement field into one with lower order fields and another with higher order 

ones. Even though it appears that these techniques have not yet been used in the 

design and development of solid finite elements, they can, in some sense, be described 

as generalized methods, and we feel they are extrapolatable to solid elements. 

5. The newer 8-node brick elements 

It has been seen that it is the lower-order hexahedral elements (in the case of two- 

dimensional elements it is the quadrilateral ones) which suffer from locking due to 

parasitic shear. Therefore it is not surprising that recent developments of solid finite 

elements have addressed themselves to this problem. In this section we look at some 

"new" formulations of the 8-node brick element. 

5.1 Displacement-based elements 

We first look at the displacement-based elements (like all formulations discussed 

above). A number of such elements have been formulated. Wilson (1973) first proposed 

an incompatible element, with additional bubble modes in order to incorporate a 

method which ensured that the 8-node brick does not lock under bending situations. 
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The element he proposed did not pass the patch test. Taylor et al (1976) by imposing 

a set of constraints which ensured that the element satisfies the patch test a priori, 

were able to arrive at an element which has remained popular to this day. Bretl & 

Cook (1979) have proposed an 8-node element, in which the stiffness matrix 

corresponding to the lower-order strains and those of the higher-order ones have 

been separated out. Depending on the choice of the problem, the corresponding 

higher-order strains are used. The stiffness matrices of the lower-order fields use a 

stress-based approach different from the higher-order ones. Yunus et al (1991) have 

proposed an 8-node element with rotational degrees of freedom. This element which 

had three additional modes to overcome Poisson ratio locking, is prone to experience 

zero energy modes which are alleviated using additional procedures. (The method is 

similarly extended to the development of tetrahedral elements with rotational degrees 

of freedom (Pawlak et al 1991). All the displacement-based elements discussed so far 

predict poor stresses under many loading conditions. Wilson & Ibrahimbegovic (1990) 

using a least squares approximation to extract stresses were able to improve the 

stress prediction of the 8-node brick element with incompatible modes-  stress 

predictions were identical to that predicted by stress-based elements. In this way 

they were able to separate the procedures for computing the stresses and for 

displacements. 

5.2 Elements based on other variational principles 

The discussions above highlight the difficulties encountered by designers in the 

formulation of displacement based elements. Over the years elements based on other 

variational principles have been developed. 

Prathap and co-workers (1992) have attempted to obtain explanations for the 

problem of locking and to formulate elements which do not take recourse to any of 

the extra-variational techniques. They use the "field consistency paradigm" and the 

"functional reconstitution technique" to obtain elements which they show do not 

lock. This method appears to call for a variation of the strain fields independent of 

the displacements and is based on the more general HeUinger-Reissner and the 

Hu-Washizu principles (Washizu 1968). Moreover the solid elements which have 

been formulated using this technique suffer from one severe drawback in that the 

8-node brick formulated (Chandra & Prathap 1989) is very sensitive to geometric 

distortions and predicts poor stress values (Dong & de Freitas 1992). This has been 

attributed to the difficulties encountered in finding a "technique of consistent mapping 

for covariant finite element formulation in 3-D applications..." (Naganarayana 1991). 

In some cases (Naganarayana & Prathap 1991), reduced/selective integration is used 

in order to integrate the strain energy to overcome this difficulty and is illustrated 

with a 27-node hexahedral brick element. 

Amongst the more popular formulations are the ones in which compatible displace- 

ments and equilibriating stresses are independently interpolated. Stress parameters 

are eliminated at the element level and a stiffness matrix is obtained, as by Pian (1973). 

These formulations are called hybrid/mixed formulations. Many three-dimensional 

hybrid/mixed stress elements have been developed (Zienkiewicz & Taylor 1989). Here 

also extravariational techniques like reduced integration and bubble modes are used. 

Other elements formulated using these principles are 8-node elements (Irons 1972; 

Lee 1974), 20-node elements (Ahmad & Irons 1974), special purpose three-dimensional 
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elements for thick plate analysis (Spilker 1981) and 20-node quadratic displacement 

3-dimensional isoparametric hybrid elements (Spilker & Singh 1982). 

Using this method in which displacement variables are separated, Pian and co- 

workers were able to formulate isoparametric elements which are coordinate invariant. 

These elements are known to have certain drawbacks. One of them is the presence 

of zero energy modes which appear when stress interpolants are used. Pian & Chen 

(1983) were able to establish a method which prevented the appearance of zero energy 

deformation modes. This concept was extended by Pian & Tong (1986) to develop 

hexahedral hybrid elements. Spilker & Singh (1982) developed a 20-node hybrid 

hexahedral element based on the complementary energy principle. As the stress 

interpolants need to satisfy equilibrium conditions, an a priori cartesian coordinate 

interpolation was necessary. Such interpolation is known to provide poor stresses 

and displacements under grossly distorted conditions. Another such element was 

formulated by Loikkanen & Irons (1984). Punch & Atluri (1984a, 1984b) used 

symmetric group theory to study a number of such elements (using cartesian interpola- 

tion functions) for stability, coordinate invariance and for the optimal stress functions 

to be chosen. Tang &Chen (1982) proposed a series of non-conforming stress based 

elements. Even though their performance was better than those of conforming ones, 

they were no superior to the modified Wilson 8-node brick. Chela & Cheung (1987) 

derived a new functional (as a generalization of the functional proposed by Pian in 

1964, with displacements, stresses and strains as independent variables) to obtain a 

series of isoparametric elements (Cheung & Chert 1988). However, the formulation 

of these elements requires an additional stress field and proper matching of 

displacements, strains and stresses. This requires experience. 

