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Abstract. A new method to automatically classify solid
hydrometeors based on Multi-Angle Snowflake Camera
(MASC) images is presented. For each individual image, the
method relies on the calculation of a set of geometric and
texture-based descriptors to simultaneously identify the hy-
drometeor type (among six predefined classes), estimate the
degree of riming and detect melting snow. The classifica-
tion tasks are achieved by means of a regularized multino-
mial logistic regression (MLR) model trained over more than
3000 MASC images manually labeled by visual inspection.
In a second step, the probabilistic information provided by
the MLR is weighed on the three stereoscopic views of the
MASC in order to assign a unique label to each hydrom-
eteor. The accuracy and robustness of the proposed algo-
rithm is evaluated on data collected in the Swiss Alps and in
Antarctica. The algorithm achieves high performance, with
a hydrometeor-type classification accuracy and Heidke skill
score of 95 % and 0.93, respectively. The degree of rim-
ing is evaluated by introducing a riming index ranging be-
tween zero (no riming) and one (graupel) and characterized
by a probable error of 5.5 %. A validation study is conducted
through a comparison with an existing classification method
based on two-dimensional video disdrometer (2DVD) data
and shows that the two methods are consistent.

1 Introduction

Falling hydrometeors can be seen as the signature of the
microphysical processes controlling the formation and evo-
lution of precipitation in the atmosphere, and as such it is
of primary importance to collect detailed information about
them. In particular, the quantitative estimation of precip-
itation rate using remote sensing techniques or numerical
weather prediction (NWP) models requires knowledge about
the microstructure of rain/snow. In the case of snowfall, an
accurate modeling of the scattering properties of snowflakes
is necessary for the development of radar retrieval algorithms
and the correct estimation of snowfall rate (e.g., Matrosov,
2007). These properties are strongly influenced by the mass,
size and morphology of the particles, as reported by sev-
eral scattering simulation studies (e.g., Hong, 2007; Petty
and Huang, 2010; Johnson et al., 2012). Precipitation rates
from NWP models are also strongly affected by the type of
hydrometeors (Garvert et al., 2005) considered as well as
by the parameterizations of the mass–size and velocity–size
relationships (Woods et al., 2007). These parameterizations
generally rely on in situ measurements made in the past un-
der potentially different environmental conditions and with
limited accuracy compared to what can be achieved nowa-
days. Both from a weather radar and NWP model point of
view, it is therefore essential to document the microstructural
properties of individual falling snowflakes in order to better
characterize the microphysics of snowfall as well as to im-
prove its quantitative estimation.
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Hydrometeor classification methods aim to categorize pre-
cipitation in qualitative classes describing the dominant type
of falling particles in a given volume. Polarimetric weather
radar can provide relevant information to discriminate parti-
cles regarding to their size, shape, phase state and orienta-
tion, and various hydrometeor classification algorithms have
been proposed (e.g., Chandrasekar et al., 2013; Besic et al.,
2016). These products are particularly powerful because they
enable the sampling of a large spatial domain at a high tem-
poral resolution. Even though some effort has been devoted
to validation (Ryzhkov et al., 2005), one existing shortcom-
ing of these methods lies in the difficulty of collecting in
situ information about the hydrometeor type. Direct mea-
surements can be performed by airborne imaging probes but
it remains a complex and expensive approach. Several stud-
ies have nonetheless addressed automatic hydrometeor clas-
sification from airborne particle images. Moss and Johnson
(1994) classified images obtained with an optical array probe
(OAP) into seven categories using a boolean decision-tree
approach and Korolev and Sussman (2000) used an algo-
rithm comparing dimensionless ratios of simple geometrical
measures to discriminate between four families of snow par-
ticles. Other studies have classified optical probe data into
eight habits based on an algorithm relating habit to parti-
cle maximum dimension and area ratio (e.g., Heymsfield
and McFarquhar, 1996; Heymsfield et al., 2002). More re-
cently, advanced pattern-classification algorithms such as ar-
tificial neural networks (Feind, 2006) and principal compo-
nent analysis (PCA) (Lindqvist et al., 2012) were applied to
achieve cloud particle classification with accuracies higher
than 80 %.

Another more accessible alternative to assess the per-
formance and reliability of remote sensing retrievals is to
compare the output with the hydrometeor types observed
at ground level by in situ measurement devices (e.g., Colle
et al., 2014; Grazioli et al., 2015; Besic et al., 2016). For
this purpose, ground-based snowflake imagers like the two-
dimensional video disdrometer (2DVD; Kruger and Krajew-
ski 2002), the Hydrometeor Velocity and Shape Detector
(HVSD; Barthazy et al., 2004), the Snowflake Video Im-
ager (SVI or PIP in its newest version; Newman et al., 2009)
and the Multi-Angle Snowflake Camera (MASC; Garrett
et al., 2012) provide relevant information in the form of two-
dimensional binary or grayscale particle images and in some
cases the associated fall speed measurements. Recent inves-
tigations have shown the potential of the 2DVD to automat-
ically detect and classify hydrometeors imaged according to
their type and riming extent (Grazioli et al., 2014; Gavrilov
et al., 2015). Bernauer et al. (2016) also proposed a decision-
tree approach to distinguish between three degrees of riming
by deriving constraints on the particle shape and fall speed
parameters measured by the 2DVD. However, the limited
resolution of the device (about 0.2 mm) and the lack of infor-
mation about the internal structure of the particles because of
the binary nature of the images limited those studies to 1 min

averaged classification or binary graupel–snowflake classifi-
cation scheme. Grayscale photographs bring additional in-
formation about the texture and surface roughness of the
hydrometeors and therefore have the potential to evaluate
the riming degree of individual particles (Nurzyńska et al.,
2012). A recent investigation by Garrett and Yuter (2014)
also showed that the fall speed–size and fall speed–shape re-
lationships were highly uncertain at ground level, the mea-
sured fall velocities being strongly affected by local turbu-
lence effects. Consequently, it is desirable to propose a hy-
drometeor classification algorithm which does not rely on
any a priori knowledge of these relationships.

In this context, the information provided by the MASC is
particularly relevant to classify individual hydrometeors and
evaluate the extent of riming. The MASC is a ground-based
snowflake imager which captures photographs of falling
hydrometeors from three different angles while measuring
their fall velocity. The high-resolution ( ∼ 33 µm per pixel)
grayscale stereoscopic images allow the expert user to iden-
tify the observed particles individually. This allows for a su-
pervised approach relying on a manually labeled training set
in order to achieve hydrometeor classification. The multino-
mial logistic regression (MLR) is a well-known and long-
standing machine learning method (Bishop, 2006) which is
used to address supervised multi-class classification prob-
lems like pattern recognition and image classification. For
instance, it has been applied recently for land-use and land-
cover classification based on airborne hyperspectral images
of land properties (Li et al., 2010) and ancillary soil data
(Kempen et al., 2009). MLR is a probabilistic model that as-
signs to observations a probability of belonging to each class
introduced in the model, based on a maximum likelihood es-
timator. The classification procedure relies on a set of nu-
merical features calculated for each observation. In contrast
to other machine learning methods like recurrent neural net-
works or support vector machine, the MLR works directly
in the original feature space and allows for a direct interpre-
tation of the regression weights. Another advantage of the
method lies in the probabilistic information, which can be
used to provide a degree of confidence associated with each
prediction.

This article introduces a new method which makes use of
MLR to automatically classify individual hydrometeors ob-
served by a MASC (and potentially other imaging sensors),
based on a large set of geometrical and texture-based features
developed for this purpose. The paper is structured as fol-
lows: Sect. 2 describes the experimental setup and the MASC
image processing procedure. Section 3 presents the proposed
classification model. The main results, a comparison with in-
dependent measurements as well as some classification ex-
amples are given in Sect. 4. Finally, a conclusion summa-
rizing the work and presenting some future perspectives is
drawn in Sect. 5.
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2 Data description

2.1 Data collection

Images used to develop and evaluate the hydrometeor classi-
fication were obtained with a MASC. The MASC data were
collected during two different measurement campaigns orga-
nized during the winter 2015–2016. The first campaign took
place from October 2015 to June 2016 in Davos, Switzerland.
During that time, the MASC was deployed in a Double Fence
Intercomparison Reference (DFIR) at a meteorological test
site located at 2540 m a.s.l. Also present in the DFIR dur-
ing the measurement campaign were a 2DVD and a weather
station. The second campaign took place from November
2015 until January 2016 on the French Antarctic base of
Dumont d’Urville, in the framework of the Antarctic Pre-
cipitation, Remote Sensing from Surface and Space project
(APRES3; http://apres3.osug.fr). Collocated measurements
from a weighing precipitation gage and a weather station
were also collected. In total, more than 2 million of MASC
images were collected and processed during these two mea-
surement campaigns.

