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Abstract: [2+2] Photocycloaddition of olefins is a very useful reaction in synthetic organic 

chemistry to obtain cyclobutane-containing molecules, which are almost inaccessible by 

other methods. The reaction, when performed in the crystalline state, occurs more 
efficiently and selectively than in homogeneous solution due to tight and regular molecular 

arrangement in the crystal state. Despite numerous examples for the solid-state [2+2] 

photodimerization of monoenes, however, it is still a challenge to prepare not only dimers 
but also higher oligomers and polymers from conjugated polyenes, which have multiple 

reactive double bonds in a molecule. In our recent studies of the solid-state photoreactions 

of α,ω-diarylpolyenes, noncovalent intermolecular interactions in crystals were effectively 
utilized to prealign molecules in stacking arrangements, suitable for the [2+2] reaction. 

With appropriate ring-substituents, [2+2] photodimerization and photopolymerization of 

the polyenes took place, although the degree of polymerization was relatively low. This 
review will describe the details of these reactions. 

Keywords: ring-substituted diphenylhexatriene; cyclobutane; [2+2] photocycloaddition; 

hydrogen bond; stacking arrangement 
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1. Introduction 

[2+2] Photocycloaddition is one of the best known reactions of olefins in solid-state organic 
photochemistry [1-16]. By using the reaction, cyclobutane molecules, almost inaccessible by other 

synthetic methods, are easily obtained in high or at least reasonably good yields. The reaction, when 

performed in the crystalline state, occurs more efficiently and selectively than in homogeneous 
solution due to the tight and regular molecular arrangement found in crystals. It is often observed that 

the photoproducts in the solid state are entirely different from those in solution. Further, it has recently 

attracted increasing attention as one of the best suited reactions for 'green chemistry', because the 
reaction is 'solvent-less' in nature [14-17]. Even for two-component reactions, the mixing and grinding 

the reactant solids induce 'mechanochemical self-assembly' to lead high reaction efficiency without 

using any solvents [18-22]. In addition, only light irradiation is needed for the reaction to take place. 
No other energy supply such as heating equipment is required, as the photoreaction usually proceeds at 

or below room temperature.  

During 1960-1970s, Schmidt and co-workers thoroughly and systematically studied the solid-state 
[2+2] photocycloaddition of cinnamic acids (CAs) [1,2,23-25]. From crystallographic investigations 

'topochemical rules', which connect the configuration of the product and crystal structure of the reactant, 

were revealed [6,9,23]. It is well-known that for topochemical [2+2] photocycloaddition, the distances 
between the potentially reactive double bonds should be less than ca. 4.2 Å ('Schmidt's rule') [1,2,25]. 

Since the pioneering work of Schmidt et al., numerous examples of the solid-state [2+2] photo-

dimerization of olefins, mostly monoenes, have been reported. Up to now, a number of strategies have 
been employed to prealign molecules in stacking arrangements favorable for the [2+2] reaction. These 

include intramolecular substitution to control intermolecular interactions between reactant olefins in 

crystals [11,26-32], inclusion within host structures [11,14-16], and cocrystallization with hydrogen-
bond templates [33-35]. Coordination to a metal is also used to preorganize molecules for the 

reaction [36,37]. The use of tetranuclear rectangle macrocycles is an interesting new approach [38-40]. 

The [2+2] cycloaddition of molecules having two or more potentially reactive double bonds, such 
as diolefins and conjugated polyenes, can be a polymerization reaction. As for the reactions of 

aromatic diolefins, the [2+2] photopolymerization of distyrylpyrazines and phenylene diacrylates took 

place topochemically to afford highly crystalline polymers [41,42]. The reaction is known as 'four-
center type photopolymerization'. For conjugated polyenes, however, it is still a challenge to prepare 

not only dimers but also higher oligomers and polymers. This is probably due to highly flexible 

polyenic chains even in the solid state. Although the hydrogen-bond templates have been successfully 
used to prepare ladder-shaped [2+2] dimers from conjugated dienes and trienes (in 100% yield), the 

reactions did not afford higher molecular weight (MW) products [33-35]. 

In our recent studies on the solid-state photoreactions of ring-substituted α,ω-diphenylpolyenes 
(Figure 1), noncovalent intermolecular interactions in crystals were effectively utilized to prealign 

molecules in stacking arrangements suitable for the [2+2] reaction. Unsubstituted parents of this class 

of molecules were all photochemically inert due to unfavorable crystal packing for the reaction. With 
appropriate substituents, however, [2+2] photodimerization and photopolymerization of the polyenes 

took place in the crystalline state. This review will mainly describe the photoreactions of ring-
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substituted (E,E,E)-1,6-diphenyl-1,3,5-hexatrienes (3; DPHs), and compare them with those of ring-

substituted (E)-CAs and (E,E)-1,4-diphenyl-1,3-butadienes (2; DPBs). 

