SOLID FREEFORM FABRICATION: A New Direction in Manufacturing

Solid Freeform Fabrication: A New Direction in Manufacturing

with
Research and Applications in Thermal
Laser Processing

by

JOSEPH J. BEAMAN JOEL W. BARLOW DAVID L. BOURELL RICHARD H. CRAWFORD

> University of Texas Austin, Texas

HARRIS L. MARCUS

University of Connecticut Storrs, Connecticut

KEVIN P. McALEA

DTM Corporation Austin, Texas

ISBN 978-0-7923-9834-9 ISBN 978-1-4615-6327-3 (eBook) DOI 10.1007/978-1-4615-6327-3

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Copyright © 1997 by Springer Science+Business Media New York Originally published by Kluwer Academic Publishers in 1997 Softcover reprint of the hardcover 1st edition 1997

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Springer Science+Business Media, LLC.

Printed on acid-free paper.

CONTENTS

1. Introduction	1
1.1 Background and Definitions	1
1.2 Historical Perspective	6
1.3 Book Outline	19
References	20
2. Process Methods	23
2.1 Background	23
2.2 Process Techniques	25
2.3 Role of Machining	43
2.4 Chronology	46
References	47
3. Information Processing	51
3.1 Geometric Models for SFF	51
3.2 Interprocess Interfaces	55
3.3 Slicing Algorithms	59
3.4 Scanning Patterns	68
3.5 Support Structures	74
3.6 Summary	80
References	81
4. Polymers in Solid Freeform Fabrication	85
4.1 Polymer Material Properties	86
4.2 Dimensional Accuracy	93
4.3 Chemistry Considerations	99
4.4 Polymer Binders	111
References	118
5. Indirect Fabrication of Metals and Ceramics	121
5.1 Transfer Processes	121
5.2 Indirect Methods	124
5.3 Secondary/Post Processing	151
5.4 Summary	162

References	162
6. SLS Process Modeling and Control	167
6.1 Properties of Powder Beds	167
6.2 Sintering Kinetics	185
6.3 Process Models And Simulations	197
6.4 Commercial SLS Process Behavior/Properties	213
6.5 SLS Process Control Considerations	226
6.6 SLS Part Accuracy - Benchmark Data	234
References	240
7. Direct SLS Fabrication of Metals And Ceramics	245
7.1 SLS Binding Mechanisms	245
7.2 SLS Processing of Binary Metallic Powder Blends	250
7.3 SLS Processing of Cermets	253
7.4 Direct SLS Processing of Ceramic Powder Blends	256
7.5 Reactive Sintering of Binary Powder	257
7.6 Density of SLS Processed Parts	260
7.7 Mechanical Behavior of SLS Processed Parts	266
7.8 Other Direct SFF Methods	268
References	276
8. Solid Freeform Fabrication Using Gas Phase Precursors	279
8.1 Selective Area Laser Deposition	280
8.2 Chemical Kinetics and SALD	282
8.3 Organometallic Precursors for SALD	284
8.4 Selective Laser Reactive Sintering System for Gases	285
8.5 Selective Area Laser Deposition Vapor Infiltration	287
8.6 Modeling and Simulation	287
8.7 Summary	289
References	289
9. SLS Applications	291
9.1 Background	291
9.2 Plastic Part Prototyping at the Speed Scientific School,	
University of Louisville	295
9.3 Rapid Tooling Benchmarking at Sunstrand Aerospace	304
9.4 Advanced Applications	314
9.5 Summary	319
References	319
INDEX	321

Solid Freeform Fabrication is a set of manufacturing processes that are capable of producing complex freeform solid objects directly from a computer model of an object without part-specific tooling or knowledge. In essence, these methods are miniature manufacturing plants which come complete with material handling, information processing and materials processing. As such, these methods require technical knowledge from many disciplines; therefore, researchers, engineers, and students in Mechanical, Chemical, Electrical, and Manufacturing Engineering and Materials and Computer Science will all find some interest in this subject. Particular subareas of concern include manufacturing methods, polymer chemistry, computational geometry, control, heat transfer, metallurgy, ceramics, optics, and fluid mechanics. History of technology specialists may also find Chapter 1 of interest.

Although this book covers the spectrum of different processes, the emphasis is clearly on the area in which the authors have the most experience, thermal laser processing. In particular, the authors have all been developers and inventors of techniques for the Selective Laser Sintering process and laser gas phase techniques (Selective Area Laser Deposition).

This is a research book on the subject of Solid Freeform Fabrication. Although there are now several commercial entities producing and marketing Solid Freeform Fabrication systems, there is no attempt in this book to compare or contrast these systems. I believe any such comparison is premature in this rapidly changing field. But, rather, the authors have described in detail the basic freeform fabrication techniques and the engineering fundamentals on which they depend. I wish to recommend future Solid Freeform Fabrication Symposia Proceedings for updates to the technical information presented in this work.

Joseph J. Beaman Austin, Texas

ACKNOWLEDGMENTS

Many of the ideas presented in this work were made possible by the hard work and guidance of others. I would like to single out Carl Deckard at Clemson University, who got our program started at the University of Texas, Ralph Wachter and Steve Fishman at the Office of Naval Research for their early belief and continued support for this area, the Defense Advanced Research Projects Agency for their support, and the National Science Foundation for their backing, especially for providing the Freeform Fabrication Laboratory with early seed money almost 10 years ago. The authors would also like to thank the many students, both past and present, who worked in our laboratory. You will find much of their work described in this book. I would like to personally thank Ken Wei Chen, Suman Das, Nicole Harlan, Larry Jepson, Martin Wohlert, and Britt Birmingham for giving invaluable assistance to produce this work. Finally, I would like to give special thanks to my wonderful wife Lisa for putting up with me during this editorial task.

Joseph J. Beaman