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Abstract: This status report overviews activities of the German gas sensor research 

community. It highlights recent progress in the field of potentiometric, amperometric, 

conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides 

step-by-step improvements of conventional principles, e.g. by the application of novel 

materials, novel principles turned out to enable new markets. In the field of mixed potential 

gas sensors, novel materials allow for selective detection of combustion exhaust 

components. The same goal can be reached by using zeolites for impedimetric gas sensors. 

Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-

type conductometric sensors and to design knowledge-based improved sensor devices. 

Novel deposition methods are applied to gain direct access to the material morphology as 

well as to obtain dense thick metal oxide films without high temperature steps. Since 

conductometric and impedimetric sensors have the disadvantage that a current has to pass 

the gas sensitive film, film morphology, electrode materials, and geometrical issues affect 

the sensor signal. Therefore, one tries to measure directly the Fermi level position either by 

measuring the gas-dependent Seebeck coefficient at high temperatures or at room temper-

ature by applying a modified miniaturized Kelvin probe method, where surface adsorption-

based work function changes drive the drain-source current of a field effect transistor. 

Keywords: impedance spectroscopy; mixed potential; SnO2; Ga2O3; Kelvin probe; 

operando 
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Introduction  

Reliable detection of hazardous, harmful, or toxic gases has become a major issue due to more 

stringent environmental or safety regulations worldwide. Solid state gas sensors present a high 

potential for applications where the use of conventional analytical systems such as gas 

chromatography or optical detection (e.g. by infrared radiation) is prohibitively expensive. The 

interaction between the analyte in the surrounding gas phase and the sensor material is transduced as a 

measurable electrical signal that most often is a change in the conductance, capacitance, or potential of 

the active element. According to the respective measurement type, these sensor devices are commonly 

classified as “potentiometric”, “amperometric”, “conductometric”, and so on. 

During the past decades, a multitude of solid state sensors has been designed and brought to market, 

in particular in safety, automotive, process control, or household applications [1]. For many years, 

Taguchi-type metal-oxide sensors have been used for the detection of toxic or explosive gases [2]. 

Alternative sensor concepts for this purpose are based on electrochemical cells with polymer 

electrolytes. To ensure comfort of living spaces, capacitive polymer sensors measuring humidity are 

available [3]. Zirconia-based electrochemical cells monitor residual oxygen in automotive exhaust [4] 

or metal melts [5]. More recent developments comprise zeolite-based ammonia sensors [6] or mixed-

potential CO/HC sensors [7]. 

Nevertheless, research continues to meet the increasing demand for devices that present higher 

sensitivity, higher selectivity, and improved long-term stability at reduced cost. Due to Germany’s 

cutting-edge pollution control regulations, the design of more efficient gas sensor devices has become 

a particularly active research field in this country. 

In view of the numerous existing reviews on the field of gas sensing (e.g. [8,9]), the present 

contribution does not aim at giving a repetitive discussion of the well-established chemical gas 

sensors. Being a review paper in Sensors’ special issue “State-of-the-Art Sensors Technology in 

Germany”, more recent research topics are discussed that have received increased attention within the 

German sensor community for the past few years. Wherever applicable, the present review follows the 

common classification of sensors according to the measurand. However, an unambiguous assignment 

is not always possible for the novel trends discussed here. It should be annotated here that due to space 

limitations, the present review has been confined to potentiometric, amperometric, conductometric, 

and impedimetric principles, excluding optical principles or radio frequency-based principles. For the 

same reason, resonant sensor principles based on surface acoustic wave or bulk acoustic wave devices 

(SAW, BAW) or on quartz-crystal oscillators are not considered. 

1. Potentiometric Sensors 

Since the potential is not a function of geometry parameters, potentiometric devices are intrinsically 

independent from the sample dimensions. Various types of potentiometric sensors have been 

investigated for decades. Equilibrium or Nernstian electrochemical cells based on solid electrolytes, 

for example, may be employed for sensing chemical species in a very selective and accurate way. 

Among these candidates feature the stabilized zirconia air-to-fuel (or lambda) sensor for automotive 

applications [10] or the oxygen sensor (also zirconia-based) used in steelmaking [5]. In addition, 

several Non-Nernstian or mixed potential devices measuring gases in non-equilibrium conditions have 
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been investigated. Very detailed reviews on electrochemical ceramic sensors discussing the respective 

mechanisms are available for example in [11-13]. The present section first presents recent trends 

developed for both subgroups. This discussion is followed by the discussion of a novel potentiometric 

sensor principle based on the direct thermoelectric effect.  

1.1. Nernst-type Sensors: Basic Considerations  

Potentiometric sensors using solid electrolytes are suited to measure gas components in different 

gas phases and liquid melts (e.g. molten steel):  

o Gas mixtures that contain free oxygen beside inert gases, e.g. O2, N2 

o Gas mixtures that are in chemical equilibrium, e.g. water gas 

o Dissolved oxygen in molten metals (e.g. steel and copper) 

The measurement of combustible volatile components in gases or as dissolved species in different 

liquid media gains importance, due to their widespread utilization in different energetic, chemical and 

biochemical processes and also due to the intensification of requirements for safety and quality control 

of technical, chemical and biochemical processes. These sensors are highly selective for certain 

components in a broader matrix of other gases, long-term stable and maintenance-free over years. 