Figure 1. Chemical structures of α,ω-diphenylpolyenes 1-3. 

n

1   n=1

2   n=2   (DPB)

3   n=3   (DPH)  

2. [2+2] Photodimerization and Photopolymerization of α,ωα,ωα,ωα,ω-Diarylpolyenes 

Unsubstituted α,ω-diphenylpolyenes, (E)-stilbene 1, (E,E)-DPB, and (E,E,E)-DPH, were all 

photochemically stable in the solid state [43-45]. The molecules in the crystal structure of 
(E,E)-DPB [46,47] were arranged in a 'herringbone' pattern [48,49]. The nonparallel arrangement of 

double bonds of adjacent molecules was obviously unsuitable for the [2+2] cycloaddition. Also in 

(E,E,E)-DPH crystal, the molecular arrangement was unfavorable for the reaction, and the double bond 
distance for the nearest stacking molecules was 7.730 Å (= a) [50]. However, introduction of 

appropriate ring-substituents into the benzene rings of DPB and DPH led to π-stacked arrangements in 

crystals favorable for the [2+2] reaction. 

2.1. Cyano Substitution 

4,4'-Dicyano-substituted (E,E,E)-DPH 4 underwent crystalline-state [2+2] photocycloaddition at the 

terminal double bonds of the triene to give mirror-symmetric dimer 5, trimers (6; the most plausible 
structure of the main trimer) and oligomers (Scheme 1) [45]. In the solid state, no Z-E geometrical 

photoisomerization was observed, in contrast to highly efficient and selective EEE�ZEE 

isomerization in diluted solution [51,52]. 

Scheme 1. [2+2] Photodimerization and photopolymerization of 4. 
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In the crystal structure [53], molecules were linked by CH···N hydrogen bonding [54-58] and 

CN···CN dipole-dipole interactions [58] to make a tape (Figure 2). The tapes were further linked by 
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CH···N hydrogen bonds to make a sheet. The molecules were π-stacked with the distance between the 

reactive double bonds of 3.928 Å, reasonably close each other. Thus the double bond distance of 7.73 
Å in unsubstituted DPH [50] largely decreased to 3.93 Å in 4, indicating the remarkable effect of 

cyano substitution. Considerably strong face-to-face interactions between π-orbitals of the molecules 

were evidenced by the observation of excimer fluorescence from the crystal [45,59]. The [2+2] 
photoreaction of 4 is considered to proceed via the excimer(s). 

Figure 2. CH···N hydrogen bonding and CN···CN dipole-dipole interactions in crystal 4. 

C H
N

H C
N

 

Interestingly, the very similar structural motif shown in Figure 2 has been observed in the crystal 

structure of 4-cyano-substituted (E)-CA [58]. The centro-symmetric carboxylic dimers of 4-cyano CA 

were organized into molecular sheets utilizing CN···CN dipole interactions and weaker forces such as 
CH···N and CH···O hydrogen bonds. The molecules were stacked with the double bond center-to-

center distance of ca. 3.7-3.8 Å. Despite a large offset for the double bonds of stacking two molecules, 

the crystal was [2+2] photoreactive to give a mirror-symmetric dimer in 94% yield. 

2.2. Formyl Substitution 

4-Formyl substitution on the benzene rings of (E,E,E)-DPH also induced the [2+2] 

photocycloaddition of hexatriene double bonds. Irradiation of 7 gave mirror-symmetric dimer 8 
(Scheme 2) [45]. Crystal 7 was less reactive than 4 and the yield of higher oligomers than dimer was 

low. In diluted solution, 7 underwent efficient Z-E photoisomerization, whose regioselectivity 

(EEE�ZEE vs. EEE�EZE) depended on the spin multiplicity of the excited states involved in the 
reaction [60-62] (Scheme 3). While in the solid state, no Z-E isomerization was observed. 

CH···O-type hydrogen bonds [57,63-68] were observed between the formyl groups of the 

neighboring molecules in crystal [53], in agreement with the results of IR and 13C CP/MAS NMR 
spectral measurements [45]. Molecules were π-stacked with the distance between the two reactive 

double bonds of 3.926 Å. As in 4, the solid-state excimer fluorescence was observed in 7, indicative of 

the presence of intermolecular π-orbital interactions of considerable strength [45,59]. 

Scheme 2. [2+2] Photodimerization of 7 in the crystalline state. 
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Scheme 3. Regioselective Z-E photoisomerization of 7 in solution. 
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4-Formyl-substituted (E)-CA also underwent [2+2] cycloaddition in the solid state to give a mirror-

symmetric photodimer in a quantitative yield [69-71]. The molecules formed centro-symmetric 
carboxylic dimers, which piled up to form a plane-to-plane parallel stack. Although the shortest 

intermolecular distance between the reactive double bonds (4.825 Å) was significantly longer than the 

Schmidt's criterion of 4.2 Å, the plane-to-plane perpendicular distance between reactive molecules 
(3.388 Å) was fairly short, thus making the molecule [2+2] photoreactive [72].  

As seen, the cyano and formyl substitution was both effective to prealign molecules for the [2+2] 

cycloaddition of (E,E,E)-DPH. It should be noted that molecules in the photoreactive crystals 4 and 7 
are joined through relatively weak intermolecular interactions such as CH···N and CH···O hydrogen 

bonds [45]. 