2.2 MASC instrument

The MASC is a ground-based instrument which automati-
cally takes high-resolution and stereoscopic photographs of
hydrometeors in free fall while measuring their fall velocity.
Its working mechanism is extensively explained in Garrett
et al. (2012), we will only mention the main aspects here.
The imaging unit is composed of three high-resolution cam-
eras attached to a ring structure and separated by an angle
of 36◦. Each camera points at an identical focal point ly-
ing in the middle of the ring structure, at approximatively
10 cm from the cameras. The triggering unit is composed
of two pairs of horizontally aligned near-infrared emitter-
receiver arrays, delimiting a measuring cross section of ap-
proximatively 2.5 cm2. Particles falling successively through
both arrays are detected and trigger the three cameras as
well as three spotlights used to illuminate the target. The
two MASCs used in the present study were using identical
2448 × 2048 pixels cameras mounted with 12.5 mm lenses.
The cameras’ apertures and exposure times were adjusted in
order to maximize the contrast on hydrometeor photographs
while preventing motion blur effects. With these settings, in-
focus image resolution was measured to be about 33 µm per
pixel using a graduated calibration target.

As the instrument triggering area is larger than the cam-
eras depth of field, many MASC images are out of focus and
appear blurred. This is important as the blurriness in the im-
ages will influence the value of certain descriptors introduced
in Sect. 2.3 and, in turn, the classification performance. Due
to the large variety of shape and structure in the observed hy-
drometeors, it is, however, difficult to automatically distin-
guish out of focus images. For this study, efforts were made

to establish a dimensionless empirical quality index ξ based
on particle size, brightness and interpixel variability, which
quantifies the blurriness present in the image. Typical values
for ξ lie within 7 (blurry) and 12 (sharp). The exact method-
ology used to develop this index as well as some illustrations
are detailed in Appendix B.

2.3 Image processing and feature extraction

Similar to the human brain, a computer algorithm requires
a set of criteria to rely upon for image classification. In the
present case, this set of criteria takes the form of numeri-
cal descriptors, commonly called features in machine learn-
ing studies and computed from the particle photographs. Re-
gardless of the classification method used, extracting an ex-
haustive and relevant set of features and avoiding redundancy
are two essential steps as they will strongly affect the perfor-
mance of the classifier. Because it is a priori impossible to
know exactly what features are relevant to the target concept
(i.e., hydrometeor classification), a large set of 72 descriptors
derived from the particle size, shape and textural information
was introduced. Several of them have already been used for
hydrometeor identification purposes in previous works (e.g.,
Lindqvist et al., 2012; Nurzyńska et al., 2012, 2013; Grazioli
et al., 2014; Schmitt and Heymsfield, 2014). As we experi-
enced some issues with the MASC fall speed measuring unit
during the campaign in Davos, this parameter was discarded
in the proposed methodology. Additionally, keeping the clas-
sification independent from this variable makes it possible to
study a posteriori the relationship between hydrometeor type,
geometry and fall speed in an objective manner.

Some of the descriptors extracted being highly correlated,
a feature selection method is applied (Sect. 3.5) in order to
avoid redundancy and to reduce the dimensionality of the
problem. The complete list of descriptors introduced is dis-
played in Table A1 in Appendix and can be divided into
seven categories. For the sake of brevity, we only give here a
general description for each of those categories. It is impor-
tant to note that only the two last families of features make
use of the textural information provided by grayscale images.
As a result, the first 59 descriptors displayed in Table A1
can be calculated from binary silhouette only. The analysis
of MASC images and the feature extraction procedure were
conducted using MATLAB Image Processing Toolbox Re-
lease R2015b.

2.3.1 Particle size and area

This subset contains features directly related to the size of the
particle photographed like the projected area (with or without
taking into account holes) and the perimeter, as displayed
in Fig. 1. Three different diameters (maximal, average and
equivalent area) are calculated, following the methodology
of Hogan et al. (2012).
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Table 1. Riming scale and qualitative description of each level. First column is the new riming index introduced in this study and second
column its corresponding qualitative riming degree, adapted from Mosimann et al. (1994).

Rc ∈
[0,1]

Rd ∈ [1,5] Coverage of the
surface

Description

0 1 (none) 0 % No cloud droplets on the surface.
0.15 2 (rimed) ≃ 50% Up to half of the surface is covered with cloud droplets.
0.5 3 (densely

rimed)
≃ 100% Cloud droplets are covering the whole surface of the

particle but the initial shape is still well conserved.
0.85 4 (graupel-

like)
> 100% Particle initial shape barely recognizable. Surface cov-

ered by multiple layers of cloud droplets.
1 5 (graupel) ≫ 100% Particle initial shape completely transformed into a

graupel (lump, conical or hexagonal).

P

A

D

D

flake

flake

eq

max

Aeq

Aout
Eout

Efit

Ein

Chull

(a) (b) (c)

Figure 1. Illustration of various particle geometrical descriptors. (a) Snowflake image obtained with the MASC. (b) Particle projected area
Aflake, perimeter Pflake, maximum dimension Dmax, equivalent-area diameter Deq and circumscribed circle area Aout. (c) Ellipse fit Efit,
inscribed ellipse Ein, circumscribed ellipse Eout and convex hull Chull.

2.3.2 Elliptical approximations

In order to get some insight into the shape and aspect ra-
tio of the hydrometeors, an ellipse is fitted to the outline
of the particle in a least squares sense. The particle mor-
phology is further described by calculating two more el-
lipses: the smallest circumscribed and the largest inscribed
ellipse having the same center and orientation as the initial
fit, as illustrated in Fig. 1. The axes of each ellipse are deter-
mined using a heuristic optimization technique maximizing
(or minimizing) their area. The descriptors extracted from
these elliptical approximations are the ellipses’ parameters
(minor/major axis length, perimeter, area, aspect ratio) as
well as some proportionality ratios between them (e.g., in-
scribed/circumscribed ellipse area ratio).

2.3.3 Particle shape

The falling hydrometeors observed with the MASC fre-
quently exhibit typical geometrical patterns (e.g., rectangular
for columnar crystals, hexagonal for planar crystals, spheri-
cal or conical for graupel). In order to detect these features,
the particle bounding rectangle and smallest encompassing
circle are computed, as illustrated in Fig. 1. The calculation
is made by using a heuristic algorithm which first determines

the smallest convex set of points that contains the particle,
also called convex hull. The descriptors thus extracted are
essentially ratios between the particle area and the area of
the calculated shapes. In addition, the particle complexity
introduced by Garrett and Yuter (2014) is used as an input
feature here. Finally, the hydrometeor fractal dimension cal-
culated with a box-counting method (see for example Sarkar
and Chaudhuri, 1994) is added to the feature list as comple-
mentary information on the particle shape complexity.

2.3.4 Morphological skeleton

The digital morphological skeleton is a single-pixel-width
pattern condensing the information of an original binary sil-
houette without changing its connectedness and computed
by means of morphological operators (Soille, 2013). In this
study, the skeleton (illustrated in Fig. 2) was obtained by suc-
cessively applying discrete morphological closing, opening
and thinning operations. The two first operations are per-
formed in order to smooth the target outline and avoid the
generation of undesired short end branches during the skele-
tonization. The number of junctions and ends included in the
skeleton as well as the ratio between its length and the initial
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Figure 2. Illustration of the particle skeleton and symmetry feature
extraction process on a sectored plate: (a) original MASC image,
particle skeleton and illustration of the angular distance-to-centroid
calculation; (b) standardised angular distance-to-centroid computed
every 1 degree; and (c) Fourier power spectrum corresponding to the
angular signal above, in arbitrary units (a.u.). The seven (including
0) first components of the power spectrum are used as descriptors
for hydrometeor classification.

perimeter of the particle are examples of descriptors com-
puted out of this procedure.

2.3.5 Rotational symmetry

Many observed snow crystals display a rotational symme-
try. In order to highlight this symmetry, a few descriptors
based on the radial distance between the snowflake outline
and its centroid have been implemented. First, the angular
outline-to-centroid distance is computed and discretized into
360 bins (1◦ per bin). The resulting vector of distances is
then normalized to have a mean of 0 and standard deviation
of 1. Finally, a Fourier transform is performed on the nor-
malized signal and the components 0 to 6 of the resulting
Fourier power spectrum are used as input features for hy-
drometeor classification. For example, plates and dendrites
are characterized by a larger value of the sixth component of
the power spectrum than other hydrometeors, as illustrated
in Fig. 2. Additionally, the mean and standard deviation of
the non-normalized angular outline-to-centroid distance are
added to the list of descriptors.

2.3.6 Texture operators

The textural information provided by the grayscale pho-
tographs from the MASC has been processed to extract
global features based on the pixel intensity distribution

computed over the whole particle silhouette. Those include
snowflake average and maximum brightness, brightness stan-
dard deviation, image contrast and histogram entropy. In ad-
dition, several local operators commonly used in computer
vision tasks have been adapted to MASC images: the gray-
level mean local standard deviation, the energy of Laplacian
and the sum of wavelet coefficients, as detailed in Pertuz et al.
(2013).