Furthermore, they respond fast (ms-timescale) and are therefore an attractive tool in control loops. As 

a solid electrolyte gas-tight sintered ceramics in form of tubes, discs, planar substrates or thick films 

consisting of stabilized zirconia (e.g. yttria stabilized zirconia; YSZ) are utilized. Due to replacing 

zirconium ions by lower valent yttrium ions, oxide ion vacancies are generated. With increasing 

temperature, the transport of oxide ions (O
2-

) becomes more and more possible. As a result, the 

electrical (ionic) conductivity increases exponentially with increasing temperature. 

Figure 1. (a) potentiometric Nernst sensor (left). (b) mixed potential sensor (right). 
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Potentiometric sensors for free oxygen and equilibrium oxygen (see Figure 1a) are very common in 

gas phases with established thermodynamic equilibria (e.g., p(CO2)/p(CO) or, generally, the ratio of 

partial pressures of burnt and unburnt components). For that purpose, highly porous Pt is used as an 

electrode material (Figure 1a). Symbolized by O2( ’O2), Pt | (ZrO2)0.84(Y2O3)0.08 | Pt, O2( ’’O2), such 

cells can be regarded as oxygen concentration cells. Depending on their electrode material, they work 

in a broad range of temperature (400 °C to 1,600 °C) and oxygen partial pressures (10 bar to 10
-20

 bar). 

As a test probe, such sensors can be applied directly in high temperature processes, so that in-situ 

information may be obtained in real time. The generation of a cell voltage can be explained as follows: 

Oxygen will move from the side with high partial pressure toward the side with low partial pressure. 
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That is impossible provided that the solid electrolyte is gas tight. In the tendency, oxygen can only 

move through the electrolyte as an oxide ion (O
2-

). Oxygen takes up four electrons from electronic 

conducting material (here Pt) and moves through the electrolyte (cathodic process, in right direction). 

On the side with lower oxygen partial pressure the reverse process takes place (anodic process, in left 

direction). 

The cell reaction is the transfer of oxygen from one side to the other. Using the Kröger-Vink 

notation for defects this can be written: ½ O2(g) + VO


(YSZ) + 2e
-
(Pt)  OO (YSZ). In the case of an 

electrochemical equilibrium, the measured open circuit voltage or equilibrium voltage Ueq or E or emf 

can be calculated by the Nernst equation:  

''
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(1) 

Therefore, such sensors are called Nernstian sensors. Air with defined humidity is used as a 

reference, e.g. air with 50 % r.h. contains 20.63 vol.% O2. In reducing gases in the chemical 

equilibrium (e.g. H2/H2O; CO/CO2; water gas), the oxygen partial pressure is determined by the mass 

law constant Kp and this in turn depends on the temperature. In the case of CO/CO2-mixtures, the cell 

voltage is obtained by inserting the temperature function of log Kp = 4.505 – 14700 K/T into the 

Nernst equation.  
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For H2/H2O and H2/H2O, CO/CO2 (water gas) similar thermodynamically based equations can be 

derived [14]. The main application field is the fast measurement of oxygen concentrations in liquid 

metals and gases, such as flue gases of combustion in steam boilers, in glass and ceramic making 

industries. By combination of sensor signals with stoichiometric and thermodynamic relations, a 

complete determination of gas phases under equilibrium conditions is possible [15]. Potentiometric 

solid electrolyte cells possess the first place among all produced chemical sensors, both with respect to 

number and the resulting economic effects of their application. The lambda probes for the detection of 

the oxygen/fuel ratio are also oxygen concentration cells (Figure 2). The signal of a lambda probe (red 

curve) is low in the case of oxygen excess (lean mixtures, left side,  > 1) and high at an excess of fuel 

(rich mixtures,  < 1, right side). Potentiometric cells can be used to investigate flames in-situ in order 

to determine the border line of the combustion [16]. Oxygen concentration cells can also be 

constructed with other solid electrolytes (e.g. sodium ion conductors) provided that the ionic transport 

number is one. But the response time of such sensors is much slower than that of sensors using oxide 

ion conducting electrolyte. 
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Figure 2.  Scheme of the voltage characteristics of an idealized hydrocarbon electrode vs. 

Pt-air reference electrode in hydrocarbon containing mixtures.  denotes the normalized 

air-to-fuel ratio ( > 1 denotes a rich and  < 1 a lean exhaust gas). Adapted from [12]. 
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1.2. Nernst-type Sensors: Novel Materials 

Usually, porous Pt is used as an electrode material. A Pt wire in a close contact to the solid 

electrolyte as a ligature suffices for high temperatures (> 1,100 °C). In the case of CO/CO2-gas 

mixtures, deviations from the Nernst equation can be observed when the measured at less than 

1,000 °C (Figure 3). On Ni-electrodes, however, the thermodynamic emf is obtained down to 800 °C. 

