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C. Charles4, and R. Boswell4
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Abstract. In this review, we report on the use of low pressure plasmas for elaborating materials at the
heart of solid polymer fuel cells (SPFC), especially electrodes and the membrane electrolyte. Electrodes are
formed using plasma sputtering techniques while the ion conducting membranes are built up using plasma
polymerization. Fuel cell performance will be improved by these approaches. The electrode catalyst profile
is optimized while membrane working temperature is increased and methanol crossover is lowered compared
to conventional PEM fuel cells.

PACS. 81.15.Cd Deposition by sputtering – 81.15.Gh Chemical vapor deposition (including
plasma-enhanced CVD, MOCVD, etc.) – 82.47.Nj Polymer-electrolyte fuel cells (PEFC)

1 Introduction

Fuel cells are often perceived as being part of the future
solution to the ‘energy crisis’, providing ‘clean’ electric-
ity with virtually no emissions. The development of fuel
cells is considered to be an integral part of a sustainable
‘hydrogen economy’, in which hydrogen gas is produced
using renewable sources of energy, and which offers the
possibility of abundant energy with negligible emissions.
Another advantage of fuel cells lies in the high efficiency
for converting chemical energy into electricity and heat
(hot water). Currently, one kind of fuel cell is expected
to be attractive for many applications: the Proton Ex-
change Membrane Fuel Cell (PEMFC, or more generally,
Solid Polymer Fuel Cell (SPFC) which includes Direct
Methanol Fuel Cell –DMFC–, Direct Ethanol Fuel Cell
–DEFC–) for which efficiency strongly depends on the
electrode-membrane-assembly [1]. PEMFC systems pro-
vide an order of magnitude higher power density than
any other fuel cell systems. The PEMFC can operate on
reformed hydrocarbon fuels, with pre-treatment, and on
air. The use of a solid polymer electrolyte eliminates the
corrosion and safety concerns associated with liquid elec-
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trolyte fuel cells. Its low operating temperature of 80 ◦C
provides instant start-up and requires no thermal shield-
ing to protect personnel. Recent advances in performance
and design offer the possibility of lower cost than any other
fuel cell system. The PEMFC has a high power density,
and is very promising for mass market applications such
as automotive and stationary small scale “combined heat
and power” applications. New materials and new related
synthesis processes are required to improve fuel cell effi-
ciencies and costs. Among many methods, plasma depo-
sition is a promising technique for elaborating these fuel
cell materials. For this reason, we will focus on PEMFC
for which low pressure plasma deposition is expected to
improve membrane characteristics, especially higher op-
erating temperatures using new polymer electrolyte thin
films and electrodes by properly controlling catalyst con-
tent, morphologies and profiles.

2 Plasma sputter deposition
of catalysts onto electrodes

A critical step is to lower catalyst content [2] and ad-
just consistently the catalyst profile in the so-called gas
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Fig. 1. Schematic of a proton exchange membrane fuel cell.

diffusion layer (GDL) in order to improve the fuel cell ef-
ficiency [3]. At the heart of the PEMFC (see Fig. 1) is the
membrane electrode assembly (MEA).

The MEA is sandwiched by two flow field plates: the
bipolar plates. The MEA consists of a dense proton ex-
change membrane, porous catalytic layers, and porous gas
diffusion layers (GDL). Their thicknesses are typically 150,
10 and 50 µm, respectively, but it depends on the fab-
rication method. These components are fabricated indi-
vidually and then pressed together at high temperature
(140 ◦C) and pressure (35 kg/cm2). The interface between
the membrane and the electrodes is critical: it controls the
internal resistance, electrochemical efficiency and thus the
attainable power density [3].

Optimization of the electrode efficiency requires to cor-
rect distribution of the catalyst in the gas diffusion layer
near the proton conductive membrane. A cross section
view is drawn in Figure 2, which shows the three-fold con-
tact: the catalyst is active when it is in close contact with
both carbon particles (electron transport) and electrolyte
(proton transport).

Many methods are commonly employed to form cat-
alyst layers: chemical deposition such as colloidal, car-
bonyl, and chemical impregnation from salts. Physical
deposition such as sputtering is less often used but is a
promising technique due to the possible control of the
catalyst content [4–12,14,15]. These references give many
ways to reduce the catalyst content and eventually to in-
crease the PEM fuel cell efficiency. Among them, Cha
et al. [8,11] and then Haut et al. [5] have deposited al-
ternate sputtered platinum (5 nm) layers and painted lay-
ers of Nafion� and carbon ink directly on the membrane.
They haved achieved PEMFC performance at about 40 µg
Pt/cm2 nearly equivalent to higher loading (0.5 mg/cm2).
Also, a porous graphite electrode is deposited in a plasma-
enhanced chemical vapour deposition (PECVD) process,
followed by a thin sputtered catalyst layer [13,14]. Hirano
et al. [9] and Brault et al. [15] have sputtered platinum on
uncatalyzed electrode resulting in H2/O2 cell performance
at loading of 0.10 mg Pt/cm2 equivalent to commercial
fuel cells.