2.3.7 Co-occurrence matrix

The gray-level co-occurrence matrix (GLCM) C is a measure
of the distribution of co-occurring pixels at a given spatial
offset characterized by a distance d and an angle θ :

Cd,θ (p,q) =
∑

i

∑

j





1, if I (i,j) = p and I (i ± |d cosθ |,
j ± |d sinθ |) = q,

0, otherwise,

(1)

where p,q are pixel values and i,j their spatial position
within the image I . The GLCM therefore provides informa-
tion about the spatial relationship between different pixel in-
tensities, and more generally about the spatial structure of
the imaged hydrometeor. The so-called Haralick features are
an ensemble of statistical operators which attempt to summa-
rize the information contained in the GLCM in 14 numerical
descriptors (Haralick et al., 1973). In the present study, four
Haralick features (angular second moment, contrast, corre-
lation and homogeneity) have been computed using a dis-
tance offset d = 1 and along four principal directions char-
acterized by θ ∈ {0◦,45◦,90◦,135◦}, following the method-
ology of Eleyan and Demirel (2011). In an effort to extract
isotropic textural descriptors, which do not depend on the
spatial orientation of the imaged snowflake, the Haralick fea-
tures were eventually averaged over the four directions be-
fore being used for the classification task.

3 Hydrometeor classification

This section details the proposed classification methodology.
As the imaged hydrometeors can be identified by human in-
spection, a supervised approach was preferred. Supervised
classification aims to learn the association between input fea-
tures and output classes from a labeled dataset called the
training set and to generalize to unlabeled observations. The
requirements for supervised classification are the definition
of a classification scheme, the selection and labeling of a
training set as well as the implementation of a classification
method. In this section. we explain these three steps succes-
sively.
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Small particle Columnar crystal Planar crystal

Comb. of column 

and plate crystals

Aggregate Graupel
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Figure 3. Examples of MASC particle images belonging to each
hydrometeor class: (a) solid hydrometeor type, (b) riming scale and
(c) detection of melting snow.

3.1 Classes definition

Multiple solid hydrometeor classification schemes have been
introduced in the literature (e.g., Korolev and Sussman, 2000;
Lindqvist et al., 2012; Grazioli et al., 2014) and it is often
difficult to find an equivalence between them, partly because
the type of particles probed depends on the observation con-
ditions (ground-based or airborne instrument, measurement
location). In the present work, efforts were made in order
to develop an exhaustive and versatile classification scheme
applying the following procedure. First, we started from the
nine main snow habit categories introduced by Magono and
Lee (1966). In a second step, the classes aggregate (AG; par-
ticles resulting from the combination of two or more collid-
ing crystals) and small particle (SP) were added to the model.
For the sake of simplicity, because needle and column have
very similar geometrical properties, they were merged into a
single class called columnar crystal (CC). The resulting clas-
sification scheme composed of 10 classes is the following:
SP, CC, planar crystal (PC), combination of columnar crys-
tals, combination of planar crystals, combination of colum-

nar and planar crystals (CPC), AG, graupel (GR), irregular
snow crystal and germ of snow.

The MASC being a ground instrument, some of the snow
classes were hardly ever observed in the data collected. It
was therefore not possible to include enough samples in the
training set to perform a reliable automatic classification.
The classes concerned are combination of columnar crystals
(e.g., bullets rosette), combination of planar crystals (e.g.,
radiative assemblage of plates), irregular snow crystal and
germ of snow crystal. It should be noted that they could eas-
ily be reintroduced in future classification studies based on
different datasets that include these types. Finally, the ice-
phase hydrometeor-type classification scheme utilized in the
present work is illustrated in Fig. 3a and is composed of the
six following classes: SP, CC, PC, CPC, AG and GR. In the
rest of this paper, we will refer to this classification scheme
as hydrometeor type.

The high-resolution photographs of the MASC are de-
tailed enough to observe and quantify the presence of cloud
frozen droplets on the surface of the particles. In addition to
the hydrometeor type, a continuous riming index Rc lying
between 0 (no riming observed) and 1 (graupel) is hence in-
troduced. Five distinct qualitative degrees of riming adapted
from Mosimann et al. (1994) and detailed in Table 1 have
been selected and mapped to [0,1] using a sinusoidal func-
tion. If we denote by Rd ∈ [1,5] the qualitative degree of
riming, the mapping function applied is

Rc = 1

2

(
sin
(π

4
(Rd − 3)

)
+ 1

)
. (2)

The purpose of the sinusoidal transformation is to better
reflect the nonlinear spacing between each value of Rd as
well as to increase the sensitivity in the middle of the scale,
i.e., around densely rimed particles. Indeed, the riming pro-
cess required to transit from degree 2 to 3 and 3 to 4 is much
more intense than between 1 and 2 or 4 and 5. Figure 3b
summarizes the resulting riming index scale, which is used to
automatically quantify the presence of riming. Note that for
hydrometeors identified as small particles (i.e., hydrometeors
which are too small to be resolved by the MASC), the riming
degree estimation is unreliable and therefore discarded.

Melting falling snow is characterized by eroded particle
outlines as well as the presence of liquid water droplets form-
ing on their surface. On MASC images, these liquid water
droplets appear as glints of reflection identified by their small
size and saturated pixel values. It is therefore possible to de-
tect melting snowflakes using the geometrical and textural
descriptors detailed in Sect. 2.3. The detection is achieved
through a binary classification between dry and melting hy-
drometeors as illustrated on Fig. 3c. Because the reflection
in liquid water is small and practically independent from the
size of the drop, it is very difficult to differentiate raindrops
from small particles on the basis of the image only. As a re-
sult, a liquid precipitation event will be identified by a pro-
portion of small particles close to 100 %.
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3.2 Training set

The preparation and labeling of a training set is a very im-
portant step as it strongly influences the learning phase and
directly impacts the ability of the model to generalize to un-
known data. For the present work, a dataset of Nlabel = 3712
MASC particle images was selected in an effort to reflect the
proportions between the hydrometeor classes, as observed
during the campaigns. In order to cover a large range of envi-
ronmental conditions, hydrometeors included in the training
set were selected from more than 40 snowfalls recorded in
the Swiss Alps and in Antarctica. In terms of image quality,
only particles characterized by a quality index ξ ≥ 9 have
been included in the training set. This threshold corresponds
to a proportion of 50% of the whole dataset collected in
Davos during the winter 2015–2016, as illustrated in Ap-
pendix B.

In a second step, four operators independently labeled the
training set according to the three classification schemes in-
troduced in Sect. 3.1 (i.e., hydrometeor type, riming degree
and dry/melting snow), with the possibility to flag certain
samples as undetermined (for instance, it is difficult to as-
sess the degree of riming of a melting snowflake). For each
classification scheme, only the particles labeled identically
by at least three operators have been retained for training the
classifier. This resulted in a total of N1

label = 3238 images for
training the hydrometeor-type model and N2

label = 3339 for
the riming degree. As the original training set contained too
few samples of melting snowflakes, it has been extended with
more than 1500 images observed during wet snow events
(N3

label = 4987).

3.3 Classification method

3.3.1 Multinomial logistic regression

Logistic regression is a statistical probabilistic model used
to perform binary classification of a dependent variable y ∈
{0,1} based on the value of D input variables gathered in a
vector x ∈ R

D . As a member of the generalized linear model
family, logistic regression can be seen as an analogue to the
linear regression in which the linear model x̃T β is passed
through a logistic function σ(x) = exp(x)

1+exp(x)
. With this no-

tation, x̃ = (1,xT )T is the augmented features vector and
β = (β0, . . .,βD)T is the vector of linear regression weights.

Multinomial logistic regression is an extension of this
model for the case where y has more than two categorical
outcomes, i.e. y ∈ {1, . . .,K}, where K denotes the number
of classes. In this case, the logistic function is generalized to
a softmax function and the probability of having an instance
yn = k among K classes is given by

p(yn = k | x̃n,B) =
exp

(
x̃T

n βk

)
∑K

j=1 exp
(
x̃T

n βj

) , (3)

where B = {β1, . . .,βK} is the matrix of linear regression
weights. The goal now is to estimate the model parameters
contained in B that best explain the observed pairs of data
{yn,xn}Ntrain

n=1 contained in the training set. In the Bayesian
formulation, this can be done by maximizing the likelihood
of observing the data y given X̃ and B. Assuming that each
yn is independent of all other elements of y, one can write

Blik = argmax
B p(y | X̃,B)

= argmax
B

N∏

n=1

p(yn | x̃n,B). (4)

Similarly to the least-squares error for linear regression,
one can build a cost function C1 (B) by taking the negative
logarithm of the likelihood introduced in Eq. (4):

C1 (B) = −
N∑

n=1

K∑

k=1

ỹnkx̃
T
n βk +

N∑

n=1

log
K∑

j=1

exp
(
x̃T

n βj

)
, (5)

with ỹnk = 1 if yn = k and 0 otherwise. The optimal solution
of Eq. (5) is then found by minimizing the cost function us-
ing the Newton–Raphson method. Once B is calculated, the
probability for an unknown sample xu of belonging to the
class k is computed using Eq. (3). The class which obtained
the highest probability is then assigned to the sample.