Figure 3. emf of the gas cell (I) CO,CO2,Pt |YSZ | Pt,CO,CO2 (II). Adapted from [12]. 
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To measure in the equilibrium state at low temperature, very fine Pt, mixed oxides of the perovskite 

type (e.g. La0.2Sr0.8MnO3) not only as a sintered layer but also as a powder [17], or Ag can be used. 

Catalytic non active electrode materials (LaCrO3) allow to measure oxygen beside hydrocarbons in a 

non-equilibrium gas mixtures [18-20]. 
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Whilst the application of oxygen sensors in different branches of industry is state of the art [21], 

Nernstian solid electrolyte sensors for SO2 and NOx are in an early stage. The activities respecting 

potentiometric CO2 sensors which are commercially available are summarized more recently [22]. 

 

1.3. Mixed-potential Sensors: Latest Developments 

 

For a test gas containing hydrocarbons CmHn and an excess of oxygen, the cell voltage follows 

Equation 4 in the case of an electrochemical equilibrium [23]. The resulting graph is shown in Figure 

2, red curve. 
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The measurement of gas components like hydrocarbons (HC) or nitric oxides (NOx) in non-

equilibrated gas phases has become increasingly important. Depending on the electrode material, the 

gas components do not equilibrate on the measuring electrode at temperatures < 700 °C. Thus, gas 

components that are not thermodynamically stable are electrochemically active. In HC and O2 

containing gases, at least two electrode reactions can take place: the electrochemical reduction of 

oxygen and the electrochemical oxidation of hydrocarbons [12]: 

o Oxygen reduction:  9/2 O2(g) + 9VO


 + 18e
-
    9OO

x
 (YSZ) 

o Hydrocarbon reduction: C3H6(g) + 9OO
x
 (YSZ)    3CO2(g) + 3H2O(g) + 9VO


 + 18e

-
 

o Overall reaction:  9/2 O2(g) + C3H6(g)    3CO2(g) + 3H2O(g) 

The measured open circuit voltage does not obey the Nernst equation. Therefore, such electrode 

behavior is often referred to non-Nernstian electrodes (or mixed potential sensors), see Figure 1b. A 

mixed potential sensor combines an oxygen electrode as a reference and a second electrode, which 

shows a low oxygen sensitivity but a high hydrocarbon sensitivity. Both electrodes may be exposed to 

the analyte gas. Alternatively, the sensor can operate with an oxygen electrode exposed to air as an 

external reference. According to the theory by Miura [24] based on the Butler-Volmer equation, the 

cell voltage mainly depends logarithmically on the concentrations (Figure 2, blue curve): 

Umix   =   U0  - A ln(HC) (5)

The effect of hydrocarbon sensitivity of Pt electrodes at relatively low temperatures was described 

as early as 1981 [25]. The mixed potential of such solid electrolyte electrodes is contrary to that of 

electrodes in aqueous solution very stable and reproducible [26]. The voltage response and the 

response time depend mainly on the electrode material, its catalytic and electro-catalytic properties. In 

order to search for suitable materials, the voltage response and the catalytic activity have to be 

investigated. For screening, it is useful to investigate the deviation from the Nernst equation.  

In the last few years, a variety of materials were investigated with respect to their sensitivity and 

selectivity as mixed potential electrodes. In most cases, the increasing catalytic conversion of 

combustibles prevents the appearance of mixed potentials above 800 °C. On the other hand, Wang et 

al. [27] have found a high sensitivity for NOx using Rh-NiO electrodes, even at 800 °C. One of the 
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most intensively discussed and investigated questions concerning non-Nernstian solid electrolyte 

sensors is that of the electrode process with most relevance for the signal [28,29]. Besides 

potentiometric measurements, a variety of other investigation methods like amperometric, 

impedimetric [30-32], catalytic [26] and response measurements were utilized to answer this key 

question. It seems that mixed potential theory as well as chemisorption processes, connected with 

changes in the Fermi level of the electrode material [33] can contribute to the sensing mechanism. The 

response time (450 °C ... 750 °C) depends on the kind of gas [34] and is comparable with that of an O2, 

Pt/YSZ-electrodes as shown in Figure 4. The shape of different response curves suggests that different 

time steps depending on gas composition are involved at the same electrode. 

Figure 4. Normalized response of a miniaturized planar gas sensor at 650 °C. Cell symbol: 

Au,NiO/YSZ/Pt with Au,NiO composite mixed potential electrode (YSZ, yttria stabilized 

zirconia) Reprinted from [34] with permission from Elsevier. 

