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Abstract: Fractional-slot PMSM motors allow for obtaining high values of power density factors,
but at the same time, they are characterized by high values of rotor losses—in the rotor core and
permanent magnets. The main causes of rotor losses in this type of motor are subharmonics and a
high content of higher harmonics in the distribution of the magnetomotive force MMF. The use of a
solid rotor core simplifies the construction and technology of the rotor but eddy current losses in the
core account for a significant percentage of the total rotor losses. It is well known that a laminated
core reduces eddy currents, while for motors with an outer rotor, it complicates the construction
and increases weight. Thus, the question arises about the necessity to use a laminated core in a
high power density motor and the real benefits of this. The article presents a comparison of the
motors with a solid rotor core and a laminated rotor core, considering the value of rotor losses, power
density factor, efficiency and the range of rotational speed and range of current load. The analysis
was carried out for various types of sheets for laminated core and solid steel and SMC (Soft Magnetic
Composite) material for solid rotor core. FEM models were used in the analysis, and the results were
partially verified with the results of laboratory tests of motor models. The object of the analysis is a
fractional-slot PMSM motor with an external rotor with surface permanent magnets (SPM). Motor
weight is about 10 kg, and the maximum power is 50 kW at 4800 rpm.

Keywords: high power density motor; solid rotor core; lamination rotor core; eddy current losses

1. Introduction

Motors with high power density (4 kW/kg and more) are sought in industries such as
automotive, aviation or marine, which expect dedicated solutions with a high degree of
technical advancement [1–9]. For these applications, rotational speeds are usually in the
range up to 5000–6000 rpm; therefore, it should be understood that high power density is
directly related to obtaining high shaft torque values. Fractional-slot PMSM motors are a
particularly interesting solution that allows for obtaining very high operating parameters
(torque, power) of the motor and, at the same time, low weight. One of the conditions
is to work with high values of the supply frequency (500–1000 Hz), high magnetic flux
density in the magnetic circuit elements (1.9–2 T) and high current load (>12 A/mm2). In
addition, the proper design of the electromagnetic circuit is very important, including the
use of appropriate materials [4–11]. At the same time, fractional slot motors are usually
characterized by the content of subharmonics and a high content of higher harmonics in
the distribution of the magnetomotive force MMF, which is one of the main causes of eddy
current losses in the rotor elements—in the rotor yoke and permanent magnets [12–22].
These losses can demagnetize the permanent magnets or just limit the required operating
range of rotational speed or shaft power of the motor. This is, therefore, one of the main
issues at the design stage of this type of motor.

There are methods known to limit the value of eddy current losses in rotor elements.
The paper [11] presents the issue of the correct selection of the slot-pole combination, which
allows the reduction of rotor losses. The articles [23–26] present methods of reducing
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eddy current losses in the rotor by segmentation of permanent magnets. Similarly, in
the publications [19], the authors present various methods of reducing the negative effect
of eddy current losses in the rotor based on the optimization of the shape of selected
components of the electromagnetic circuit.

The selection of appropriate materials in the electromagnetic circuit is also important
in reducing eddy current losses. In the publications [1,5,7,10], the authors present and
describe the properties of a number of different materials used in the electromagnetic
circuits of motors with high operating parameters (mainly traction motors), but they do
not show or analyze the direct impact of their application on the values of losses in motors
with high power density. The material properties of magnetic circuit elements in terms of
limiting eddy current losses in the rotor are analyzed in publication [27]. However, they
apply to special covers on permanent magnets, copper or other materials, which are not
analyzed in this paper. Moreover, the use of this type of shield is intended mainly for
high-speed machines, the operating conditions of which differ from those of motors with
high power density.

One of the known methods of limiting eddy current losses is laminating the rotor
core. The external rotor with surface permanent magnet of the fractional-slot motor can be
made as solid or laminated. The solid rotor simplifies the construction of the motor as it
does not require additional elements to support the laminated core, but it causes higher
values of losses in the rotor core. The laminated rotor core reduces eddy current losses
but complicates the technological process and increases the rotor weight. As part of the
work, the possibilities of using various types of materials in both the solid rotor and the
laminated rotor were considered.