2.3. Nitro Substitution 

As in 7, weak CH···O-type hydrogen bonds [68,73,74] were observed in the crystal structure of 9 

(Scheme 4) [75]. The molecular sheets formed by the CH···O hydrogen bonds were linked by 

intermolecular N···O dipole interactions and aromatic π-π stacking interactions into a three-
dimensional framework. The double bond distance for the stacking molecules was 3.871 Å, similar to or 

even slightly shorter than those for the [2+2] photoreactive crystals of 4 and 7. Contrary to expectation, 

however, 9 was photochemically very stable in the crystalline state [45,76] as in solution [52]. 
Consistently, unlike 4 and 7, the solid-state fluorescence of 9 originated not from excimeric but from 

monomeric species [76]. This indicates the absence of strong π-orbital-π-orbital interactions between the 

stacking molecules in the excited state, although they are in close proximity in the ground state.  

Scheme 4. Stacking two molecules in photostable crystal 9. 
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2.4. Alkoxy-Nitro (Donor-Acceptor) Substitution 

Cocrystallization of 2,5-dimethoxy- and 3,5-dinitro-substituted (E)-CAs, 10 and 11 respectively, led 
to π-stacked molecular arrangements as a result of OH···O and CH···O hydrogen bonding, and donor-

acceptor charge transfer (CT)-type stacking interactions [77,78]. The resulting 1:1 cocrystal 10/11 

photoreacted to give 12 (Scheme 5). 

Scheme 5. [2+2] Photocycloaddition of 10 and 11 in 1:1 cocrystal 10/11. 
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Unfortunately, however, an attempt to cocrystallize 4,4'-dinitro DPH 9 and 4,4'-dimethoxy-

substituted (E,E,E)-DPH was unsuccessful; from the 1:1 mixture of the two derivatives in acetonitrile, 
only single crystals of 9 were grown out from the solution. 

The crystal of (E,E)-1-(2-methoxyphenyl)-4-(4-nitrophenyl)-1,3-butadiene 13 was irradiated to give 

head-to-tail dimer 14 (Scheme 6) [79]. Similarly, irradiation of donor-acceptor-substituted (E,E)-diene 
ester 15 gave dimer 16 (Scheme 7) [80]. In the crystal structure of 15, the double bonds that reacted to 

form 16 were close to one another with the distances of 3.9-4.0 Å, and were arranged in a head-to-tail 

manner with only a slight offset. 

Scheme 6. [2+2] Photodimerization of 13. 
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Scheme 7. [2+2] Photodimerization of 15. 
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For a series of (E,E,E)-1-(4-alkoxyphenyl)-6-(4-nitrophenyl)-1,3,5-hexatrienes 17-20 (Figure 3), the 

relationship between crystal structure and photophysical/photochemical properties was systematically 

investigated [81].  
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Figure 3. Chemical structures of alkoxy-nitro-substituted (E,E,E)-DPHs 17-20. 

O2N

OR
17   R=Me

18   R=Et

19   R=n-Pr

20   R=n-Bu  

In the crystal structure of 20, the O atom of the nitro group was in close contact with a neighboring 
H atom of the nitrophenyl ring at the ortho position relative to the nitro group to form a weak CH···O 

hydrogen bond [68,73,74]. A pair of this type of hydrogen bonds formed a hexagonal pattern between 

adjacent two molecules to make a tape (Figure 4) [55,57,73]. The molecular tapes were π-stacked with 
the double bond distance of 3.862 Å (Scheme 8). Also, molecules in crystal 18 were shown by powder 

X-ray diffraction (XRD) analysis to be arranged in a π-stacked fashion. While in crystals 17 and 19, 

molecules were arranged in a herringbone pattern. Therefore at least 18 and 20 were expected to be 
[2+2] photoreactive. Actually, however, 17-20 were all photochemically stable in the solid state. The 

results were consistent with the fact that all four molecules exhibited solid-state fluorescence of 

monomeric origin but no excimer fluorescence. They underwent Z-E photoisomerization in low polar 
solvents [82], but did not isomerize in the crystalline state. 

Figure 4. A hexagonal pattern formed by CH···O hydrogen bonds in crystal 20. 
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Thus, as a consequence of attractive CT interactions, the donor-acceptor (E,E)-DPB 13 and related 

molecule 15 were organized into π-stacked structures. The resulting crystals were [2+2] photoreactive, 

as expected. For donor-acceptor (E,E,E)-DPHs 17-20, on the other hand, the ring-substitution was not 
effective in all cases to steer stacking molecular arrangements.  

Scheme 8. Stacking two molecules in photostable crystal 20.  
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The packing patterns of molecules (i.e., herringbone and π-stacked) depended clearly on a slight 

difference in molecular structure such as the alkoxy chain length. This suggests that the two packing 
patterns of these trienes are nearly isoenergetic. It is likely that, as for the larger π-system of DPH than 

that of DPB, the face-to-face stacking arrangements are considerably stabilized by CT (and π-π) 

interactions, but significantly destabilized by π-π repulsion [81]. Further, no photoreactivity of crystals 
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18 and 20 was rather unexpected, considering that diene crystals 13 and 15 were photoreactive. This 

may possibly be due to the difference in the magnitude of π-orbital interactions in the excited state for 
the diene and triene systems. 