3.3.2 Regularized MLR

In order to reduce the dependence of the final model on
training samples and to avoid over-fitting, it is common to
add a regularization term to the cost function introduced in
Sect. 3.3.1. From a Bayesian point of view, this is equivalent
to adding a prior distribution for the {βk}. In this study, the
simplest approach, which is to impose a univariate Gaussian
prior with mean 0 and variance σ 2, is adopted (also known
as L2 regularization):

p(βk | σ 2) = 1√
2πσ 2

exp

(
− β2

k

2σ 2

)
. (6)

Assuming that the {βk} are independent from each other and
hence the prior for B is the product of the priors for each
βk , one can reformulate the maximum likelihood estimate
(Eq. 4) into a maximum a posteriori estimate by including

www.atmos-meas-tech.net/10/1335/2017/ Atmos. Meas. Tech., 10, 1335–1357, 2017



1342 C. Praz et al.: Solid hydrometeor classification and riming degree estimation

the prior for B in the equation:

Bmap = argmax
B p(y | X̃,B)p(B | σ 2)

= argmax
B

N∏

n=1

p(yn | x̃n,B)

K∏

k=1

p(βk | σ 2). (7)

Following the same procedure as in Sect. 3.3.1, one can de-
rive the equivalent regularized cost function C2:

C2 (B) = −
N∑

n=1

K∑

k=1

ỹnkx̃
T
n βk

+
N∑

n=1

log
K∑

j=1

exp
(
x̃T

n βj

)
+ λ

K∑

j=1

βT
j βj , (8)

where λ = 1
2σ 2 is a hyperparameter controlling the degree of

regularization. The higher the value of λ is, the more we fa-
vor smaller values for βk . In that sense, this new cost func-
tion prevents the model from over-fitting the training set by
choosing arbitrarily large values for the {βk}.

3.3.3 Cost adjusted regularized MLR

In the presence of imbalanced dataset (i.e., significantly dif-
ferent numbers of data samples between certain classes),
standard classification methods such as MLR are often bi-
ased towards the majority class(es). As it was pointed out in
Sect. 3.2, the training set is composed of imbalanced class
distributions. Indeed, some classes like CC and PC for the
hydrometeor type or riming degree of 0 were rarely observed
during the measurement campaigns. Even though this issue
was somewhat mitigated during the selection of the training
set, the disproportion is still present in the data. In the recent
literature, several techniques have been proposed to address
this problem (e.g., He and Garcia, 2009; López et al., 2013).
In the present work, we applied a simple cost-sensitive learn-
ing method which consists of weighting each training sample
in the cost function by a factor inversely proportional to its
occurrence frequency in the training set. If we denote by fn

the proportion of data belonging to the same class as yn, the
final cost function utilized in this study can be written as

C3 (B) = −
N∑

n=1

ωn

K∑

k=1

ỹnkx̃
T
n βk +

N∑

n=1

ωn

log
K∑

j=1

exp
(
x̃T

n βj

)
+ λ

K∑

j=1

βT
j βj , (9)

where ωn = 1/(Kfn). One can note that the regularization
term is not affected.

3.4 Feature transformation

In machine learning, it is common practice to apply some
transformations to the input variables to better meet the as-
sumptions of the chosen classification method. In the case of

MLR, the input variables do not necessarily need to follow
a multivariate normal distribution, although normality gener-
ally yields to a better and more stable solution whilst limit-
ing the impact of outliers. In order to better fulfill this condi-
tion, the descriptors introduced in Sect. 2.3 were transformed
based on their distribution skewness in the training data. If
we denote by xd ∈ R

N the distribution of the dth feature in
the training data and by Sd its skewness, then the following
transformation was applied:

xd =





exp(xd) if Sd < −1,

x2
d if − 1 < Sd < −0.5,

√
xd if 0.5 < Sd < 1,

log(xd) if Sd > 1.

(10)

This data treatment significantly increased the classifica-
tion accuracy. In order to deal with feature distributions rang-
ing across different scales, the resulting distributions were
further normalized to 0 mean and 1 variance before training
the classification algorithm.

3.5 Feature selection

Some of the 72 features developed in Sect. 2.3 are redundant,
with some being highly correlated (e.g., size-related descrip-
tors). The objective is therefore to remove as many redun-
dant or irrelevant descriptors without decreasing the classifi-
cation accuracy. A well-established and efficient approach to
achieve this goal is to use feature extraction techniques such
as PCA or linear discriminant analysis (LDA) and then per-
form dimensionality reduction by removing the least impor-
tant components (Jolliffe, 2002). For instance, PCA has been
successfully applied for ice-cloud particle habit classification
by Lindqvist et al. (2012). However, such techniques map
the original descriptors into a new feature space, making the
analysis and interpretation of the obtained features difficult.
There is indeed not necessarily a physical meaning in the
features obtained from a PCA. For this study, a greedy for-
ward feature selection algorithm which does not modify the
original descriptors was implemented. The method works as
follows: the search begins with an empty set of features and
descriptors are iteratively added to the set. At each iteration,
the method tests the classification performance obtained with
the addition of every remaining descriptor separately, and the
set which led to the best classification performance (in terms
of Heidke Skill Score (HSS), defined in Eq. 13) is selected
as a starting point for the next iteration. In other words, the
method sorts the descriptors by information content. A more
comprehensive explanation of the algorithm can be found in
Tang et al. (2014).

3.6 Application to MASC data

The MASC instrument provides stereoscopic photographs
from three different views for each hydrometeor detected.
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First, a particle detection and triplet matching algorithm is
applied in order to extract at most one triplet of images
cropped around the same snowflake. In a second step, de-
scriptors are processed for each of the three views. Each im-
age is then classified according to the three schemes intro-
duced in Sect. 3.1, separately and independently from the
two other views. Finally, the probabilistic class membership
index provided by the model (see Eq. 3) is weighted on the
three views in order to assign a final label to the hydrome-
teor. If we denote by pij the probability given by the MLR
model that the hydrometeor projection observed on camera i

belongs to the class j , then the label assigned to the image
triplet is

label = argmax
j

3∑

i=1

pij . (11)

The methodology is slightly different for the evaluation
of riming for which a continuous riming index is associated
with each view. In that case, the global riming index of the
triplet is simply calculated as the average of the three ob-
tained values. As the three classification schemes have been
trained on particle images described by a quality index ξ ≥ 9,
the predictions are expected to be reliable only for images
above this threshold. For triplets, images which are not sat-
isfying this criterion are discarded and the classification is
merged over the remaining views.

In this manner, the whole procedure is versatile and can
be easily adapted to other devices providing only a single or
two (possibly binary) images per particle. A summary of the
image processing and classification procedure is illustrated
in Fig. 4. Note that the three classifications are achieved in
parallel hence no information is exchanged between them.

3.7 Performance assessment

The evaluation of the classification performance is conducted
using different metrics. The labeled dataset Nlabel is split into
an effective training set, Ntrain, used to fit the model param-
eters and a test set, Ntest, employed to test and validate the
classification on unused data. In order to use each data sam-
ple for both training and testing the method, 4-fold cross val-
idation is conducted. K-fold cross validation is a validation
method commonly used in machine learning for assessing
the generalization capability of a predictive model. It con-
sists in partitioning a labeled dataset into K even comple-
mentary subsets and subsequently use each of them as a test
set while keeping the K −1 others as a training set. For each
classification scheme, the accuracy of the method is assessed
through the analysis of the confusion matrix between model
predictions and real labels evaluated on test data, as well as
by the introduction of three additional performance indices:
the overall accuracy (OA), the HSS (also known as Cohen’s
kappa) and the balanced error rate (BER). If we denote by M

the confusion matrix, then Mij contains the number of test

samples labeled in the j th class and predicted belonging to
the ith class. Formally, the OA, HSS and BER are defined as

OA =
∑K

i=1Mii

N
× 100, (12)

HSS = OA − E

1 − E
, (13)

BER = 1

K

K∑

k=1

[
1

Nk

N∑

n=1

{yn = k}{yn 6= ŷn}
]

, (14)

where K is the number of classes, N the total number of
samples considered, Nk the number of samples in class k, yn

the true label associated with sample n and ŷn the predicted
class. The term E appearing in the HSS evaluates the num-
ber of correct predictions that could occur by chance and is
computed from the confusion matrix as

E = 1

N2

K∑

i=1

Mi,∗M∗,j , (15)

with Mi,∗ the total for the ith row and M∗,j the total for the
j th column. In order to assess the increase in performance
brought by the MLR method, a simple baseline model was
built. It consists of the most simple yet relevant way of clas-
sifying new samples given an ensemble of D features and
a training set. The model simply assigns a given particle to
the class k whose centroid is the closest in the feature space.
Hence for a given sample i,

ki = argmin
k

D∑

j=1

(
xij − 1

Nk

∑

m∈k

xmj

)2

, (16)

where xij is the value of descriptor j for particle i and
1

Nk

∑
m∈kxmj is the mean of the feature j among all the train-

ing samples belonging to the class k.