For illustrating how is handled plasma for fuel cell elec-
trode design, we have used plasma sputtering with a TCP
(Transformer Coupled Plasma) antenna. This process con-
sists of a vacuum evaporation process that removes por-

tions of a coating material (the platinum target in our
case) and deposits a thin film of the target material into
an adjacent porous gas diffusion layer. A low pressure
Radio Frequency (RF) inductive plasma sputtering sys-
tem has been constructed (APRIM VIDE) as displayed
in Figure 3. An argon plasma is created in the stainless
steel deposition chamber, with an 18 cm inner diameter
and 25 cm long by using an external planar antenna (also
known as TCP antenna) at 30 W input power and at an
argon pressure of 5 × 10−3 mbar. The excitation antenna
is powered by a tunable frequency generator operating for
the present experiments at 13.56 MHz. The electrodes are
placed on a movable grounded substrate holder in front of
the sputtering target with a target – substrate distance of
4.5 cm. A base pressure of P0 = 2 × 10−8 mbar could be
achieved using a primary/turbomolecular pump combina-
tion and during the experiment, an argon flow is fixed to
5 sccm using a mass flow meter. Such a setup, contrary
to classical diode systems allows precise and independant
control of both sputtering ion flux and biasing of target
and substrate. This last parameter allows control of the
energy of impinging ions on the substrate during deposi-
tion. This is expected to assist Pt diffusion into the porous
carbon electrode [16]. Pt grows into the electrode up to
2 µm depending on plasma parameters. The shape of the
concentration profile is also dependent on plasma condi-
tions, especially Argon pressure and substrate bias (see for
example Fig. 4). Moreover, codeposition is possible by sim-
ply adding a biased target. This is very useful for fuel cells,
because poisoning of the catalyst is lowered by Pt code-
position with another element. For the Direct Methanol
Fuel Cell, the anode catalyst is chosen to be a codeposi-
tion of Pt and Ru, eventually leading to a PtxRuy alloy.
Plasma sputtering codeposition, by independent biasing
of targets, is able to provide various concentration profiles
of the two elements. Figure 5 displays the Pt and Ru con-
centration profiles. The concentrations are 70% Pt atoms
and 30% Ru atoms respectively. The Pt and Ru atoms
have been simultaneously sputtered. It is expected that a
bimetallic catalyst is formed and the composition is inde-
pendent of the depth. When operating with hydrogen, fuel
cells, built with such electrodes, deliver power density in
the range 0.4 to 0.7 W/cm2 and 60 mW/cm2. These values
are similar to power densities delivered with commercial
electrodes. But in our cases, the catalyst content is 5 to
10 times less. So the mass power density is increased by
the same factors. This proves that designing a well suited
catalyst concentration profile in the electrode allows us
to reduce the catalyst content while keeping good perfor-
mances. As a conclusion, it is clear that plasma sputter-
ing offers a good opportunity to design fuel cell electrodes
with various compositions, concentrations profile depths
and shapes.

3 Plasma polymerization of proton
conducting membranes

Ion conductive membranes, in particular Nafion� de-
veloped by DuPont, find widespread applications in
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Fig. 2. Schematic of the electrochemical processes in a proton exchange membrane fuel cell powered with either methanol or
hydrogen. The insert shows the necessity of having an ion conducting polymer, catalyst and conducting support (here carbon)
forming a three-fold contact.

Fig. 3. Schematic of the high density low pressure plasma sputtering reactor.

Fig. 4. Platinum concentration profiles into the electrode.

electrolyzers, batteries or fuel cells [1,2]. Nafion� has a
fluorocarbon backbone with side chains that carry ter-
minal sulfonic acid groups (see Fig. 6). It combines the
outstanding chemical and thermal stability of Teflon with
the highly acidic character of sulfuric acid, and thus, ex-
hibits hydrophilic and hydrophobic properties at the same
time. In general, thin membranes are appreciated because
of the lower resistance, making the process more efficient.
In H2/O2 fuel cells thinner membranes also provide an
improved water management due to the enhanced back
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Fig. 5. Example of Pt and Ru concentration profiles into the
electrode. Composition is 70% Pt atoms and 30% Ru atoms
and simultaneously co-sputtered.

diffusion of production water from the cathode to the an-
ode side.