2.5. Halogen Substitution  

2.5.1. Chlorine substitution 

It is well-known that chlorine substitution is effective to steer stacking arrangements suitable for 

[2+2] photocycloaddition of aromatic olefins [6,9,63]. The effects are mainly based on the attractive 

Cl···Cl interactions [83-87]. Typical examples include 2,4- and 2,6-dichloro substitution for (E)-CA 
[24,88], (E)-stilbene [89,90], (E,E)-DPB and related molecules [43,91-93]. 

Irradiation of 2,6-dichloro-substituted (E,E)-DPB 21 gave mirror-symmetric dimer 22 in high yield 

(Scheme 9). Excimer emission in the solid state was observed in this case [43,93]. Of the two possible 
isomers 22 and 23, only one kind of dimer 22 was formed from 21, which was explained in terms of 

twisting of 2,6-dichlorophenyl ring from the butadiene plane [43] and intramolecular conformational 

changes in the excimer formation [93].  

Scheme 9. [2+2] Photodimerization of 21. 
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In the crystal structure of 2,2',4,4'-tetrachloro-substituted (E,E,E)-DPH 24, molecules were linked 

via Cl···Cl interactions with the shortest intermolecular Cl···Cl distance of 3.514 Å (Scheme 10) [94]. 

The molecules were further joined through π-π stacking interactions with the double bond distance of 
3.950 Å. The closely stacked molecular arrangement was clearly a result of chlorine ring-substitution. 

Despite the relatively short distance between double bonds, however, 24 was unreactive in the solid 

state [45]. No observation of excimer fluorescence suggests the presence of only weak orbital-orbital 
interactions between the stacking molecules [59].  
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Scheme 10. Molecular arrangements and multiple Cl···Cl interactions in photostable crystal 24. 
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The photostability of 24 may at least partially be due to multiple Cl···Cl interactions between 

adjacent molecules, which will prevent easy atomic and molecular movements required by the [2+2] 
reaction in crystal [94]. 

2.5.2. Fluorine substitution 

It has recently been recognized that fluorine substitution [67,68,95,96] is probably more useful than 
chlorine substitution for constructing [2+2] photoreactive crystals [97-103]. In particular, noncovalent 

intermolecular interaction between C6F5 and C6H5 rings is known to be strongly attractive [104-109]. 

The interaction is widely used in crystal engineering as a strong supramolecular synthon to steer face-
to-face stacking arrangements of aromatic molecules [110-119]. It can be utilized to prealign 

molecules not only for [2+2] photocycloaddition of olefins [120-123], but also for photo-

polymerization of diacetylenes in the crystalline state [124,125]. 
The C6F5···C6H5 interaction induced [2+2] cycloaddition of (E)-CA, (E)-stilbene, and (E,E)-

distyrylbenzene molecules [120]. Irradiation of center-ring perfluorinated (E,E)-distyrylbenzene 25 

yielded a white powder that was virtually insoluble in common organic solvents. The toluene-soluble 
part of the product was shown by GPC analysis to be an oligomeric mixture (predominantly dimer to 

tetramer) (26; the proposed structure) (Scheme 11). 

(E,E)-1-Pentafluorophenyl-4-phenyl-1,3-butadiene 27 underwent double [2+2] photocycloaddition 
in the solid state to afford ladder-shaped dimer 28 (Scheme 12) [121]. Considering no reactivity of 

parent DPB, it is clear that perfluorination of the benzene ring brings remarkably the reactant 

molecules into head-to-tail stacking arrangement in the crystal lattice. For the centro-symmetrically 
related reactive double bonds, the center-to-center distances were reported to be 3.724 and 3.895 Å. 

The low yield of photoproduct was ascribed to the stepwise reaction mechanism for the dimerization. 

For a series of ring-fluorinated (E,E,E)-DPHs 29-33 (Figure 5), the relationship between crystal 
structure and photophysical/photochemical properties was systematically investigated [122]. 

Fluorination at 4-, 2,4-, or 2,4,6-positions of the two terminal benzene rings of (E,E,E)-DPH was 

ineffective to induce [2+2] photocycloaddition. In the crystal structure, molecules 29 were arranged in 
a typical herringbone fashion, unfavorable for the photoreaction. Although molecules 30 and 31 were 

π-stacked in the lattice, the planes of the nearest two molecules were largely offset along the short 

molecular axes. For the nearest stacking molecules, the double bond distances [7.515 Å (=c) for 30 and 
7.217 Å (=b) for 31] were too large for the reaction to occur. 
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Scheme 11. [2+2] Photodimerization and photopolymerization of 25. 
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Scheme 12. Double [2+2] photocycloaddition dimerization of 27. 
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Figure 5. Chemical structures of fluorinated (E,E,E)-DPHs 29-33. 
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On the other hand, crystal 32 and 1:1 cocrystal 3/33 (Figure 6) were highly photoreactive. The 

[2+2] reaction of 32, in particular, was much efficient compared to those of typical organic solids. The 

conversion reached 100% after only 3 h-irradiation. The photoproduct was a mixture of dimer 34, 
trimers (35; the most plausible structure of the main trimer), and higher oligomers, all soluble in 

common organic solvents such as dichloromethane and acetonitrile (Scheme 13). Although the 

photoreaction in solution occurred inefficiently to give a mixture of several kinds of dimers, only one 
kind of dimer (and its mirror-image) was predominantly formed in the solid state [123]. Unlike in 

crystal 27 [121], the double [2+2] cycloaddition giving a ladder-shaped dimer did not take place in 32. 