4 Results

This section is divided into five parts. In the three first sub-
sections, the classification performances obtained for each
classifier (i.e., hydrometeor type, riming degree, melting
snow detection) are reported and analyzed independently.
The overall information is eventually merged in subsection
four and a few examples of application to MASC images
triplet are presented. Finally, a comparison with an existing
classification method applied to measurements collected in
the Swiss Alps with a collocated 2DVD is conducted and il-
lustrated through two precipitation events in Sect. 4.5.

4.1 Hydrometeor type

The performances of the hydrometeor-type classification
model were evaluated on the basis of the N1

label = 3238 data
samples manually labeled by human inspection. The initial
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Figure 4. Classification procedure for a triplet of images obtained with the MASC.
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Figure 5. Evolution of the HSS (full lines) and BER (dashed lines)
as we increase the number of features used in the model. The three
color codes represent hydrometeor-type classification (blue), riming
degree (green) and melting snow detection (orange), respectively.
Features added on the right of the vertical dashed line are discarded.

set of 72 features was first reduced in order to get rid of
the irrelevant or redundant descriptors. Subsets of features
were created by subsequently adding descriptors from high-
est to lowest information content as presented in Sect. 3.5

(greedy forward feature selection). For each subset, 4-fold
cross validation was conducted and the average HSS evalu-
ated on test data was calculated. The procedure was repeated
10 times based on different random splitting between training
and test set in order to get insight into the statistical fluctu-
ations around the HSS values obtained. The results are dis-
played in Fig. 5 and show that the 10 descriptors added first
significantly improve the classification accuracy. The curve
then flattens and seems to reach a plateau around ∼ 25–30,
meaning that the remaining features are not relevant to the
classification task. For the sake of readability, the figure was
cut after 50 features. For this study, we decided to keep only
the first 25 features, flagged with a “I” in Table A1.

The classification accuracy was then assessed by carrying
out 10 iterations of 4-fold cross validation. The degree of
regularization of the model, controlled by the hyper param-
eter λ introduced in Eq. (8), was tuned to maximize the test
HSS following a grid-search procedure. Figure 6 shows the
confusion matrix based on test data and averaged over the 10
iterations of cross validation. In order to better visualize the
unbalanced proportions between certain classes, the matrix
is normalized to sum up to 100, and hence each field rep-
resents percentage. The classifier performs well with 94.7 %
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Table 2. Average accuracy scores obtained for the three classification schemes (i.e., hydrometeor type, riming degree and melting snow
detection). The numbers indicate the mean ± the standard deviation calculated over 10 instances of 4-fold cross validation and applied on
test (i.e., unknown) data.

Method BER HSS OA

Hydrometeor type

Baseline 15.2 ± 1.4 % 0.81 ± 0.01 84.7 ± 1.1 %
MLR 6.5 ± 1.1 % 0.93 ± 0.01 94.7 ± 0.7 %

Riming degree

Baseline 37.3 ± 2.0 % 0.48 ± 0.02 58.3 ± 1.6 %
MLR 30.7 ± 1.8 % 0.66 ± 0.02 74.2 ± 1.5 %

Melting snow detection

Baseline 18.5 ± 0.8 % 0.56 ± 0.02 78.9 ± 1.0 %
MLR 7.1 ± 0.6 % 0.86 ± 0.01 93.9 ± 0.6 %

Figure 6. Confusion matrix of test data obtained by averaging 10
instances of 4-fold cross validation. True labels are on the horizontal
axis and predictions on the vertical axis. Correct classifications are
located on the diagonal. The entries have been normalized so that
they sum up to 100.

of the test samples located on the diagonal. The accuracy is
further evaluated with the OA, HSS and BER. Table 2 shows
the scores obtained by the MLR method as well as by the
baseline model. The high value of the average HSS, similar
to the OA, indicates a high classification accuracy and a low
probability of correct classification occurring by chance. The
average BER is below 7 % and its standard deviation, com-
puted over 40 instances of test error, is equal to 1.1 %. The
mean error rate per class is contained between 1 and 15 %
and varies as follows: SP 1.3, CC 3.3, PC 12.5, CPC 15.0,
AG 5.2 and GR 1.8%. The higher error rate for CPC might be

explained by the low occurrence of this class in the collected
data, resulting in a small proportion in the training dataset
(i.e., 120 samples). In the future, this could be improved by
extending the training data with additional samples. For PC,
the relatively high error rate is probably due to the difficulty
in distinguishing them from aggregates of a few stellar crys-
tals. This ambiguity is also present in the confusion matrix
(Fig. 6) with a significant number of PC being classified as
AG and vice versa.

The baseline model obtained a mean BER of 15.2 % and a
mean HSS of 0.81 and therefore confirmed that the computed
features are discriminating well between the classes and are
relevant to the target concept. The difference in HSS between
the two models is 0.12 and can be interpreted as the added
value brought by the MLR method.

One convenient property of MLR is that the model is lin-
ear, in the sense that it works directly in the original feature
space without any remapping. As a result, each βd weight
introduced in Sect. 3.3.1 can be directly related to the dth de-
scriptor. Recalling that every feature is normalized to have
the same mean and variance, the absolute value of those
weights can further be used to assess the importance of the
associated descriptor in the model. As there is one value of
βd per class defined, the average value over each class β̄d

was used as an indicator of the importance of feature d in
the model. Figure 7a displays the results thus obtained. The
five features having the largest weight in the logistic regres-
sion are, in decreasing order, Haralick correlation, distance to
centroid standard deviation over mean ratio, particle / convex
hull area ratio, Dmax and inscribed ellipse / fitted ellipse area
ratio. This does not imply that the other features are irrele-
vant or negligible, but there is potentially a more immedi-
ate relationship between the model target (i.e., hydrometeor
type) and the top-ranked features. It is interesting to see that
among the 25 features kept, only 7 make use of the textural
information given by the grayscale images. We attempted to
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Figure 7. Estimation of the importance of each selected feature ac-
cording to the logistic weights βd for (a) hydrometeor-type classifi-
cation, (b) riming degree estimation and (c) melting snow detection.
Descriptors computed only from the binary mask of the particle are
displayed in blue (geometry) and descriptors using the textural in-
formation are in red (texture). Feature ID refers to Table A1.

simulate the results that we would obtain using a snowflake
imaging device providing binary images of similar resolution
by removing the texture-related features. By doing so, we ob-
tained a HSS of 0.9 and a BER of 8.9 %, hence indicating a
very good performance using only geometric information.

Finally, the completeness of the training set as well as the
stability of the classifier were evaluated by computing learn-
ing curves. First, 25 % of the labeled data were held apart
and kept as a fixed test dataset. Then, the size of the train-
ing set was iteratively increased from 2 to 98 % of the rest
of the labeled dataset. For each considered proportion, 20 it-
erations of random training data sampling were performed,
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Figure 8. Learning curves for the hydrometeor-type model, show-
ing the evolution of the train and test BER as a function of the num-
ber of training samples used (100 % = 2429 images). Dark areas
correspond to the 25–75 percentile range computed over 20 itera-
tions of random train-test splitting, light areas extend to the 10–90
percentiles, and bold lines are the medians.

a classification was conducted and the train and test errors
were recorded. The results obtained from this procedure are
presented on Fig. 8 in the form of two learning curves based
on the BER. The test error curve quickly decreases at first
(when the size of the training set is small) and reaches a
plateau around 60 % of training data used, which corresponds
to ∼ 1460 images. This suggests that the number of labeled
images (3238) available for the present study is sufficient.
Furthermore, the converging behavior of the train and test
learning curves indicates that the model is not sensitive to
training data sampling and generalizes well to unknown data.

4.2 Riming degree

The presence of riming categorized into five qualitative
classes was learned by the model based on the N2

label = 3339
labeled training data. First, the greedy forward feature se-
lection method detailed in Sect. 3.5 was applied in order to
discard the descriptors that are irrelevant for the estimation
of the degree of riming, as illustrated on Fig. 5. For the sake
of consistency, the 25 features firstly added were kept for
the classification task and flagged with a “II” in Table A1.
The classification accuracy was assessed on test data by con-
ducting 10 iterations of 4-fold cross validation and the scores
obtained are reported in Table 2. Even though these values
are significantly worse than for the hydrometeor-type model,
one can see on the associated confusion matrix (Fig. 9a) that
more than 95 % of the misclassification is located next to the
diagonal. This pattern indicates that the classifier discrimi-
nates well between non-rimed, rimed and graupel particles
but predictions come with an uncertainty of ±1 level. Re-
calling that the riming degree is a continuous value that was
categorized into five qualitative levels for the sake of simplic-
ity, the associated riming index Rc (see Eq. 2) was weighted
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by the probabilistic output of the MLR model in order to
get a continuous value in [0,1]. The results are illustrated
on Fig. 9b and show a good agreement between the median
values of Rc obtained and their expected value (i.e., 0, 0.15,
0.5, 0.85, 1 for Rd = 1,2,3,4,5, respectively). The largest
bias is obtained for densely rimed particles (Rd = 3) with a
value of −0.08, indicating that the classifier tends to under-
estimate the riming index for this class. In order to quantify
the uncertainty around the predictions, we evaluated the dif-
ference between the labeled riming index and the predicted
one, resulting in the histogram showed in Fig. 10. The dis-
played distribution is characterized by a mean µ ≃ 0.00, a
standard deviation σ ≃ 0.14 and exhibits strong symmetrical
properties. The riming index associated with each hydrome-
teor seems therefore to be generally well predicted and char-
acterized by a probable error of 5.5 %, calculated as the semi-
interquartile range over the full range of the error.