The purpose of this study is to present a comparison of a high power density motor
with a solid rotor and a laminated rotor core, considering the value of rotor losses, power
density factor, efficiency and the range of rotational speed and range of current load.
It should be emphasized here the importance of the analysis carried out in the context
of applications in motors with high power density. The authors did not find similar
publications linking these issues. These high power density motors operate in conditions
incomparable to the operating conditions of other motors, i.e., when supplied with high
frequency voltage (approx. 800 Hz), with very high values of magnetic flux density
in the stator core and rotor yoke (approx. 1.9–2.2 T) and at very high current loads of
12–15 A/mm2. All these factors significantly affect the value of losses in the rotor elements.
It is also worth noting that such operating conditions may cause unfavorable phenomena in
the motor, e.g., bearing currents [28]. The authors’ intention is also to assess the possibility
of using a solid rotor core in motor operating in such demanding conditions, as well as to
assess the real benefits of replacing it with a laminated rotor.

2. Object of the Analysis

The object of the analysis is 20-pole, 24-slots PMSM motor with an external rotor,
with surface permanent magnets (SPM) and concentrated winding. Figure 1 shows the
cross-section of the fragment of the motor with a solid rotor (Figure 1a) and a laminated
rotor (Figure 1b), which are analyzed in this paper. Table 1 presents the basic data for the
analyzed motor model. NO27 sheets (0.27 mm) were used in the stator core and permanent
magnets N45SH in the rotor. The permissible operating temperature for this type of magnet
is 150 ◦C (catalog value). It was assumed that the motor is powered by a DC source through
a sinusoidal AC motor controller. For all analyzed models, a highly efficient water cooling
system was assumed, and the permissible rated current density in the winding would be
J = 15 A/mm2. The end winding is also flooded with resin with good thermal conductivity.
The laminated core rotor requires additional support, so the total motor weight is 11.4 kg,
while the solid rotor motor weighs 10.2 kg. These differences were taken into account when
determining the power density factor ξ for the analyzed solutions.
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Figure 1. (a) Cross-section of a fragment of motor with a solid rotor; (b) cross-section of a fragment of
motor with a laminated rotor, where 1—stator winding, 2—solid rotor yoke, 3—permanent magnets,
4—laminated rotor yoke.

Table 1. Basic data for the analyzed motor models.

Parameter

DC supply voltage V 400
Rated rotational speed Rpm 4800
Rated current density A/mm2 15
Phase advance angle - 0

Flux weaking - none

Outer diameter of rotor core mm 200
Length of core mm 50
Phase number - 3

Number of poles - 20
Number of stator slots - 24
Winding temperature ◦C 120

PM temperature ◦C 80

Stator core material type - NO27, 0.27 mm
Type of magnets - N45SH

Solid rotor core motor weight kg 10.2
Laminated rotor core motor weight kg 11.4

The electromagnetic circuit of the motor has been designed taking into account the
key guidelines known from the literature [11–13,29,30] in the scope of limiting the value of
eddy current losses in the rotor. One of them is the correct selection of the number of stator
slots Qs to the number of magnetic poles 2p in order to limit the content of subharmonics
in the MMF force distribution. These subharmonics cause an increased content of eddy
current losses in the rotor elements, and thus also the temperature, which in extreme cases
may even lead to demagnetization of permanent magnets.

Figure 2 shows the harmonic distribution of the magnetomotive force MMF for the
selected slot-pole combination. The fundamental harmonic is marked in color. The MMF
distribution contains only one subharmonic with an amplitude value of about 30% of the
fundamental harmonic and a relatively small number of odd higher harmonics.
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Figure 2. Distribution of the magnetomotive force MMF for a motor with a number of poles 2p = 20
and number of stator slots Qs = 24.