The photoreaction of cocrystal 3/33 was similar but somewhat less efficient than the reaction of 32 [123]. 



Molecules 2011, 16              
 

 

129

Figure 6. Stacking molecular arrangements in crystal 32 and 3/33. 
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Scheme 13. [2+2] Photodimerization and photopolymerization of 32. 
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As a result of effective C6F5···C6H5 interactions, the molecules in crystals 32 and 3/33 were very 

similarly arranged in a π-stacking fashion (Figure 6) [122]. The double bond distances were 4.067 and 

4.119 Å for 32, and 4.098 and 4.126 Å for 3/33. The reaction efficiency and the highest MW of the 
photoproduct for 32 and 3/33 were considerably enhanced when compared to those for 4 and 7, 

although the double bond distances of the stacked molecules in the original structures were not greatly 

different for these crystals. This suggests that the C6F5···C6H5 stacking interactions are more effective 
than the π-π stacking interactions to keep molecules in nearly face-to-face arrangements during the 

[2+2] photoreaction, in which the bulky cyclobutane products will destroy the initially ordered 

molecular alignments. 
Figure 7(A) shows the changes in solid-state absorption spectra of 32 obtained by Kubelka/Munk 

(K/M) conversion of the diffuse reflectance spectra during the photoreaction. On irradiation, the 

absorption band of the starting monomer around 400 nm decreased in intensity, and a new band of the 
dimeric and polymeric photoproducts was growing up around 325 nm. The large blue-shift of 70-80 

nm in the absorption indicates the destruction of DPH π-conjugated system by the formation of 

aliphatic cyclobutane ring. The spectroscopic changes during the reaction of 3/33 were fundamentally 
similar (Figure 7(B)). The initially observed band around 410 nm decreased in intensity on irradiation, 

and the product band newly appeared around 320 nm. 
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Figure 7. (A) Solid-state absorption spectra of 32 (a) before and after irradiation for (b) 15, 

(c) 30, (d) 60, and (e) 90 min; (B) Solid-state absorption spectra of 3/33 (a) before and after 
irradiation for (b) 60, (c) 120, and (d) 240 min. 
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Figure 8(A) shows the changes in the solid-state fluorescence spectra during the photoreaction of 

32. Before irradiation, the weak emission band due to excimeric species was observed around 525 nm, 
indicating strong π-orbital interactions between stacked molecules in the original crystal [122]. On 

irradiation, a new band centered at 495 nm was rapidly growing. This blue-shifted strong emission 

originated probably from unreacted monomers that were isolated in the crystal lattice with the progress 
of the reaction. When irradiated further, the intensity of the monomer emission gradually decreased, 

and finally a broad band remained only weakly around 500 nm. This suggests that the cyclobutane 

products are practically nonfluorescent. Similar spectral changes were observed for 3/33 (Figure 8(B)).  

Figure 8. (A) Solid-state fluorescence spectra of 32 (a) before and after irradiation for 

(b)10, (c) 20, (d) 60, and (e) 120 min; (B) Solid-state fluorescence spectra of 3/33 (a) 

before and after irradiation for (b)10, (c) 20, (d) 60, and (e) 120 min. 
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In this case, the weak fluorescence band initially observed around 565 nm was assigned to the 
emission from molecular aggregates [122]. Whereas, the band around 490 nm growing on irradiation 

would be due to unreacted monomers isolated in the lattice. For 32 and 3/33, the solid-state absorption 

and emission spectra thus dramatically changed before and after irradiation. 
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Figure 9 shows the changes in the polarizing optical micrographs of cocrystal 3/33 during the 

photoreaction. The results can be compared with those of crystal 32 reported previously [123]. On 
irradiation, stripe-like microstructures formed very rapidly on the crystal surface. The formation of 

such microstructures was not observed for 32. When irradiated further, the structures gradually 

disappeared and a transparent part was slowly growing up from the edge of the crystal. When the 
reaction was completed after 5 h, the crystal became almost completely transparent. This shows the 

photoproducts to be amorphous, in agreement with the observations in powder XRD pattern 

measurements [123]. 

Figure 9. Polarizing optical micrographs of cocrystal 3/33 (a) before and after irradiation 

for (b) 15, (c) 30, (d) 60, (e) 120, (f) 180, (g) 240, and (h) 300 min. 

    
 

    

The noncovalent interaction between two C6F5 rings was also used to steer stacking arrangements [126] 

and to induce [2+2] photocycloaddition [127] of olefin crystals. Irradiation of 33 gave dimer 36, 

formed by the reaction at the terminal double bonds of trienes, and a small amount of higher oligomers 
(Scheme 14) [123]. The offset for the stacking molecules in 33 was larger than those in 32 and 3/33. 

This results from weak C6F5···C6F5 intermolecular interactions relative to C6F5···C6H5 

interactions [128]. For the reacting two molecules of 33 in the stack, the distance between the terminal 
triene carbons was 5.939 Å, considerably larger than the (normal) upper limit of 4.2 Å for the [2+2] 

reaction. Consistent with its photoreactivity, even from this crystal excimer fluorescence was observed 

with monomer emission, indicating the presence of a significant degree of intermolecular π-orbital 
interactions in the excited state [122]. 