Similarly to what was done in Sect. 4.1 for the hydrome-
teor type, the 25 utilized descriptors were classified by order
of importance in the model and separated between geomet-
rical and textural descriptors, as displayed on Fig. 7b. Inter-
estingly, the five top-ranked features are clearly defined with
a significantly higher weight. Moreover, they are all making
use of the textural information, suggesting that the presence
of riming affects primary the surface roughness and light re-
flection properties of the particles. When the riming process
is intense enough, a particle’s projected area tends to expand
and smooth its initial outline, which will be detected by the
geometrical descriptors as well. When discarding the textural
descriptors and running the classification again, we obtained
a HSS of 0.49, 26 % lower than initially. We can therefore
conclude that the added value brought by the grayscale im-
ages is especially useful to detect and quantify the presence
of riming.

4.3 Melting snow

Binary logistic regression was applied to detect melting snow
and classify MASC images between dry and melting hy-
drometeors on the basis of N3

label = 4987 labeled images. The
dataset contains 1636 samples of melting snow and is princi-
pally composed of melting aggregates. In a first step, greedy
forward feature selection was performed and allowed us to
select 25 features kept for the classification (Fig. 5), follow-
ing the same procedure as for the hydrometeor type and de-
gree of riming (see Sect. 4.1 and 4.2). The features selection
procedure is illustrated on Fig. 5c and the 25 chosen descrip-
tors are flagged with a “III” in Table A1 in Appendix.

In a second step, classification performances were as-
sessed by conducting 10 iterations of 4-fold cross validation.
The mean scores obtained and the associated confusion ma-
trix based on test data are reported in Table 2 and Fig. 11,
respectively. The classification accuracy is characterized by
a HSS of 0.86, an OA of 93.9 % and a BER of 7.1%. The
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Figure 9. Illustration of the riming classification performance.
(a) Confusion matrix of test data obtained by averaging 10 instances
of 4-fold cross validation. Labeled riming degrees are on the hori-
zontal axis and predicted riming degrees Rd on the vertical axis.
(b) Boxplots of predicted riming index Rc as a function of the la-
beled riming degree Rd. The gray dots are the test data samples,
horizontally spread around each value of Rd to increase readabil-
ity. The red lines are the medians, the boxes correspond to the in-
terquartile range and the whiskers extend to 1.5 × the interquartile
range.

confusion matrix indicates a very good performance with a
false positive rate of detecting melting snow of 4.4 %.

Finally, features were rearranged by order of estimated im-
portance following the same procedure as for the hydrom-
eteor type and riming degree classifications. The resulting
feature weights are displayed on Fig. 7c. As for the rim-
ing degree, it seems that the textural features computed from
grayscale images have a significant importance for the clas-
sification, three of them being present in the five top-ranked
descriptors. The HSS obtained after removal of the eight tex-
tural descriptors is 0.76, 12% lower than initially.
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Figure 10. Distribution of the classification error between the rim-
ing index calculated from the true labels and the riming index pre-
dicted by the MLR model. The y axis shows the number of test
samples contained within each bin.

Figure 11. Same as in Fig. 6 but for melting snow detection.

Learning curves similar to the ones obtained for the
hydrometeor-type classification (Fig. 8) were also computed
for the riming degree and melting snow detection in order
to assess the quality of the training set and the stability of
the classifier. The associated figures are not reported here be-
cause they are very similar and lead to the same conclusions.

4.4 Application to unlabeled MASC data

The information obtained from the hydrometeor-type clas-
sification, the riming degree evaluation and the detection of
melting snow has to be merged in order to assign a unique
label to each image triplet provided by the MASC. This is
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Figure 12. Illustration of the prediction merging process applied
on two unlabeled MASC image triplets. (a) A dry, heavily rimed
aggregate. (b) A dry, moderately rimed planar crystal.

done following the methodology explained in Sect. 3.6. Fig-
ure 12 illustrates the procedure and the predictions obtained
for two unlabeled MASC triplets. In panel (a), one can see
a dry, heavily rimed aggregate. On the two first views, the
model recognized it as an aggregate, even though it also de-
tected some aspects belonging to the planar crystal class. On
the third view, the snowflake projected area exhibits an as-
pect ratio close to 1. The particle features a simpler outline,
some 6-fold symmetry and a surface roughness typical from
graupel-like snowflakes. As a result, the model prediction is
more uncertain. By merging the predictions obtained on the
three views, the model finally classified the triplet as a dry,
heavily rimed (Rc = 0.68) aggregate.

Panel (b) exhibits a planar crystal falling with a canting an-
gle of ∼ 35◦ and illustrates well the added value brought by
MASC stereoscopic photographs for hydrometeor classifica-
tion. On the two first views, the crystal shows a 6-fold sym-
metry and is classified as a planar crystal. However, the par-
ticle is seen edge-on in the third view and is therefore plainly
classified as a columnar crystal. The final label assigned to
this hydrometeor is a dry, moderately rimed (Rc = 0.24) pla-
nar crystal, even though some characteristics of melting snow
were detected on the first view.

In general, the image triplets provided by the MASC al-
lowed the classifier to give more accurate predictions and,
most importantly, to better characterize the associated uncer-
tainty.
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4.5 Comparison with an existing classification method

A comparison was conducted with respect to a hydrometeor
classification scheme developed for 2DVD data and detailed
in Grazioli et al. (2014). The method provides an estimate
of the dominant type of hydrometeor measured by the in-
strument on a time interval of 1 min. The classification is
achieved by means of a support vector machine employing
the 1 min statistical distribution of several descriptors as in-
put features and is therefore completely independent from the
approach proposed in the present work. The class attribution
was made according to the following classification scheme:
SP-like, dendrite-like (D), column-like (C), GR-like, rimed
particle-like (RIM), AG-like, melting snow-like (MS) and
rain (R). The “like” was introduced to emphasize that the
method only evaluates the dominant type of hydrometeor
recorded within each time step. In the following, we will call
HC-2DVD and HC-MASC the two methods compared.

The HC-2DVD algorithm was applied on data collected
during the winter 2015–2016 measurement campaign in
Davos (Switzerland). During that period, the two instruments
were collocated in a DFIR sheltered from the wind, lead-
ing to an ideal configuration to compare the classification
methods. In order to have enough measurements per bin
and ensure a reliable comparison, the dominant hydrometeor
type derived from MASC image triplets was calculated over
time intervals of 5 min and HC-2DVD was adapted to the
same time resolution. In a second step, HC-MASC and HC-
2DVD classes were merged according to the following rules:
(1) as the MASC detects raindrops as small particles, rain
and small particles like from the HC-2DVD scheme were
merged into a unique class corresponding to small particles
from HC-MASC. (2) Dendrite-like (HC-2DVD) and planar
crystal (HC-MASC) were combined together. (3) Column-
like (HC-2DVD) and columnar crystal (HC-MASC) were
combined together. (4) MASC time intervals composed of
more than 30 % of melting particles according to the binary
dry/melting snow classifier were identified as MS by the HC-
2DVD method. This relatively low threshold was adjusted in
order to best retrieve transitions between liquid and solid hy-
drometeors. Mixed-phase precipitation intervals are indeed
composed by a large number of small particles, which are
not taken into consideration in the dry/wet snow classifica-
tion. Over time steps of 5 min, a higher threshold would lead
to only very few intervals identified as melting snow and
a reduced agreement with HC-2DVD. (5) Rimed particle-
like were assimilated to AGs, as crystal-dominant (both pla-
nar and columnar) 5 min time intervals were hardly ever ob-
served during the campaign.

The comparison was first conducted over the whole cam-
paign, from 12 October 2015 to 19 June 2016. For the sake
of reliability, every 5 min interval containing at least 30 non-
blurry (i.e., ξ ≥ 9) MASC images and 300 2DVD particles
was taken into consideration, resulting in a total of more
than 88 h of precipitation. The significantly higher thresh-

Table 3. Confusion matrix obtained by comparing MASC and
2DVD hydrometeor classification during winter 2015–2016 in
Davos (Switzerland). Each entry in the matrix corresponds to the
dominant hydrometeor type recorded during an interval of 5 min
measured by both instruments. For HC-2DVD, rain and small par-
ticles have been merged (SP+R), as well as rimed particles and ag-
gregates (AG+RIM), respectively.