 

 
Up to now, many questions concerning the complex behavior of electrode materials in different 

gases are still open. Therefore, the trial-and-error search for new electrode materials is still state of the 

art for this type of gas sensors. A lot of different electrode materials are under investigation especially 

in Miura's group [35-37]. Nevertheless, investigations of the Guth group show [26] that the sensitivity 

of different Au oxide composite electrode materials (e.g. Au, Nb2O5) for one combustible may be 

correlated with the catalytic activity of these electrode materials for oxidizing this combustible. In the 

case of mixed oxide electrodes (La0.6Ca0.4Mn1-xMexO3 Me = Co, Ni), it seems to be a correlation 

between the voltage response and the kind of conductivity (p- or n-type) [32]. Meanwhile, mixed 

potential sensors are commercially available to detect the breakthrough of hydrocarbons in air cleaning 

filters [38] or to monitor the metabolism in biochemistry [39]. 
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1.4. Direct Thermoelectric Sensors: a Novel Potentiometric Principle 

A novel potentiometric principle has been investigated recently for both equilibrium oxygen 

sensing and detection of combustibles: the direct thermoelectric principle [40,41]. In resistive gas 

sensors that are based on semiconducting oxide films, the film resistivity changes due to redox 

reactions of the analyte with the sensor material (confer Section 3). These resistivity changes are either 

governed by surface effects at temperatures below 500 °C, like in n-type semiconducting SnO2 [2] or 

by volume effects occurring mostly above 700 °C. In all cases, the electronic charge carrier density 

(electrons, holes) changes when the material is exposed to the analyte. A major disadvantage of these 

resistive devices is the dependency of the measurand “sensor resistance” on the film geometry and 

morphology. For that reason, the measurand is also affected by cracks in the film, by abrasion of the 

film, or by sintering of the film during operation. Whereas the geometry dependency is crucial for 

reproducible manufacturing, the latter issues strongly affect long-term stability. In a a direct 

thermoelectric sensor device, these problems are overcome [40,41]. Here, the Seebeck coefficient  of 

the material is directly measured. In principle,  describes the position of the Fermi-level in the band 

scheme and hence, it is correlated with the concentration of the electronic charge carriers in 

semiconducting materials. For example, in n-type semiconducting oxides,  is related with the electron 

density n by Equation 6 [42]: 







  eln A

n

N

e

kε C  (6)

In Equation 6, k is the Boltzmann constant, e the electron charge, NC the effective density of states 

in the conduction band, and Ae is a scattering mechanism-dependent transport coefficient for electrons. 

Unlike the conductivity,  is independent from the geometry of the gas sensitive material. Despite the 

relationship between Seebeck coefficient and the conductivity of metal oxides had been evaluated very 

early by Jonker [43], only scattered works are known implementing this principle as a sensor device, 

e.g. [44-46]. 

A basic sensor setup comprises a heater to bring the whole device to operation temperature, 

insulating layers, and a heater providing a modulated temperature gradient ΔT over the gas sensitive 

film. The measured thermovoltage of the material, VS, is a function of the Seebeck coefficient of the 

film material  and of the applied temperature difference ΔT: 

VS   =   (lead - )T (7)

VS includes the usually known or at least constant thermovoltage of the leads Vlead = leadΔT. 

Knowing VS and ΔT, the Seebeck coefficient of the sample  can be derived. Typically, ΔT is 

modulated periodically and VS(ΔT) is measured.  is deduced from the slope of all data points in the VS 

vs ΔT-plot by applying Equation 7.  

On the one hand, this principle is suitable for oxygen sensors. Here, the electron and hole densities 

in the equilibrium are determined by the oxygen partial pressure, pO2, of the surrounding atmosphere. 

As expected from defect chemistry in the pure n-type and p-type regime, only a slight dependency of  
on pO2 can be found [47,48]. Suitable materials are almost all semiconducting oxides, if their oxygen 

diffusion coefficient is high enough for a fast sensor response, and if a pO2-variation affects 



Sensors 2009, 9                            

 

 

4331

significantly the mobile electronic charge concentrations. For instance, electrode materials for SOFC 

might not be suitable for that purpose, since their charge carrier density does not change markedly with 

pO2. Examples for realized sensor devices to measure in the pure p-type regime are shown in [40] 

using SrTi1-xFexO3-, an excellent material for resistive oxygen sensing [49] or hydrocarbon sensing at 

lower temperatures [50]. However, slopes of only 52 µVK
-1

 per decade pO2 could have been achieved. 

Much more sensitive devices can be obtained, if one shifts the S-shaped (pO2)-curve by appropriate 

doping into the intrinsic regime, where donors and acceptors compensate mainly itself in the pO2-

range of interest. Then, a slight increase in the pO2 is sufficient to shift  from negative values to 

positive ones. Rettig succeeded in preparing sensors with an intrinsic semiconductor showing almost 

linear slope in the (pO2)-plot of 186 µVK
-1

 per decade pO2 [51]. 

On the other hand, the direct thermoelectric principle has been successfully tested for the detection 

of reducing gases like hydrocarbons using doped SnO2 [45,52]. The huge advantage of the direct 

thermoelectric gas sensors is impressively demonstrated in Figure 5 [52]. Both the Seebeck-coefficient 

and the resistance of a gas sensitive SnO2-film were measured under different propane concentrations. 

A part of the film was deliberately milled out. The sensor was measured again under the same 

conditions. Obviously, the resistance of the gas sensitive film increased by about 100 % after milling 

out a part of the gas sensitive film (sensor reading 28 ppm instead of the true value of 100 ppm). The 

Seebeck coefficient, however, decreased only by about 5 %; i.e. the sensor reading is 80 ppm propane 

instead of the true value of 100 ppm. 

Figure 5. Seebeck coefficient (a) and resistance (b) of a SnO2 gas sensor before and after 

milling out a big part of the gas sensitive film (from [52]). With permission from IEEE  

(© 2007 IEEE). 