Bachrach (1987) used a ~-projection operator in tandem with the Hu-Washizu 

principle to obtain a stress-based element which performed well in bending and near 

incompressibility. The element required to be reduced integrated and stresses 

extrapolated to the nodes. Yunus et al (1989) have formulated a hybrid solid element 

with rotational degrees of freedom. Sze et al (1990) by using a modified Hdlinger- 

Reissner principle, with prior constraints and recognition of the orthogonality of 

strains, stresses and incompatible displacements obtain a series of isoparametric 

elements. These could be reduced integrated. Chen & Cheung (1992) by using a 

weaker constraint condition on their previous formulation (Cheung & Chert 1988) 

were able to obtain elements with improved performance. Dong & de Freitas (1992) 

obtained an isoparametric incompatible solid element based on the Hellinger-Reissner 

principle which was modified by the presence of a constantstress multiplier. Sze & 

Ghali (1993) start with the assumed stress element of Pian & Tong (1986), identify 

the strain components which cause locking and selectively scale them down to obtain 

an incompatible element. The element is then corrected to pass the patch test using 

an "admissible matrix formulation". Andelfinger & Ramm (1993) use the enhanced 

assumed strain method (EAS) (obtained by the use of an extra strain field- not 

continuous) to obtain an 8-node element. Pian (1985) by a modification of his original 

procedure, by choosing the displacement field in a "consistent" manner, was able to 

obtain a hybrid 8-node solid element with improved performance under distorted 

conditions. The growth in popularity and reliability of current day symbolic mani- 

pulators has speeded up the development of solid dements. Tan et al (1991) have 

elaborated on procedures to formulate an 8-node hybrid hexahedral element. 

All the elements mentioned above have been compared individually against the 

displacement based solid elements. Comparisons are normally made against standard 
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problems proposed in literature.(MacNeal & Harder 1985; Belytschko & Liu 1986; 

White & Abel 1989). Kim et al (1990) have compared the performance of the 

degenerated 20-node element against the 18-node assumed strain element. 

All the solid elements discussed do not yet seem to show completely correct 

predictions for stresses as well as displacements encompassing different types of 

loading conditions. 

6. Elements based on solutions to the Navier equation 

All the elements discussed in the preceding sections seem to be formulated with the 

express desire of obtaining good element performance. Instead of attacking the root 

of the problem, a precise statement of which does not seem to exist so far, they seem 

to provide ways and means of getting around it. Even methods like the field consistency 

concept and the use of physical shape functions, which attempt to get to the bottom 

of the problem, do not as yet appear to be perfected for solid finite elements. 

We have looked at the problem afresh. Recognizing the fact that the overall element 

behaviour seems to be guided by the interpolation functions chosen, we have formulated 

two hexahedral elements (Venkatesh & Shrinivasa 1993a) using Papcovitch-Neuber 

solutions as interpolation functions which satisfy the governing differential equations 

(Navier equations) a priori (Venkatesh & Shrinivasa 1993b). It was felt that such a 

method would combine the simplicity of the displacement-based approach (the Navier 

equations are written in terms of displacements) and accurate stress prediction of 

the stress-based approach (the Navier equations are based on equations of stress 

equilibrium). Such a method has been thought of before (Hoppe 1973), but does not 

seem to have been implemented for solid elements. 

These elements (Venkatesh & Shrinivasa 1993c, 1993d) have been formulated 

without taking recourse to any of the above mentioned extra-variational techniques. 

The elements are exactly integrated by breaking the hexahedra into five tetrahedra 

(Stroud 1971) and then using appropriate gauss point integration. They exhibit correct 

element behaviour when subjected to bending moment loads even under grossly 

distorted conditions and also when the stresses are computed directly by evaluating 

them at the nodes instead of"at some optimal locations within the elements" (Barlow 

1976, 1989). The element performance for out-of-plane shear matches with that of 

the Wilson 8-node brick for rectangular elements and has been shown to be better 

than the latter under distorted conditions. The elements pass the constant strain 

patch test under rectangular conditions. Under distorted conditions they pass the 

"weak patch test" (Cook et al 1989). Relative performance of the these elements 

vis-a-vis already existing ones can be found in Venkatesh & Shrinivasa (1993e). 

It therefore appears that it would be possible to formulate finite elements which 

do not experience any irrational behaviour by simply using the solutions to the Navier 

equations as interpolation functions. 

7. Conclusion 

We have reviewed the development of solid finite elements since the inception of the 

finite element method. We have looked at displacement based elements and their 

drawbacks such as the presence of shear locking etc..We have briefly reviewed the 
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extra-variational techniques used in literature to overcome these drawbacks. The 

paper also reviews the state-of-the-art lower-order hexahedral finite elements being 

currently proposed. Finally, we critically discuss the lower-order finite elements 

developed by using interpolation functions which satisfy the governing differential 

equations a priori and conclude that it is possible to formulate such finite elements 

without taking recourse to any extra-variational techniques. 

The authors wish to acknowledge the support received for carrying out this work 

from the Aeronautics Research and Development Board throtigh grant no. AERO/RD- 

134/100/10/90-91/653. 
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