HC-2DVD

AG+RIM D GR SP+R C MS

H
C

-M
A

S
C

AG 463 18 97 2 1 19
PC 1 0 0 0 0 0
GR 34 0 51 1 0 3
SP 15 0 28 183 0 24
CC 1 0 1 0 1 0
MS 38 4 1 5 0 66

old value chosen for the 2DVD results accounts for the in-
strument sampling area about 4 times larger than the MASC.
MASC data were also pre-filtered in order to get rid of dark
and/or blurry images, as described in Sect. 3.6. The compari-
son results are summarized in Table 3 in the form of a confu-
sion matrix. In general, the two classification methods are in
good agreement with a HSS of 0.56 and an OA of 72 %. Ag-
gregates was the most observed hydrometeor type during the
campaign and is on average well detected by both methods.
Some inconsistencies exist though, principally with the grau-
pel class. The highest misclassification rate is found for time
intervals classified as graupel by HC-2DVD and aggregates
by HC-MASC. Manual observation of MASC images dur-
ing some of those events revealed a majority of aggregates
with various riming degree even though some graupel were
present as well. The uncertainty associated with 2DVD clas-
sification (binary images, ∼ 10 times lower resolution) and
the incapability to discern and discard blurry particles might
explain this relatively high error rate. Stark et al. (2013) ob-
served that different ice particle habits could frequently reach
the surface simultaneously. Given the large difference in the
number of particles observed by both instrument, this phe-
nomenon could also explain part of the discrepancy between
the particle types identified by the two instruments. Numer-
ous wet hydrometeor (rain, melting snow) time intervals are
present in the dataset and indicate that both HC-MASC and
HC-2DVD efficiently capture the transition between liquid-
phase and ice-phase precipitation. For melting snow, the clas-
sification consistency is lower and show a large uncertainty
with respect to the classes of aggregates and small parti-
cles/rain. This ambiguity might be coming from the numer-
ous events recorded when the ground temperature was close
to the freezing point. Under these conditions, both classi-
fiers are recording intermittent moments of liquid, mixed and
solid hydrometeors.
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In the following, two precipitation events recorded by the
MASC and 2DVD are presented and show time series of HC-
MASC and HC-2DVD co-fluctuation.

4.5.1 23 April 2016

The classification output of HC-MASC and HC-2DVD for
a snowfall event occurring on 23 April 2016 is presented
on Fig. 13. The air temperature, as recorded by a weather
station located in the DFIR, was below freezing and oscil-
lating between −3 and −1 ◦C. In both HC-MASC and HC-
2DVD panels, the classifier displays a clear transition in the
dominant type of hydrometeors around 08:30 UTC. Before
08:00 UTC, HC-2DVD exhibits several transitions between
aggregates, rimed particles and dendritic crystals time steps.
This behavior is in good agreement with HC-MASC, which
shows a stable predominant proportion of aggregates. More-
over, the significant number of pristine planar crystals de-
tected could explain the few instants of dendritic crystals
recorded by HC-2DVD. The riming index Rc recorded dur-
ing this first phase was constant around 0.4, corresponding
to densely rimed hydrometeors. From 08:30 UTC, the riming
process intensifies within an hour, leading to a snowfall con-
tent composed by heavily rimed particles and graupel. This
transition is also well retrieved by the riming index which
progressively increases to ∼ 0.7. Further investigation on the
development of the riming process which led to this tran-
sition is beyond the scope of the present study and would
require additional information (e.g., vertical profile of the
storm, values of the atmospheric variables aloft). Neverthe-
less, this example illustrates the capability of the proposed
method to characterize falling snowflake features and their
temporal variability. By using the same methodology as in
Sect. 4.5 for merging HC-MASC and HC-2DVD classifica-
tion schemes, we obtain a HSS of 0.80 and an OA of 88.2 %,
indicating a very good agreement between the two methods.

4.5.2 16–17 June 2016

A different scenario is depicted on Fig. 14, displaying a
mixed-phase precipitation event which occurred during the
night of 16 to 17 June 2016. At the beginning, the air tem-
perature was around 4 ◦C and progressively decreased to
reach −2 ◦C in the second part of the event. The tempera-
ture dropped under the freezing level soon after 22:00 UTC,
which corresponds well to the transition between liquid-
/mixed- and solid-phase precipitation detected by both classi-
fication methods. In the first part, HC-2DVD identified a few
intermittent time steps of melting snow, which seem to be in
good agreement with the proportion of melting snow evalu-
ated by HC-MASC and displayed in panel (b). After the tran-
sition, the snowfall, mainly composed of aggregates, exhibits
short periods of more intense riming around 00:00, 00:45 and
between 01:30 and 02:00 UTC. By merging HC-MASC and
HC-2DVD classification schemes, this event obtained a HSS

of 0.72 and an OA of 85.6 %. Finally, information provided
by the ambient temperature measurement and HC-2DVD
output made it possible to confidently identify the large pro-
portion of small particles classified by HC-MASC (15:00–
22:30 UTC) as rain. As mentioned in Sect. 2.3, MASC fall
speed measurement unit was not working continuously dur-
ing the campaign in Davos. This parameter was therefore not
included in the classification model. In the future, the inclu-
sion of the particles fall speed as an additional descriptor in
HC-MASC could potentially help to discriminate between
raindrops and small solid hydrometeors.

5 Conclusions and future perspectives

In this paper, we proposed a novel method to classify individ-
ual solid hydrometeor based on MASC particle photographs.
Automatic classification is achieved by means of a cost ad-
justed penalized MLR model which was trained on more than
3000 images manually labeled by expert users. For this pur-
pose, a large set of geometrical and texture-based descrip-
tors characterizing the snowflakes size, shape and riming ex-
tent was developed. A feature selection algorithm was im-
plemented and allowed the identification of the most rele-
vant and discriminating descriptors with respect to the clas-
sification task. In order to avoid overfitting and improve the
generalization properties of the classifier, the MLR was reg-
ularized using an L2 norm as a prior to the model and we
proposed a cost adjustment to increase the performance in
presence of imbalanced classes.

Three classifiers were implemented in an independent
manner in order to classify solid-phase hydrometeor type,
assess the degree of riming and detect melting snow. The
hydrometeor type was discriminated between six classes
adapted from Magono and Lee (1966) and observed in
MASC data: columnar crystal, planar crystal, combination
of columnar and planar crystals, aggregate, graupel and small
particle. The extent of riming was qualitatively evaluated on
an ordinal five-level scale, which was in turn used to create
a continuous index between zero (none) and one (graupel).
Melting snow was detected using a binary classifier between
dry and wet snowflakes. The classification performance was
evaluated on test data with labels unknown to the classifier
and achieved high accuracy, with averaged OA and HSS of
94.7 and 0.93 % for the hydrometeor type, respectively. The
binary classification between dry and melting snowflakes
performed equally well with an OA of 93.9 and a HSS of
0.86 %. Discrete classification of the riming degree led to
more uncertain results, characterized by an OA and HSS of
74.2 and 0.66 %, respectively. By using the probabilistic in-
formation provided by the MLR model, those values were
successfully remapped into a continuous riming index rang-
ing between 0 and 1 with an associated error distribution of
mean 0.00 and standard deviation 0.14.

Atmos. Meas. Tech., 10, 1335–1357, 2017 www.atmos-meas-tech.net/10/1335/2017/



C. Praz et al.: Solid hydrometeor classification and riming degree estimation 1351

2016.04.23 - 03:00 to 2016.04.23 - 12:00

03:00 04:00 05:00 0 06 7 08:00 09:00 10:0 10 1 12:00
0

0.5

1

H
C

-M
A

S
C

(a)

(b)

(c)
-3

-2

-1

T 
[ o

C
]

0

0.5

1

[-
]

Time UTC [h]

H
C

-2
D

V
D

SP

CC

PC

AG

GR

CPC

MS

T

R
c

SP

C

D

AG

GR

RIM

MS
R

:00 :00 :00

03:00 04:00 05:00 0 06 7 08:00 09:00 10:0 10 1 12:00:00 :00 :00

03:00 04:00 05:00 0 06 7 08:00 09:00 10:0 10 1 12:00:00 :00 :00

Figure 13. Illustration of the MASC and 2DVD hydrometeor classification comparison during a precipitation event recorded on 23 April
2016. Time series of (a) proportions of each hydrometeor type as classified with the MLR model applied on MASC data; (b) on the left axis:
averaged riming indexRc ∈ [0,1] and proportion of melting snowflakes MS ∈ [0,1]; on the right axis: ambient temperature T , as measured
by a weather station located in the DFIR; and (c) dominant hydrometeor type recorded by a 2DVD using the method described in Grazioli
et al. (2015). On each panel, data were aggregated on time intervals of 5 min.

Figure 14. Same as on Fig. 13 but for 16–17 June 2016.