 

The effect of the morphology and the influence of dopants was evaluated numerically [51]. 

Utilizing fine-grained intrinsic or slightly donor-doped materials would be a good choice, since in that 

case the sensitivity of the thermoelectric gas sensor reaches a high value and the sensor resistance is 

almost not affected by the analyte concentration. A direct thermoelectric sensor made of such a 

material would have the benefit that by measuring both the thermopower and the resistance, the 

resistance value can serve as a temperature signal or if the temperature is known, it could indicate 

sensor poisoning. 
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Not only electronic conductors can be employed as materials for direct thermoelectric gas sensors. 

It has been shown several years ago that the total thermopower  of an electrochemical cell with Pt 

electrodes that are separated by an ionic oxygen conductor can be written as [53]: 

Pt
O

O ε
eT

Q
p

4e

k
TSε 




2
)ln()(

2

2
 (8)

Herein, S(T) is the entropy term, Q

O2- is the heat of transport of the oxygen ions, and Pt the 

thermopower of the Pt electrodes. In a first order approximation, these three terms can be regarded as 

constant and a theoretical sensitivity s of the thermoelectric cell can be derived: 

10ln
4)log(

2
e

k

pd

εd
s

O

  (9)

This amounts to a slope of s  -50 µVK
-1

 per decade pO2 and is in the same order of magnitude as 

for semiconductor materials. 

The first implementation of such a sensor device is reported in [54]. 8 mol% Y2O3 stabilized 

zirconia, YSZ, was used for the membrane material. From the results in Figure 6 it is obvious that the 

expected sensitivity is reached. Astonishingly, almost no temperature dependency of  occurs, 

indicating that the three pO2-indpendent terms have either a negligible temperature dependency or 

their temperature dependency compensates each other. Additionally, no cross sensitivities towards 

NO, H2, H2O, CO, CO2 and HC are observed. 

Figure 6. Sensor signal vs oxygen partial pressures for three different temperatures. Please 

note the very low temperature dependency. Figure adapted from [54]. Reprinted from [54] 

with permission from Elsevier. 

 

These results deserve a comparison with the conventional potentiometric lambda-probe as described 

in [10] or [4]. The conventional lambda-probe has the clear advantage of a sensitivity of about 50 mV 

per decade pO2 when operated at 735 °C. Even if one applies a ΔT of 50 °C over the direct 

thermoelectric gas sensor, a sensitivity of only 2.5 mV per decade pO2 occurs. This disadvantage 

competes with the simpler sensor setup. No reference atmosphere is required and very tiny samples 

with a fast light-off time requiring only very low power for operation seem feasible. Nevertheless, it is 
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to emphasize that the direct thermoelectric gas sensor principle is in an early research state far away 

from market ripeness. 

2. Amperometric Sensors  

In amperometric gas sensing devices, the reaction of an analyte at an electrode generates a current 

which is then measured commonly at a fixed applied potential. A linear relationship between current 

and concentration is observed. Reference [55] gives a detailed review on amperometric gas sensor 

devices, encompassing solid polymer electrolyte (SPE) sensors based on Nafion as well as on sensor 

cells based on doped zirconia, i.e., two-chamber devices for the simultaneous detection of NO and O2 

and oxygen pumping cells. 

To further reduce cross-interference of other analytes on the sensor signal, the use of highly 

selective biological components (e.g., enzymes or antigene/antibody pairs) has received increased 

attention [56]. Due to their specific reaction sites following the “lock and key” model, these 

biocomponents only interact with particular analytes (also called substrates). Hence, they are ideal 

candidates for the preparation of selective electrochemical sensing cells. The cell output, an electrical 

current, can be linked to the analyte concentration.  

Due to stability issues of the biological agents, most of the corresponding amperometric devices are 

applied exclusively in the liquid phase for the detection of solutes. One example is the well-known 

glucose sensor based on glucose oxidase for monitoring diabetes. More novel biosensor concepts, 

however, aim at the direct electrochemical detection in the gas phase. Mitsubayashi et al. were the first 

to report gas-phase biosensors for various analytes ranging from ethanol and formaldehyde to 

trimethylamine, methylmercaptan, and acetaldehyde, e.g. Refs. [57] or [58]. In this case, the sensitive 

enzyme was immobilized on a Pt-coated PTFE membrane.  

In Germany, similar gas-biosensors for formaldehyde, ethanol, and phenol sensing were studied at 

the University of Bayreuth. For each of the analytes, an appropriate enzyme/gas-diffusion electrode 

combination was investigated, and sub-ppm level detection was successfully demonstrated [59,60]. 

The sensor devices consisted of a liquid compartment containing the enzyme and further organic 

components in a buffered electrolyte system. From the gaseous environment to be monitored, gases 

diffuse into the liquid reaction volume via a PTFE membrane. In addition, the authors showed that 

despite the high intrinsic specificity of the enzyme itself, all components of the complex biosensor 

system need to be taken into account when studying cross-interferences [61]. In the case of the 

formaldehyde sensor, for example, a low interference of CO2 and NO on the sensor signal was 

observed. This could be linked to either mediator or electrode interactions, and could be reduced by a 

careful choice of these components.  