3. Losses in Rotor Elements

In using the developed calculation model, the total value of losses in the rotor core ∆PTr
was calculated as the sum of losses in permanent magnets ∆PPM and losses in the rotor yoke
∆PYr. Magnet losses ∆PPM were calculated as the sum of the losses in individual magnets
within one full magnetic symmetry, multiplied by the number of magnetic symmetries.

∆PTr = ∆PPM + ∆PYr (1)

It is known from the literature [19] that the dominant losses in the solid rotor elements
are eddy current losses ∆Pc. In papers [13–18], the theory of the eddy current phenomenon
induced in the rotor elements is presented. It is known that the eddy current losses strictly
depend on the resistivity of the material of a given element. The resistivity of NdFeB
permanent magnets is approximately 0.625 MS/m, while the resistivity of the steel used in
the solid rotor model is 1.95 MS/m; therefore, the eddy current losses cannot be ignored.

In general, the eddy current losses ∆Pc in the 2D plane on the surface S can be
calculated from the equation found in [21]:

∆Pc =
x

S

J2(x, y)
σ

dS. (2)

The current density in the magnets or rotor yoke is calculated, according to the second
of Maxwell’s equation: ∮ →

E ·
→
ds = − d

dt

x

s
B·d
→
S , (3)

where
→
E =

→
J
σ

. (4)

Considering these relationships, it can be proved that connecting the material parame-
ters with the eddy current losses ∆Pc can be written as [31]:

∆Pc =
σ·b2

12· f ·ρ ·
1
T
·
∫ T

0

(
dB
dt

)2
dt, (5)
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where
σ—electrical conductivity, b—material thickness, f —frequency, ρ—mass density, E—

electric field strength, B—magnetic flux density, T—period.
For laminated core and SMC core, power losses in rotor yoke ∆PYr are equal to the

losses ∆PFe, calculated according to expression (6), where Ph—component of hysteresis
losses, Pc—component of eddy current losses, Pe—component of excess losses.

∆PFe = Ph + Pc + Pe, (6)

Ph = Kh·B2· f , (7)

Pc = Kc·(B· f )2, (8)

Pe = Ke·(B· f )1.5, (9)

where
Kh—hysteresis loss coefficient, Kc—eddy current loss coefficient, Ke—excess loss coefficient.
Eddy current loss coefficient from Formula (8) is calculated as:

Kc = π2·σ·b
2

6
. (10)

4. FEM Analysis

The analysis was performed on the two-dimensional computational model of a motor
with the use of the FEM method. Due to this fact, the end effect and segmentation of the
permanent magnet were ignored. The ANSYS Electromagnetic and Octave FEMM software
was used for simulations. Figure 3 shows the calculated distribution of the flux density
from permanent magnets in the elements of the electromagnetic circuit of the motor model.
The maximum value of the flux density in the stator teeth is approximately 2.0 T, in the
stator yoke, it is 1.65 T, while the maximum value of the flux density in the rotor yoke is
1.8 T.

Energies 2022, 15, x FOR PEER REVIEW 6 of 18 
 

 

 

Figure 3. Distribution of the flux density from permanent magnets in the elements of the electro-

magnetic circuit of the motor model. 

In order to extend the scope of the analysis, calculations were carried out for several 

types of materials in the solid core—S355j2 and Somaloy 700 3p, and for several materials 

in the laminated core—M400-50A, NO27 and Vacoflux48. It should be noted that the 

changes in individual calculation models concerned only the material properties of the 

rotor yoke. The geometric dimensions of the electromagnetic circuit and the rest of the 

data were the same in all models. The distribution of the magnetic flux density in the 

elements of the magnetic circuit and the values of the magnetic flux density, in particular 

in the rotor elements, are very similar for all solutions. 

Table 2 presents the basic properties of each analyzed material and the loss coeffi-

cients Kh, Kc and Ke used in Equations (6)–(9) adopted for the calculations. 