Plasma polymerization is a powerful and widely used
method to deposit thin and uniform polymer films on var-
ious substrates. The highly cross-linked structure of these
plasma membranes provides higher thermal and chem-
ical stability than the conventional polymerized mem-
branes, which increases their application in a wide range of
fields and also their lifetime. Plasma polymers can also be
used as effective diffusion barriers [17]. This is interesting
for the direct methanol fuel cell (DMFC), which suffers
not only from the sluggish anode oxidation reaction, but
also from methanol crossover towards the cathode side.
Nafion� is permeable for both water and methanol, result-
ing in an insufficient separation of the two reactants and
thus, a decreased cathode potential [18]. Membranes with
high proton conductivity, but low methanol permeability
are required for DMFC applications. The thin thickness
of plasma-polymerized membranes is a serious advantage
to ensure a good contact with the electrodes of PEMFC.
Several research groups have explored the possibility of us-
ing plasma polymerization to prepare polymer electrolyte
membranes by copolymerization of trifluoromethane sul-
fonic acid (CF3SO3H), chlorosulfonic acid, SO2, CO2,
phosphonic acid with different fluorocarbons. Generally,
these plasma films are deposited in a glow discharge be-
tween two capacitively coupled inner disk electrodes.
Most of these studies have shown that sulfur moieties
incorporated into plasma polymers are a mixture of sul-
fonic acid and sulfone groups. Inagaki and his co-workers
have prepared plasma polymer electrolytes using SO2 with
pentafluorobenzene, tetrafluorobenzene and perfluoroben-
zene respectively [19–21]. In this study, the highest ionic
conductivity of 4.3 × 10−2 mS.cm−1 was measured for
the plasma polymer formed from tetrafluorobenzene/SO2

mixture. Several works of Ogumi and his co-workers
have followed; the membranes prepared using CF3SO3H
and CF3CH2Cl have shown conductivities in the range
0.025–0.05 mS.cm−1 [22,23]. Uchimoto et al. have de-
scribed the plasma polymerization of 1,3-butadiene and
methylbenzene sulfonate and measured a conductivity of
0.18 mS.cm−1 [24,25]. Yasuda et al. have measured the
same conductivity for a membrane synthesized by copoly-

Fig. 6. Formula and model of proton transport in Nafion�.

merization of hexafluoropropylene and CF3SO3H [26,27].
Plasma polymerization of trifluoroethylene and CF3SO3H
mixture investigated by Brumlik has led to a conductivity
of 0.58 mS.cm−1 [28]. Other studies show lower conduc-
tivities [29]. In all of these studies it is observed that the
ionic conductivities of the plasma-polymerized films were
substantially lower than that of Nafion�. More recently,
Mex and his co-workers have deposited tetrafluoroethy-
lene/vinylphosphonic acid and tetra-fluoroethylene-H2O
plasma polymers; these films have shown surprisingly
good conductivities, higher than that of Nafion�, as
well at 30 ◦C as well as at higher temperatures [13,14].
Finsterswalder et al. have reported carbon fluorine based
membranes containing sulfonic acid groups prepared by
an ion beam assisted plasma polymerization process start-
ing from a solid PTFE target rather than using glow dis-
charge [30]. Another important feature of new membrane
is their ability to operate at higher temperatures than
Nafion�, namely greater than 90 ◦C. As an example, we
describe proton exchange membranes with sulfonic acid
groups and fluoro-carbons prepared by plasma polymer-
ization [31]. Trifluoromethane sulfonic acid (CF3SO3H)
was chosen to be plasma polymerized with a linear (1,3-
butadiene) or an aromatic (styrene) monomer, respec-
tively. Two types of plasma reactors were used to prepare
the polymer films. In the first type the film deposition re-
gion is situated in the glow discharge, and in the second
one the glow discharge and the film deposition region are
separated (post-discharge configuration).
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Table 1. Atomic percentage of sulfonic acid groups and protonic conduction properties of plasma polymers.

Nature of the Conductivity σ Specific
Kind of discharge carbonated Sample name % - SO3H (mS.cm−1) RS (resistance)

monomer for e = 1 µm (Ω.cm2)

GBu50/0.3 1.1 8.0 × 10−4 125
GBu50/1 1.2 1.1 × 10−3 91

GBu30/0.3 1.5 2.2 × 10−3 45
Glow discharge 1,3 butadiene GBu30/1 2.9 4.0 × 10−4 250

GBu10/0.3 1.8 4.0 × 10−5 2500
GBu10/1 1.8 - -

styrene GSt30/1 2.8 2.5 × 10−3 40

After glow discharge styrene AGSt50/1 - 7.0 × 10−2 1.4
styrene AGSt50/3.5 5.0 9.8 × 10−2 1.0

Fig. 7. Scanning electron micrographs of the cross-section of
plasma-polymerized thin films obtained in the glow discharge.
(a) GBu10/1. (b) GSt30/1, in the after glow discharge. (c)
AGSt50/1. (d) AGSt50/3.5. The a/b numbers following the
deposit name are a = input power (W) and b = ratio of the
partial pressure of CF3SO3H to carbonated monomer.