In a continued study, the initial sensor setup was miniaturized by applying laser micromachining 

and low-temperature co-fired ceramics (LTCC) technology [62]. The organic diffusion membrane was 

replaced by a porous metalized ceramic electrode. A reusable hybrid sensor platform was achieved. 

3. Conductometric Sensors 

Metal oxide semiconducting sensors of the resistive or conductometric type have been thoroughly 

investigated for decades. In the 1950s and 1960s, various research groups reported that some metal 



Sensors 2009, 9                            

 

 

4334

oxides change their conductivity significantly when exposed to reducing gases at high temperatures 

around 400 °C [63-65]. Soon after this discovery, first sensor devices based on tin oxide were 

commercialized, and the research was expanded to other metal oxide candidates. Numerous reviews on 

gas sensor devices of the so-called Taguchi type are available [66-69]. 

The novel trends reviewed in the present section start with n-type and p-type semiconductors. Main 

focus of the recent research work in this field is to understand the sensing mechanisms in a qualitative 

and quantitative way with respect to further sensor improvements. Recently, research on zeolites for 

gas sensor application came up due to the excellent selectivity that can be obtained as a result of the 

framework structure of these aluminosilicates.  

The German key gas sensor labs also work on novel deposition techniques, which may supplement 

the common thick and thin film methods.  

3.1. Novel Trends in n-type Semiconducting Sensors 

3.1.1. Operando Studies 

Recognizing that one of the major problem encountered by the R&D in the field of gas sensors is 

the lack of experimental information (phenomenological and spectroscopic) that is gained under the 

same conditions in which the sensors are operated and on samples that are similar to real sensors, the 

group at the University of Tübingen established a battery of electrical and spectroscopic techniques 

able to do exactly that. For the semiconducting metal oxides based ones, an example of the used 

samples/sensors is presented in Figure 7. The sensing layers are screen-printed or drop coated porous 

thick films of polycrystalline metal oxides. The substrates are made of alumina provided with thick 

film Pt electrodes and heaters, which is also how most commercial sensors are constructed. In the 

experimental setups, sensors are characterized in normal working conditions (normal pressure – 1 bar; 

dynamic system for dosing of the gaseous composition of the sensor ambient - r.h. between 0  

and 90 %, target gases concentration between few ppb and 100 %, total flow between 10 and 

1,000 ml/min; adjustment of sensor temperatures between r.t. - 500 °C; “operando” techniques), see 

Error! Reference source not found.7.  

Figure 7. Typical samples used in the operando studies. 
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An overview is provided in [70]. The available measurement techniques are (see Figure 8): 

o DC resistance measurements give information about changes in the concentration of free 

charge carriers induced by surface reactions.  

o AC impedance spectroscopy allows for identifying charge depleted regions such as surface 

space charge layers or metal-metal oxide contacts and of the nature of free charge carriers 

(ions or electrons). The changes induced by gas reactions allow following the way in which 

charge transfer processes effect the free charge carrier transport and the dielectric properties. 

o Hall effect measurements give information about the various contribution to the 

conductance changes (of mobility and/or free charge carrier concentration) when combined 

with the DC resistance measurements. They provide insights that help to model the 

conduction processes in the sensing layer. 

o Work function changes are measured by the Kelvin method (details see Section 4). They 

help to evaluate the impact of surface reactions (charge transfer processes between gases 

and metal oxides). In combination with conductance measurements localized chemisorption 

and ionosorption can be discriminated.  

o On-line gas analysis of the composition of the sensor ambient atmosphere allows 

determining the end products of solid-gas interaction and gives insight about the possible 

reaction paths. 

o Diffuse Reflection Infrared Fourier Transformed Spectroscopy (DRIFTS) measurements are 

allowing for the identification of the adsorbed surface species involved in the gas solid 

reaction. It is one of the few spectroscopic techniques possible to be applied in-operando 

and its input is essential for the identification of reaction mechanisms.  

Figure 8. Operando methodology. 
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Overview of operando results  

 

The full battery of techniques was applied to the understanding of the influence of water vapor on 

the CO sensing mechanism in Pd-doped SnO2 [68] in combination with the modeling of the 

transduction processes in metal oxide layers [69]. This model system was chosen due to its relevance 

for application and due to the fact that the effects recorded with this material were significantly out of 

noise. By monitoring the catalytic conversion of CO to CO2 the adsorption/reaction of CO to CO2 at 

the surface of Pd-doped SnO2 was found to be a linear process. This indicates that the nonlinear sensor 

response is related to the transduction mechanism [71]. Also it was revealed that differently bound 

water and specific surface OH-groups react with CO. The so formed surface carbonate ions dissociate 

due to acidic intermediate products [72,73]. The DRIFTS results permitted to identify the generation of 

hydrated protons as being responsible for the increasing sensor conductance. This was crucial since the 

results from DC conductance, from AC impedance spectroscopy, and from work function 

measurements could not point at the responsible surface species. An especially important insight 

revealed by AC impedance spectroscopy was the identification of differently active regions in the 

sensing layer suggesting a catalytic effect of the Pt electrodes. 