Table 2. Basic properties of the analyzed materials in the rotor yoke. 

Model 

Name 
Type of Material  

Cond. 
Mass 

Density 

Coefficient Cost 

Kh Kc Ke  

MS/m kg/m3 W/m3 p.u. 

Solid rotor  S355j2 1.95 7700 - - - 1.0 

SMC rotor Somaloy 700 3p 0.005 7500 579.1 0 14.52 2.3 

M400 rotor M400-50A 1.95 7700 163.2 1.28 0 1.2 

NO27 rotor NO27 1.7 7600 115.6 0.34 0.72 1.4 

Vacoflux rotor Vacoflux48 2.27 8120 46.4 0.014 3.67 3.5 

The purpose of the FEM analysis is to identify and compare the operating parameters 

that are the most important from the point of view of the motor with high power density 

and the values of losses in the rotor elements. According to the guidelines described in 

[11], the values of the shaft torque Tshaft and the shaft power Pshaft are compared in accord-

ance with Equations (11) and (12). The stator core losses ΔPFes were calculated by FEMM 

using Equation (6). Mechanical losses ΔPmech were estimated on the basis of known bearing 

dimensions and rotational speed. Additional losses ΔPadd were assumed as 1.5% of the 

Figure 3. Distribution of the flux density from permanent magnets in the elements of the electromag-
netic circuit of the motor model.



Energies 2022, 15, 5729 6 of 16

In order to extend the scope of the analysis, calculations were carried out for several
types of materials in the solid core—S355j2 and Somaloy 700 3p, and for several materials in
the laminated core—M400-50A, NO27 and Vacoflux48. It should be noted that the changes
in individual calculation models concerned only the material properties of the rotor yoke.
The geometric dimensions of the electromagnetic circuit and the rest of the data were
the same in all models. The distribution of the magnetic flux density in the elements of
the magnetic circuit and the values of the magnetic flux density, in particular in the rotor
elements, are very similar for all solutions.

Table 2 presents the basic properties of each analyzed material and the loss coefficients
Kh, Kc and Ke used in Equations (6)–(9) adopted for the calculations.

Table 2. Basic properties of the analyzed materials in the rotor yoke.

Model
Name

Type of Material
Cond. Mass Density

Coefficient Cost

Kh Kc Ke

MS/m kg/m3 W/m3 p.u.
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The purpose of the FEM analysis is to identify and compare the operating parameters
that are the most important from the point of view of the motor with high power density
and the values of losses in the rotor elements. According to the guidelines described in [11],
the values of the shaft torque Tshaft and the shaft power Pshaft are compared in accordance
with Equations (11) and (12). The stator core losses ∆PFes were calculated by FEMM using
Equation (6). Mechanical losses ∆Pmech were estimated on the basis of known bearing
dimensions and rotational speed. Additional losses ∆Padd were assumed as 1.5% of the
electromagnetic power PΨ. Stator winding losses ∆PCu were calculated from the classical
Joule loss equations. The efficiency of the motor was determined by Formula (14):

Pshaft = PΨ − ∆PFes − ∆PTr − ∆Pmech, (11)

Tshaft =
30

π·n ·Pshaft, (12)

Pin = PΨ + ∆PCu + ∆Padd, (13)

η =
Pshaft
Pin

, (14)

PΨ—electromagnetic power,
∆PFes—power losses in laminated stator core,
∆Pmech—mechanical losses,
∆PCu—stator winding Joule losses,
∆Padd—additional losses,
Pin—input power.

Tables 3 and 4 show the results of the FEM calculations for the analyzed variants,
using different materials in the rotor yoke. The analysis was carried out for the nominal
rotational speed n = 4800 rpm and for the nominal J = 15 A/mm2 and the maximum
J = 30 A/mm2 current density in the stator winding. The power density factor ξ was
calculated considering the differences in the densities of individual rotor materials and the
need to use additional support elements for solutions with a laminated rotor core. Table 3
also shows the calculated value of the temperature of the permanent magnets as for the
rated operating conditions.
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Table 3. FEM analysis results for the rated rotational speed n = 4800 rpm (f = 800 Hz) and the current
density in the winding J = 15 A/mm2.