SEM pictures of the plasma polymers obtained in the
glow discharge are shown in Figures 7a and b. The plasma-
polymerized membranes prepared with the CF3SO3H/1,3-
butadiene mixture (GBu films) are dense, flat, uniform
and free from defects; their deposition rate is measured in
the range 5–8 µm.h−1. The plasma polymers synthesized
in the after glow discharge from the CF3SO3H-styrene
mixture (AGSt films) are shown in Figures 7c, d. These
films are flat, uniform and free from defects; their deposi-
tion rate is between 3 and 5 µm.h−1.

From a chemical point of view, sulfur moieties can be
incorporated into plasma polymers as sulfonic acid groups
and/or sulfone groups. Sulfonic acid groups are predom-
inant in plasma polymers formed in the after glow dis-
charge whereas it is sulfone groups in plasma polymers
formed in the glow discharge, due to a too high fragmen-
tation of the CF3SO3H monomer in this latter configu-
ration. Several studies [24,26] have effectively shown that

in drastic plasma conditions, plasma polymers are likely
to contain very little and even no sulfonic acid groups as
the sulfonic acid groups are completely decomposed in the
plasma. Infrared Fourier Transform and X-ray Photoelec-
tron Spectroscopies measurements suggest that plasma
films synthesized in the after glow discharge are expected
to be better materials for proton conductive membranes
than films formed in the glow discharge.

Proton conductivity is also a very important param-
eter for the electrolyte. Table 1 lists the proton conduc-
tivity values and the specific resistances RS (product of
the resistance by the membrane area) for plasma mem-
branes with thickness equal to 1 µm; the first character-
istic is related to the intrinsic conduction properties of
materials while the second one gives information on the
real efficiency of plasma films as proton conducting mem-
branes. Plasma polymers formed in the glow discharge
show the lowest proton conductivities between 4.0× 10−5

and 2.5× 10−3 mS.cm−1; the maximum value is obtained
for the GSt30/1 film synthesized from styrene. Plasma
polymers prepared in the after glow discharge from the
CF3SO3H-styrene mixture have much higher conductiv-
ities up to 9.8 × 10−2 mS.cm−1. Taking into account
the conclusions drawn from structural analysis of mate-
rials, we can conclude that the proton conduction capac-
ity of a plasma material is all the more increased when
its density is low (high water and proton mobility) and
its sulfonic acid content is high (enhancement of proton
exchange). A proton conductivity of 9.6 mS.cm−1 was
measured for the Nafion� N-117 membrane in the same
experimental conditions. This value inherent in the hydra-
tion state of the membrane is at the lower limit of the typ-
ical range reported for proton conductivities of Nafion�

N-115 or N-117: 10–100 mS.cm−1 [32–34]. Even best con-
ductive plasma-polymerized films show proton conductiv-
ities much lower than the Nafion� N-117 membrane. Now,
we have previously shown that the sulfonic acid content
in plasma materials is higher than that in Nafion�; this
means that the low proton conduction capacity of plasma
materials can be ascribed to their low swelling, directly
related to their high cross-linking inherent in their synthe-
sis process. Nevertheless, the gap in conductivity between
plasma membranes and Nafion� is compensated by the
difference in thickness between both kinds of membranes.
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As is shown in Table 1, plasma films with thickness equal
to 1 µm synthesized from the CF3SO3H-styrene mixture
in the after glow discharge configuration show specific re-
sistances (1.0–1.4 Ω.cm2) lower than the Nafion� N-117
membrane (1.9 Ω.cm2).

4 Conclusion

In conclusion, low pressure plasmas are challenging tech-
niques for producing SPFC materials. Notably, plasma
sputtering is interesting for electrode synthesis with low
catalyst contents. The unique feature of this technique
is to optimize catalyst concentration profiles in the elec-
trodes. Gas phase plasma polymerization using Plasma
Enhanced Chemical Vapor Deposition, is shown to be
able to produce low thickness polymer electrolyte mem-
branes. Moreover, these membranes have lower methanol
crossover, higher operating temperatures (up to 120 ◦C)
and similar ion conductivities to commercial Nafion�

membranes.
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