Differently prepared SnO2 materials (Flame Spray Pyrolysis powders [74]) were studied by a 

combination of work function and DC conductance measurements. The study of the interaction with 

oxygen indicated that for low oxygen concentrations at high temperatures (400 °C) the ionic oxygen 

species dominate whereas at lower temperatures (200 °C) a dipolar interaction of molecular oxygen 

with SnO2 has to be taken into consideration. This result questions the widely accepted mechanism for 

the interaction between atmospheric oxygen and SnO2, which takes into consideration only ionic 

adsorbed oxygen species. It can be combined with simultaneous DRIFTS and DC conductance 

measurements [75]. On hydrothermally prepared SnO2 a significant interaction between adsorbed 

oxygen ions and water vapor was observed which leads to the formation of terminal hydroxyl groups 

on tin dioxide surface. This observation is an evidence of water–oxygen interaction and could explain 

the observed change of electronic affinity during oxygen exposure by relating it to the build-up of new 

hydroxyl groups. 

Figure 9 shows results obtained for differently prepared undoped SnO2 materials (in fact, no surface 

sensitizers like Pd or Pt were added to the materials). The presented spectral region corresponds to the 

hydroxyl groups. It important to notice that, even if the surfaces of the different sensors are very 

different from the point of view of adsorbed species, the effect of oxygen exposure is very specific in 

all three cases. Obviously, the observed phenomenon has a general character for undoped SnO2. The 

interaction between water and oxygen explains also why the sensor effect for reducing gases in 

undoped tin oxide decreases in the presence of humidity.  

Besides oxygen, water vapor and CO interaction with SnO2, hydrocarbon surface reactions were 

also investigated by DC conductance, catalytic conversion and DRIFTS measurements [77,78]. In all 

cases, the resulting products of the hydrocarbons interaction are CO2 and H2O, indicating a complete 

conversion. During propane interaction with SnO2, the surface ionic species plays a crucial role. The 

results indicate that the C3H8 dehydrogenation is initiated by hydrogen abstraction over a surface  

acid-base lattice pair site and leads to the formation of C3H7. Its further transformation is caused by 

reaction with the adsorbed oxygen species. The main intermediate surface species during the 
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consecutive conversion of propane are ionic carbonates and carboxylates. Additional work function 

measurements confirm that the intermediates are ionic, i.e., they really stem from a reaction involving 

adsorbed oxygen species and not surface lattice oxygen. 

Figure 9. Single channel DRIFT spectra of different tin dioxide sensors exposed to oxygen 

at constant humidity level (3 ppm) 70 ppm O2 (drawn); 50,000 ppm (dotted). All sensors 

were screen-printed starting from pre-processed powders realized either by Flame Spray 

Pyrolysis [76] (Sensor 3) or by sol-gel (Sensor 1 and 2; with different calcinations 

temperatures, 500 °C and 700 °C, respectively). 
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Other interesting findings deal with the effect of the electrode nature on the gas sensing mechanism 

[79,80]. It is known that, e.g. Pt or Au electrodes, have an effect on the sensor response. Many 

speculations on the reasons exist. By using DC conductance and DRIFTS measurements it was 

demonstrated that the different nature of the electrodes changes the chemistry involved in CO sensing. 

Different distribution between carbonates and carboxylates, which are the reaction intermediates when 

CO is converted to CO2, were identified.  

Other materials were investigated besides SnO2 (In2O3, WO3, TiO2 and Cr2O3). Very interesting is 

the identification of the origin of the transition in the conduction type of -Fe2O3 from n- to p-type due 

to the presence of oxygen. This n- to p-type transition has an electronic origin [81]. If the resistance 

goes through a maximum when exposed to reducing gases, the work function decreases (decrease of 

the energy band bending). This rules out a change in the surface chemistry associated with the reaction 

with the reducing gases. The adsorption of oxygen leads to a strong depletion of electrons near the 

surface (upwards energy bands bending) and thus to the formation of a surface layer in which the 

conduction switches from n to p-type (inversion layer). This means that already the adsorbed oxygen 

traps electrons from the valence band, and holes as free charge carriers can appear. As long as hole 

conduction dominates, the resistance increases when the sensor is exposed to reducing gases, because 

the decrease of the hole concentration is not compensated by an increasing electron concentration. 

When the concentration of the reducing gases is high enough, the n-type conduction is restored and an 

increase of the reducing gases concentration determines a decrease of the sensor resistance. The 
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overall impact of reducing gases is an initial resistance increase up to a maximum resistance value 

(corresponding to the intrinsic conduction regime) and a subsequent resistance decrease. This gets 

reversed by adding strong reducing gases, because the latter react with ionosorbed oxygen under 

release of electrons into the conduction band.  

Recently, it was even investigated, how surface reactions-induced electrical changes are affecting 

the sensor signals of thick porous layers of p-type Cr2O3, by using simultaneous DC, work function 

changes (Kelvin probe method), and AC impedance spectroscopy measurements [82]. Based on them, 

a conduction model, which qualitatively explains the experimental data, was developed. It explains the 

large mismatch between the work function changes and the resistance change.  