Model
∆PCu ∆PFes ∆PYr ∆PPM ∆PTr ∆Padd ∆Pmech Pshaft Tshaft η ξ ϑPM

W W W W W W W kW N·m % kW/kg ◦C
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Table 4. FEM analysis results for the rated rotational speed n = 4800 rpm (f = 800 Hz) and the current
density in the winding J = 30 A/mm2.

Model
∆PCu ∆PFes ∆PYr ∆PPM ∆PTr ∆Padd ∆Pmech Pshaft Tshaft η ξ

W W W W W W W kW N·m % kW/kg
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Analyzing the results from Tables 3 and 4, we note that the change in the rotor yoke
material has no significant effect on the main operating parameters of the motor. The
differences in the obtained values of shaft torque and shaft power as well as in the efficiency
are relatively small. The highest value of the shaft torque for the rated current was obtained
for the Vacoflux48 core, which is 65 Nm, and the lowest for the solid core S355j2—63.3 Nm.
The difference is less than 3%.

The SMC rotor has achieved particularly good results. However, it should also be
taken into account that the mechanical properties of Somaloy 700 3p are much inferior to
those of steel S355j2. After an additional strength analysis, it was decided that the use of
the SMC rotor core, in this case, would be risky; therefore, the SMC rotor was not taken
into account in the physical motor model.

From the results presented in Tables 3 and 4, significant differences in the rotor core
losses between the solid rotor core S355j2 steel and other solutions should be noticed. Both
the use of the SMC core and the laminated cores allow for a drastic reduction of losses in
the rotor yoke. Figure 4 shows a comparison of losses in the rotor yoke for the analyzed
variants as a function of the frequency of the supply voltage for the rated current density in
the winding J = 15 A/mm2. In analyzing the results from Figure 4, it should be emphasized
that the increased losses in the rotor yoke in the solid rotor core S355j2 do not disqualify
this solution in the application in a high power density motor. The main decisive factor is
the possibility and efficiency of discharging such a losses value, and thus the question of
an efficient cooling system.

Another important issue that should be noticed when analyzing the results from
Figure 4 is that for all other analyzed materials, except S355j2, the level of reduction of rotor
losses in the whole range of supply frequencies is very similar. Therefore, the final selection
should mainly take into account material costs and the necessary technological expenditure
for the application of individual variants. It seems that among the analyzed solutions, the
most advantageous in this respect is the use of classic M400-50A sheets.

Figure 5a shows the dependence of the total rotor losses ∆PTr as a function of the
supply voltage frequency and the load current density for the solid rotor S355j2 solution.
The calculated loss values do not consider the segmentation of the permanent magnets.
Figure 5b shows the shaft power of the motor with a solid rotor core as a function of the
supply frequency and the load current density in the stator winding. The rated operating
point is marked with an opaque red color.
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When analyzing the results from Figure 5b, it can be seen that the maximum shaft
power of the motor, assuming a maximum power frequency of 1000 Hz and a maximum
current density in the winding of 30 A/mm2, is approximately 67 kW. For rated current
density J = 15 A/mm2, the maximum possible motor shaft power is 39 kW.

For all analyzed variants, the value of the shaft power Pshaft is very similar in the entire
range of the supply frequency and the entire range of current loads (Tables 3 and 4). From
the point of view of a high power density motor, the basic question concerns the possible
range of operation with continuous (long-term) power. From the conducted thermal
simulations, the nominal current density was determined as J = 15 A/mm2. For higher
load values, the permissible temperatures in the stator winding were exceeded. Another
factor that may limit the range of long-term operation is losses generated in the rotor. These
losses cause deterioration of the operating parameters of the motor due to the increase in
temperature of permanent magnets and thus their worse magnetic properties. Moreover,
these losses may lead to demagnetization of the magnets in the event of exceeding the
allowable temperatures.