The classification results were further compared and cross-
validated with an external and independent method evalu-
ating the dominant type of hydrometeor over time steps of
5 min based on 2DVD data. The two methods were compared
over more than 88 h of collocated measurements and showed
a good agreement with an OA and HSS of 72 and 0.56 %,
respectively. Two precipitation events were more thoroughly
analyzed and demonstrated the capability of both methods to
consistently identify transitions between liquid, mixed and

solid precipitation as well as small-scale variations in the de-
gree of riming of observed snowfall. These events showed a
better agreement as indicated by an OA of 88.2 and 85.6 %
as well as a HSS of 0.80 and 0.72 %, respectively. More-
over, the proposed method HC-MASC provides additional
information which proved to be relevant to gain more insight
into the dynamics of snowfall: a continuous riming index as
well as the proportions in which each hydrometeor type con-
tributes to the precipitation.
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The proposed MLR supervised method is fast (about 15 s
to process and classify 100 MASC triplets on a recent four-
core office desktop computer) and repeatable. The image pro-
cessing, extraction of descriptors and classification proce-
dure were implemented using parallel computing. Once the
classifiers are trained, the algorithm can potentially operate
in real time. Furthermore, the classification was conducted
separately on each photograph of the same particle provided
by the MASC. In this way, the method can easily be adapted
to any other instrument providing high-resolution images of
the particles of interest (e.g., 2DVD, snow video imager, air-
borne OAPs). A feature ranking analysis showed that the
hydrometeor-type classification could be conducted on bi-
nary particle images without significantly altering the classi-
fication accuracy. However, the analysis highlighted that the
texture-based descriptors play an essential role in the rim-
ing degree evaluation and melting snow detection algorithms.
Future work in this direction will include the adaptation and
the evaluation of the proposed method on airborne OAP and
PIP images.

Finally, the presented method can be used to measure
and characterize the microstructural properties of individual
falling snowflakes and paves the way for further microphysi-
cal studies based on in situ measurements. Conditional anal-
ysis of particle size distribution, aspect ratio and canting an-
gle as a function of the hydrometeor type could, for instance,
be carried out in order to reduce the uncertainty around their
parameterization within numerical weather prediction mod-
els. Having a reliable type and riming degree associated with
each individual solid particle observed could contribute to
refining the relationships between their mass, size and fall
velocity and more generally to improving remote sensing of
solid precipitation.

Data availability. The datasets acquired by the MASC as well as
the codes used to process and classify snowflake images can be
made publicly available upon request to the authors.
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Appendix A: Lists of numerical descriptors used for

hydrometeor classification

Table A1. Initial list of numerical descriptors provided to the classification model before feature selection. The seven categories correspond
to the different subsections introduced in Sect. 2.3. For each line, the last column indicates whether the corresponding feature is retained for
(I) hydrometeor-type classification, (II) riming degree estimation and (III) melting snow detection after the feature selection as been applied,
as detailed in Sect. 3.5.

Feature ID Feature description Category

C1: particle size and area
1 Particle projected area –
2 Particle perimeter I, II
3 Particle mean dimension –
4 Particle maximum dimension I
5 Particle equivalent-area diameter –
6 Particle porous area (accounting for holes) II, III
7 Porous area over total area ratio III

C2: elliptical approximations
8 Fitted ellipse major axis II
9 Fitted ellipse minor axis I, III
10 Fitted ellipse area –
11 Fitted ellipse orientation –
12 Fitted ellipse aspect ratio III
13 Fitted ellipse eccentricity I
14 Particle compactness (projected area to fitted ellipse area ratio) I, III
15 Inscribed ellipse major axis –
16 Inscribed ellipse minor axis –
17 Inscribed ellipse area I
18 Circumscribed ellipse major axis –
19 Circumscribed ellipse minor axis I, II, III
20 Circumscribed ellipse area –
21 Inscribed/fitted ellipse major axis ratio –
22 Inscribed/fitted ellipse minor axis ratio –
23 Inscribed/fitted ellipse area ratio I, III
24 Inscribed/circumscribed ellipse major axis ratio –
25 Inscribed/circumscribed ellipse minor axis ratio –
26 Inscribed/circumscribed ellipse area ratio II
27 Fitted/circumscribed ellipse major axis ratio –
28 Fitted/circumscribed ellipse minor axis ratio –
29 Fitted/circumscribed ellipse area ratio –

C3: particle shape
30 Particle roundness (area to circumscribed circle area ratio) III
31 Circumscribed circle perimeter to particle perimeter ratio II, III
32 Particle rectangularity (area to bounding box area ratio) –
33 Bounding box width –
34 Bounding box height II, III
35 Bounding box perimeter to particle perimeter ratio I, II, III
36 Bounding box aspect ratio I
37 Bounding box eccentricity –
38 Particle solidity (area to convex hull area ratio) I
39 Particle convexity (convex hull perimeter to particle perimeter ratio) I, III
40 Number of vertex in the convex hull II, III
41 Particle perimeter to equivalent-area circle perimeter III
42 Particle fractal dimension (box-counting method) –
43 Particle fractal index (as in Grazioli et al., 2014) II

C4: morphological skeleton
44 Skeleton number of ending points III
45 Skeleton number of branching points –
46 Skeleton length to particle perimeter ratio –
47 Skeleton length to particle area ratio –
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Table A1. Continued.

Feature ID Feature description Category

C5: rotational symmetry
48 Standardized distance to centroid Fourier power spectrum comp. P0 –
49 Standardized distance to centroid Fourier power spectrum comp. P1 I
50 Standardized distance to centroid Fourier power spectrum comp. P2 II
51 Standardized distance to centroid Fourier power spectrum comp. P3 I, II, III
52 Standardized distance to centroid Fourier power spectrum comp. P4 II, III
53 Standardized distance to centroid Fourier power spectrum comp. P5 –
54 Standardized distance to centroid Fourier power spectrum comp. P6 I, II
55 #max(P0 to P6) I, III
56 Ratio between P6 and max(P0 to P6) II
57 Distance to centroid mean –
58 Distance to centroid standard deviation I, II
59 Distance to centroid standard deviation over mean ratio I, II

C6: texture operators
60 Particle mean pixel brightness I, II, III
61 Particle maximum pixel brightness II, III
62 Image contrast I
63 Particle pixel brightness standard deviation III
64 Brightness histogram entropy –
65 Average gray-level local standard deviation (3x3 moving window) I, II, III
66 Average gray-level local range intensity (3x3 moving window) I, III
67 Energy of Laplacian (3x3 moving window) (Pertuz et al., 2013) –
68 Sum of wavelet coefficients (Pertuz et al., 2013) I, II
69 Particle complexity (Garrett and Yuter, 2014) II

C7: co-occurrence matrix
70 Haralick angular second moment –
71 Haralick contrast II, III
72 Haralick correlation I, II, III
73 Haralick homogeneity I, II
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Appendix B: Image quality index ξ

As mentioned in Sect. 2.2, the MASC is subject to out of
focus and blurring issues. On average, more than 50 % of
the snowflakes imaged are out of focus and appear blurred.
Basic geometrical descriptors like particle maximum dimen-
sion, axis ratio and orientation are not much affected by blur
issues. However, they can significantly modify the values of
texture-based features and become a limiting factor for de-
manding tasks like hydrometeor classification and riming de-
gree estimation. It is therefore necessary to develop tools to
quantify the blurriness present in MASC images in order to
be able to filter out lower-quality images depending on the
application.

This matter has been addressed through the introduction
of an empirical in-focus parameter called quality index ξ .
For that purpose, a selection of 500 MASC snowflake images
have been manually classified into five categories, from very
blurry to very sharp. The quality index was built upon the
following observations: out-of-focus particles tend to have
lower brightness, weaker contrast, simpler outline and lower
internal variability. The final form of the quality index, estab-
lished from a trial-and-error procedure by trying to best dis-
criminate the five categories of blurriness introduced above,
is given by

ξ = log

(
Dmean · P

2πreq
· L+ L̃

2
· σ + σ̃

2

)
,

where Dmean denotes the particle mean diameter (feature #3
in Table A1), P

2πreq
the ratio between the particle’s perimeter

and the perimeter of an equivalent-area circle, L the energy
of Laplacian (feature no. 67) and σ the average gray-level
local standard deviation (feature no. 65). The L̃ and σ̃ indi-
cate that the operators were calculated after image enhance-
ment using a contrast-limited adaptive histogram equaliza-
tion method (CLAHE; Zuiderveld, 1994). In this way, a
higher-quality index is assigned to dark but sharp snowflakes
(i.e., easily identified by visual inspection). The logarithm
is applied in order to rescale the index on a more practi-
cal range of values. Figure B1 illustrates values of ξ for the
500 snowflakes manually classified and shows the capability
of the index to distinguish between the different categories
(with some overlap). Figure B2 displays the distribution of
ξ for the training set used for classification as well as for
the whole measurement campaign in Davos. As mentioned
in Sect. 3.2, only images with a quality index ξ ≥ 9 have
been included in the training set, which corresponds to a 50%
proportion of the whole dataset collected in Davos during
the winter 2015–2016. If we move the threshold to ξ = 9.5
(where the two density functions intersect on Fig. B2), this
proportion drops to 30 %.
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Figure B1. Distribution of the quality index ξ within the 5 cate-
gories of snowflakes manually classified.

T

Figure B2. Empirical probability density function of the quality in-
dex ξ for the training set and for the whole measurement campaign
in Davos. The threshold at ξ = 9 is highlighted.
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