Scheme 14. [2+2] Photodimerization and photopolymerization of 33. 
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Also, trifluoromethyl groups have been proven to be effective to steer a parallel, offset stacked 

orientation suitable for [2+2] cycloaddition of aromatic olefins [129-131]. 
Trifluoromethyl-substituted (E,E)-DPB 37 was irradiated to afford dimer 38 in the solid state 

(Scheme 15) [129]. In the crystal structure of 37, the distance between the layers of molecule was 3.50 Å. 

UV-irradiation in solution resulted in the conversion of 37 to its Z-E isomer in >95% yield. 

Scheme 15. [2+2] Photodimerization of 37. 
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For (E,E)-1,4-bis[2,4-di(trifluoromethyl)phenyl]-1,3-butadiene, noncovalent π-π stacking 

interaction is considered to be mainly responsible for the observed offset stacked orientation [130]. In 
the crystal structure, olefins of neighboring layers were separated by 3.55 Å. UV-irradiation of the 

diene crystal for 15 h at room temperature yielded a [2+2] dimer as a single product in 80 % yield. 

2.6. Substitution with Electron-Donating Groups 

As described above, ring-substitution of (E,E,E)-DPH with electron-withdrawing cyano, formyl 

groups, or fluorine atoms induced solid-state [2+2] photocycloaddition at the triene double bonds. Up 

to now, however, no examples have been found for the photoreactive DPHs having electron-donating 
substituents. Thus, 4,4'-bis(N,N-dimethylamino)-substituted (E,E,E)-DPH and 4,4'-dimethoxy-

substituted (E,E,E)-DPH were photostable in the solid state [45]. 

Although the single-crystal X-ray structure analysis of 4,4'-dimethoxy DPH has been unsuccessful 
at present, the two-dimensional 1H spin-exchange NMR spectrum showed that the methoxy group was 

located close to the triene chain of an adjacent molecule in the solid state [132]. This suggests that the 

molecular planes are stacked with a large offset along the long molecular axis. Therefore, the 
photostability of the 4,4'-dimethoxy derivative may at least partially be due to molecular alignment 

unfavorable for the [2+2] reaction. Further, since H atoms of the methoxy group are 'out-of-plane' 

atoms, this may possibly lead to the interplanar distance larger than 4 Å [63]. 

3. Atomic and Molecular Movements in Crystals during [2+2] Photodimerization and 
Photopolymerization  

According to Schmidt's rule, the distances between the potentially reactive double bonds for 
topochemical [2+2] photocycloaddition should be less than ca. 4.2 Å [1,2,25]. However, several or 

more exceptions have been reported to this rule up to now [7,9]. Among the DPH derivatives described 

above, for example, 9, 20 and 24 were unreactive, although the double bond distances were shorter 
than 4.2 Å in the crystal structures. On the other hand, 33 was reactive, although the double bond 

distance of 5.939 Å was much longer than the criterion of 4.2 Å (Table 1). 
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Table 1. Double bond distance and [2+2] photoreactivity for (E,E,E)-DPH crystals. 

Crystal Double bond distance a (Å) [2+2] Photoreactivity 

3 7.730 no 
4 3.928 yes 
7 3.926 yes 
9 3.871 no 

20 3.862 no 
24 3.950 no 
32 4.067, 4.119 yes 

3/33 4.098, 4.126 yes 
33 5.939 yes 

a distance between the terminal triene carbons for the nearest stacking molecules. 

For [2+2] cycloaddition to occur, atomic and molecular movements required by the formation of 

cyclobutane ring should be possible. When the interactions between the adjacent molecules are too 
strong, the movements will become difficult or almost impossible [133-135]. In this context, we can 

say that intermolecular interactions, used for constructing the stacking structure favorable for the [2+2] 

reaction, should be rather weak than too strong for the reaction to occur. Coumarin-3-carboxylic acid, 
for example, was photoreactive whereas 5-bromouracil and maleic acid were photostable, although the 

double bond distances were less than 4.2 Å in all three molecules [134]. The photostability of 

5-bromouracil and maleic acid was attributed to the presence of a much more extensive hydrogen 
bonding network in these two structures than in coumarin-3-carboxylic acid. Also for 1,3-phenylene-

diacrylic acid, only the olefinic bonds adjacent to carboxylic groups involved in dimeric hydrogen 

bonds were photoreactive, while those associated with polymeric hydrogen bonds were 
photochemically inert [135]. 

Further, an enough space for the atomic and molecular movements in the crystal lattice is required 

by the reaction. For the [2+2] photodimerization of cinnamates 39 and 40 (Figure 10) in monolayers at 
the liquid/graphite interface, neither of the two molecules exhibited monomer packing ideal for the 

[2+2] reaction [136]. The double bonds were both separated by the distances larger than 4.2 Å. 