Figure 6 shows a comparison of the total rotor losses ∆PTr as a function of the supply
frequency and the current load for all analyzed variants that are an alternative to the solid
rotor core S355j2, for which the total rotor losses are presented in Figure 5a. At the rated
operating point, the value of the total rotor losses for the motor with a solid stator core is
1092 W. It can be seen that for the remaining solutions such value level of the total rotor
losses ∆PTr for the rated current load is obtained at a supply frequency of 1000 Hz. In
taking the above into account, it can be assumed that changing the solid rotor S355j2, e.g.,
to a laminated rotor M400 (due to the lowest material cost), will allow to increase the
range of long-term operation to 1000 Hz, and thus increase the continuous power from
31.8 kW to 40 kW. Then the motor power density factor will increase from ξ = 3.06 kW/kg
to ξ = 3.57 kW/kg. Figure 7 shows the shaft power of the motor with the M400 rotor core
as a function of the supply frequency and the load current density in the stator winding.
The rated operating point is marked with an opaque green color.
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5. Experimental Verification

The validation was carried out on a model motor with two rotors made—a solid rotor
S355j2 and a laminated rotor M400. Therefore, the models differ only in the rotor yoke, and
the other components are identical. In contrast to the FEM models, the model motor uses
axial segmentation of magnets (4 segments). Figure 8 shows the model motor installed
on the test stand. The tests were carried out with the use of the measuring system shown
in Figure 9. The model motor was powered by a Sevcon Gen4 Size8 AC motor controller.
Measurements of electrical quantities were made with the use of the ZES Zimmer LMG671
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Power analyzer. The measurement of the torque and rotational speed on the shaft was made
with the HBM T20WN 200 Nm torque meter. The rotor temperature was measured with
the Flir E300 thermal imaging camera, while the winding temperature was recorded from
the installed Pt100 sensors. The ambient temperature during the tests was ϑamb = 21 ◦C.
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The results of the laboratory tests are presented in Table 5 (solid rotor S355j2) and
Table 6 (laminated M400 rotor). One of the basic objectives of the laboratory tests was to
determine the continuous power of the motor and the possible operating area in terms of
load current and supply frequency for both solutions. It was assumed that the maximum
allowable temperature of the winding was ϑstator = 130 ◦C. During the tests, the rated
current IN was determined for which the current density was J = 13.8 A/mm2; therefore,
it was slightly lower than the rated current density of J = 15 A/mm2 assumed during the
FEM analysis. In order not to damage the permanent magnets, it was assumed that the
maximum permissible rotor temperature was also ϑrot = 130 ◦C.

Figure 10 shows a comparison of the shaft torque for solid rotor and laminated M400
rotor as a function of rotational speed for rated current load In. An important issue is the
rotor temperatures marked for each operating point. We can see that above the rotational
speed of n = 2400 rpm, there is an increase in the difference in the received shaft torque.
The main reason is the difference between the rotor temperature of the motor with the solid
rotor S355j2 and the laminated M400 rotor. As the temperature increases, the parameters
of permanent magnets deteriorate, which in turn translates into the shaft torque obtained.
For the motor with a solid rotor above the rotational speed n = 4800 rpm, the operation
was not possible due to the exceeded permissible operating temperatures of the rotor. For
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a motor with a laminated rotor, the range of permissible operation was possible up to a
speed n = 6000 rpm and further limited by the possibility of the inverter working. The rotor
temperature at this operating point was 99 ◦C.

Table 5. The results of tests bench for a model motor with solid rotor S355j2 for the rated load
current IN.

n f Pshaft Tshaft η ϑstator ϑrot

rpm Hz kW N·m % ◦C ◦C

600 100 3.8 59.7 78.1% 95 60
1200 200 7.4 58.5 84.9% 105 83
1800 300 11.0 57.8 87.2% 111 100
2400 400 14.5 57.5 89.0% 119 101
3000 500 17.3 55.0 89.1% 120 107
3600 600 20.0 52.9 89.3% 121 115
4200 700 22.8 51.9 90.0% 122 121
4800 800 25.4 50.6 90.0% 130 130
5400 900 - - - - -
6000 1000 - - - - -

Table 6. The results of tests bench for a model motor with laminated M400 rotor for the rated load
current IN.

n f Pshaft Tshaft η ϑstator ϑrot

rpm Hz kW N·m % ◦C ◦C

600 100 3.8 60.9 77.9 86 42
1200 200 7.6 60.0 85.5 92 54
1800 300 11.1 58.8 87.4 99 67
2400 400 14.6 58.2 88.9 104 74
3000 500 18.1 57.6 89.9 111 80
3600 600 21.6 57.3 90.4 118 87
4200 700 24.9 56.5 91.0 122 88
4800 800 27.8 55.4 91.4 125 93
5400 900 31.0 54.8 91.6 126 95
6000 1000 34.0 54.1 92.1 130 99
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Obviously, the differences in the shaft torque values have a direct impact on the power
obtained from the motor. Figure 11 shows the dependence of the shaft power as a function
of changes in rotational speed for the rated load current. The difference between the
compared solutions due to the higher value of the torque obtained for the rotational speed
n = 4800 rpm is as much as 2.4 kW, i.e., approximately 10% of the shaft power. Moreover, it
should be noted that due to the extended operating range of the motor (due to the reduction
of the rotor temperature), the motor can run at a continuous power of 34.4 kW instead of
25.4 kW, thus an increase of 35%.
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Figure 12 shows a comparison of the efficiency for a motor with a solid core and a
motor with a laminated M400 core. The efficiency of the laminated core motor is 0.7–1.4%
higher above the speed n = 2400 rpm.
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6. Conclusions

The aim of this study was to compare a high power density motor with a solid rotor
core and a laminated rotor core. The FEM analysis was carried out, taking into account
the possibility of using various materials in the rotor yoke, and then the results were
validated for two physical models. The main attention was focused on comparing the
values of rotor losses, shaft power and shaft torque, efficiency and the power density
factor. The differences in the values of shaft torque and shaft power obtained in FEM
simulations and lab tests are the result of a difference in the nominal current densities
(15 A/mm2—calculations, 13.7 A/mm2—lab tests) and the adopted temperature values of
permanent magnets (80 ◦C—calculations, 130 ◦C—lab tests).

When analyzing the results of the work, it can be concluded that the use of a solid
rotor core simplifies the design and technology of the rotor and has a lighter motor weight,
but the rotor losses are much greater than a motor with laminated rotor cores. However, the
analysis does not show that the use of a solid rotor core in a high power density motor is
not possible. The motor with the solid rotor core was operated up to a maximum speed of
4800 rpm (800 Hz supply frequency), achieving a continuous power of 25.4 kW. However,
the change of the core to a laminated core allowed, firstly, to increase the continuous
power at the speed of 4800 rpm to the value of 27.8 kW due to the reduction of the rotor
temperature; secondly, it allowed to increase the operating range to the rotational speed
of 6000 rpm and obtain a continuous power of 34.3 kW. Therefore, it can be concluded
that the predictions after the FEM analysis were confirmed. As a result, the motor’s power
density factor increased from 2.49 kW/kg to 3.0 kW/kg (20.5%). On the other hand, the
comparison of the power density factors for the speed of 4800 rpm is very similar for both
solutions; nevertheless, the laminated rotor core allows 35% more shaft power and 20.5%
more power density. The motor with a laminated core gets more power (27.4 kW), but is
also heavier. Ultimately, this results in a comparable power density factor for the same
rotational speed of 4800 rpm.
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