However, molecules 39 in monolayer, having a less closely packed adlayer structure, were 
photodimerizable. The photoreactivity was explained by means of packing fluctuations, allowing the 

reactive centers approach each other. While molecules 40, having an interdigitated structure, were 

resistant to photodimerization. In addition to the increased intermolecular distance, the interdigitation 
of the monomer molecules limited packing fluctuations. These were clearly evidenced by direct 

observation of the photoreaction using STM. The importance of a free space for molecular movements 

(conformational change) in the crystal lattice has also been pointed out for the photodimerization of 
two kinds of bulky olefins with 1,4-dihydropyridine skeleton [137]. 

Figure 10. Chemical structures of cinnamates 39 and 40. 

39   n = 17COO(CH2)nCH3

OCH3(CH2)17 40   n = 9  
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Since [2+2] cycloaddition is a photoreaction of olefins, it requires sufficient interaction between π-

orbitals of double bonds of the reacting two (or more) molecules, at least one of which is in the 
electronic excited state. Therefore, even if the double bond distance between the ground-state 

molecules determined by X-ray structure analysis is shorter than 4.2 Å, the reaction will not occur 

when the π-orbital interaction in the excited state is insufficient [133,138-141]. On the contrary, even if 
the double bond distance in the crystal structure is somewhat longer than 4.2 Å, the reaction can take 

place when the orbital interaction is enough [72,141,142]. Thus, the magnitude of orbital-orbital 

interaction in the excited state should be more important than the X-ray distance between double bonds 
in determining the [2+2] photoreactivity. 

On the other hand, there are a few examples of [2+2] photoreactive olefin crystals in which double 

bond distances are much larger than 4.2 Å. Crystal 33 is one of such examples as described above. For 
[2+2] photodimerization in a self-assembled monolayer of 4-amyloxy CA on Au (111), direct 

observation using STM showed that the atoms and molecules moved in the structure during the 

photoreaction [143]. The molecular distance in the original monolayer was 6.0 Å. In this case, it is 
considered that photoexcitation creates short-term lattice instability [71,144-146], which drives one 

molecule close to a neighbor and gives the molecule a more favorable orientation so as to cause a 

photoreaction [143]. In the excited state, molecules are expected to be more attractive each other than 
in the ground state. Also for the [2+2] dimerization of 2-benzyl-5-benzilidenecyclopentanone 

derivatives, monitoring structural transformations in crystals using single-crystal XRD revealed that the 

reactant molecules were moving and even approaching each other during the photoreaction [147-149]. 
Such large molecular movements during the solid-state [2+2] reactions of olefins have also been 

suggested by other experimental observations [150-152].  

4. Industrial Applications 

4.1. Amorphous Materials 

For amorphous molecular materials, very disordered structures are usually required [153,154]. 

[2+2] Photocycloaddition of olefins will easily give highly disordered and bulky structures. As in a 
molecule having a tetrahedral carbon framework [153], various functional groups can be attached as 

four arms to the cyclobutane ring carbons, leading to the formation of 'functional amorphous materials' 

(Figure 11). 

Figure 11. Four functional groups in (a) tetrahedral and (b) cyclobutane molecules. 

(a) (b)

 

The [2+2] photoproducts from crystals 32 and 3/33 were amorphous as shown above [123]. The 

[2+2] reaction of 1,3-phenylenediacrylic acid dimethyl ester [155,156] and α,α'-dicyano-1,4-

phenylenediacrylic acid dimethyl ester [157] also gave amorphous oligomers. 
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4.2. Photocrosslinking Materials 

Poly(vinyl cinnamate) 41 would be one of the most important photosensitive polymers. UV-light 
irradiation of the polymer gives a material with reduced solubility, which is considered to be due to 

photocrosslinking between cinnamoyl pendant groups in different polymer chains. The mechanism of 

photocrosslinking is proposed to be [2+2] cycloaddition of the olefinic groups (Scheme 16) [158-164]. 

Scheme 16. Photocrosslinking reaction of poly(vinyl cinnamate) 41. 
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Amorphous azo monomer 42 (Figure 12) having four cinnamate arms underwent [2+2] 

cycloaddition upon UV-light irradiation [165]. The monomer readily formed surface relief structures 
upon Ar+ laser irradiation, and the resulting structures were further stabilized through a 

photocrosslinking reaction induced by UV-light irradiation. On the basis of the material, two-

dimensional quasi-crystal structures with different rotation symmetries were fabricated by using the 
dual-beam multiple exposure technique. The quasi-crystal structures were prepared simply through 

multistep light irradiation, and no subsequent wet-etch or dry-etch step was required in the process. 

Figure 12. Chemical structure of azo monomer 42. 
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4.3. Photochemical Crack Healing in Polymeric Materials 

[2+2] Photocycloaddition of cinnamoyl groups can be used as a crack healing reaction in polymeric 

materials [166]. A photocrosslinkable cinnamate monomer, 1,1,1-tris(cinnamoyloxymethyl)ethane, 
was irradiated with UV-light (λ  > 280 nm) to give a transparent, insoluble film by crosslinking via the 

[2+2] reaction. It was expected that cyclobutane would reverse to original cinnamoyl structure upon 

crack formation and propagation, and the crack healing could be accomplished by the re-cycloaddition 
of cinnamoyl groups (Scheme 17). The photochemical healing proceeded very fast and did not require 

any catalyst, additive or severe heat-treatment. 
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Scheme 17. Photochemical crack healing via [2+2] cycloaddition. 
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4.4. Optical Memories and Fluorescence Switches 

In the [2+2] photocycloaddition of highly conjugated molecules, the delocalized π-electron systems 

of olefin monomers are broken by the formation of aliphatic cyclobutane rings of dimeric or polymeric 

products. The solid-state fluorescence spectra, in general, dramatically change before and after the 
photoreaction, as the examples are shown above for 32 and 3/33 (Figure 8). Therefore, if the [2+2] 

reactions are photochemically reversible, they can be used for optical memories and fluorescence 

switches.  
For tetra(2-benzoxazolyl)cyclobutane 43, the four benzoxazoles were electronically isolated and 

exhibited no fluorescence emission [167]. On irradiation with UV-light (λ = 254 nm), 43 cleaved to 

1,2-di(2-benzoxazolyl)ethene 44, which showed strong emission at 420 nm. The reverse reaction 
occurred on UV-light (λ > 300 nm) irradiation (Scheme 18). Thus, 43 and 44 show typically optical 

bistability as a fluorescent switch, which can be applied in thermally stable, rewritable optical data 

storage. Most importantly, the fluorescence emission properties of conjugated molecules are able to be 
controlled only by irradiation of light. 

Scheme 18. Photocleavage of 43 and re-cycloaddition of 44. 
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In contrast, the crystal of cyano-stilbene derivative having trifluoromethyl substituents 45 was 
nonfluorescent due to the formation of π-dimer system but switched to highly fluorescent 46 when an 

external shear-strain and/or prolonged UV-light (λ = 365 nm) irradiation was applied (Scheme 19) [168]. 

The fluorescence modulation is due to the external and/or internal shear-induced lateral displacement 
of the π-dimer molecular pair. The fluorescence emission occurred at the cost of frustrated [2+2] 

cycloaddition. In this case the reverse reaction from 46 took place thermally. Thus the system provides 

an example of reversible fluorescence switching in the solid state.  
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Scheme 19. [2+2] Photocycloaddition of 45 and the reverse reaction from 46. 
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5. Conclusions 

Although having multiple reactive double bonds, the unsubstituted α,ω-diphenylpolyenes, (E,E)-

DPB and (E,E,E)-DPH, underwent no [2+2] photocycloaddition in the solid state due to the 
unfavorable crystal packing for the reaction. However, with appropriate ring-substituents, noncovalent 

intermolecular interactions in crystals were effectively utilized to prealign molecules in stacking 

arrangements, suitable for the [2+2] photodimerization and photopolymerization. 
Cyano- and formyl-substituted DPHs, 4 and 7 respectively, underwent solid-state [2+2] 

cycloaddition to give dimers and higher oligomers. The crystal structures were constructed by 

relatively weak intermolecular interactions such as CH···N and CH···O hydrogen bonds. It seems to be 
important that the interactions in the [2+2] photoreactive crystals should be rather weak than too strong, 

so as to make atomic and molecular movements required by the reaction easy in the crystal lattice. 

The [2+2] photoreaction of perfluorinated DPHs 32 and 3/33 occurred more efficiently than those 
of 4 and 7 to afford dimers, trimers, and higher oligomers in moderate to reasonably good yields. The 

novel structures of the photoproducts were almost inaccessible by other synthetic methods. However, 

MWs of the polymeric products were relatively low. To improve this point, the positions of reactant 
molecules in crystals should not change largely during the photoreaction. For this purpose, it would be 

desirable to perform the reaction in a single-crystal-to-single-crystal manner, by controlling the light 

energy of irradiation (irradiation at the long wavelength tail of the absorption) [27,169,170] or by 
nanocrystallization of the reactants [171,172]. 

Interestingly, symmetrically perfluorinated DPH 33 was [2+2] photoreactive, despite the large 

distance of double bonds (5.939 Å) in the crystal. The result suggests that molecules can move and 
approach each other in the lattice on photoexcitation. 

The chloro and donor-acceptor substituents were useful as steering groups for the [2+2] reactions of 

(E)-CA, and those of shorter α,ω-diphenylpolyenes such as (E)-stilbene and (E,E)-DPB. However, the 
substitution was ineffective to induce the reactions of (E,E,E)-DPHs. Despite the π-stacked molecular 

arrangements with double bond distances less than 4.2 Å, crystals 9, 20 and 24 were photostable. 

Although the reasons are unclear at present, the results suggest that the magnitude of π-orbital 
interactions in the excited state is more important in determining the [2+2] photoreactivity than the X-

ray double bond distance in the ground state. This is consistent with the fact that the observation of 

solid-state excimer/monomer fluorescence correlates very well with [2+2] photoreactivity/unreactivity 
for all the DPH crystals examined. 
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The solid-state [2+2] photocycloaddition is one of the most useful photochemical reactions, not 

only in synthetic organic chemistry but also in material chemistry and applied physics. Only by light 
irradiation, very large changes in molecular structure are induced, which should consequently lead to 

large changes in electronic and optical properties of the molecules. Thus, if photochemical and/or 

thermal reverse reactions are available, the [2+2] reactions will find a wide variety of industrial 
applications. 
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