3.1.2. One Dimensional Materials 

The group of Mathur at the University of Cologne was very active in the last period in the field of 

anisotropic metal oxide nanostructures, especially SnO2, see e.g. In [83] the authors examined a 

general strategy for the fabrication and characterization of portable nanowires-based devices while in 

[84] they tried to take on the basic interaction between oxygen and the tin oxide nanowires. The 

synthesis of the nanowires is realized by catalyst supported chemical vapor deposition and their 

contacts are realized by using lithographic processes. The main idea is that by studying individual 

nanowires one can get a better insight in the sensing because the nanowires are a very good surface 

controlled single crystal and one avoids the complications of complex interconnections present in the 

classical thick or thin film approaches. 

An alternative approach for the synthesis of nanowires was undertaken by Polleux et al. [85], 

namely a soft chemistry route. The resulting materials are crystalline WO3 nanowires self assembled 

into bundles at low temperature, which were drop coated onto alumina substrates. The resulting 

sensors were proven to show high sensitivity towards NO2. 

3.2. P-type Materials  

As discussed in the previous subsection, the n-type conducting oxide ceramics, in particular doped 

or coated SnO2, have received much attention in conductometric gas sensing. Their p-type conducting 

counterparts are scarcely discussed, although early publications already state the potential advantages 

of p-type oxide ceramics due to their stability [86,87] and their higher catalytic activity for oxidation 

reactions [88]. Some exceptions include the commercially available ammonia gas sensors, Cr2-xTixO3 

[89,90], and NOx sensors based on perovskite rare-earth metal oxides of the LnFeO3 family, where Ln 

is La, Nd, Sm, Gd and Dy [91].  

In the 1990s, Moos et al. studied the sensor characteristics of SrTi1-xFexO3-δ, a p-type conducting 

semiconductor formulation with the perovskite structure [49,92]. Initially, this material was introduced 

for conductometric oxygen sensing at temperatures between 700 °C and 900 °C. Compared to the 

conventional potentiometric oxygen probes based on yttria-doped ZrO2 (confer Section 1), such 

conductometric sensors present a simpler set-up and are thus an inexpensive alternative when 

manufactured in thick-film technology [92]. As an additional advantage, a temperature independent 

resistance over this temperature range was reported for the SrTi0.65Fe0.35O3-δ-composition in particular 

[49,93]. Detailed studies were aimed at resolving the observed proneness of the devices to sulfur 
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poisoning [94,95]. In other work by German researchers, p-type members of the system 

La2CuO4:LaFeO3 were identified as alternative candidates for temperature independent oxygen sensors 

[96-98] and a model of the sensor behavior was proposed [99].  

In addition to the promising oxygen sensor characteristics of SrTi0.65Fe0.35O3-δ, the members of the 

SrTi1-xFexO3-δ perovskite family with x ≤ 0.2 have been reported as promising materials for 

hydrocarbon sensing in the temperature range from 350 °C to 450 °C [100,101]. The initially studied 

screen-printed sensor elements presented a fast, stable, and reproducible hydrocarbon response. In 

order to improve sensor functionality and to identify corresponding key parameters, the material 

characteristics were optimized with respect to operating temperature, iron content, film thickness, and 

particle size. By enhancing the surface-to-volume ratio of the devices, which was achieved either by 

the use of nano-scaled sol-precipitated precursors [50] or by electrospinning techniques (cf. Section 

3.4) [102], the selectivity towards propene was increased. To reflect the difference between this p-type 

material and the commonly used n-type semiconductors of the Taguchi type (cf.  

Section 3.1), a novel sensor model was proposed to explain the sensor effect in a quantitative way 

[103]. For n-type sensor models, the redox process that is responsible for the sensor response to 

reducing gases is confined to the sensor surface. According to observations reported for p-type 

semiconducting oxidation catalysts, however, it is very likely that lattice oxygen is exchanged when 

they are exposed to reducing gases [104]. Hence, a reduction process affecting the entire bulk was 

assumed to govern gas sensitivity of SrTi1-xFexO3- films in the refined p-type model. Figure 10 

illustrates the good agreement between the model results (lines) and the experimental data (symbols) 

[103]. Here, the conductometric sensor response of two sensors with a different microstructure towards 

a variety of gases was considered.  

Figure 10. Comparison between model (lines) and experimental results (symbols). (a) 

Coarse-grained powder, µm scale. (b) Fine sol-precipitated powder, nm-scale (from [103]). 

Reproduced by permission of the PCCP Owner Societies.  
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3.3. Zeolites  

The versatile materials class of zeolites (Class of aluminosilicates with the general sum formula  

[105]. The tetrahedral silica and alumina building blocks form a  

3-dimensional framework, in which cations Me
m+

 compensate the residual negative charge caused by 

the alumina atoms.) with a 3D-framework, ion-exchange capacity, and/or catalytic activity has 

received increasing attention in various applications. Due to their unique property spectrum, zeolites 

are of particular interest in the field of gas sensing [106-108]. In a large portion of the corresponding 

literature, these materials figure as a mere auxiliary phase. They are applied for example as a filter to 

prevent cross-interfering species from reaching the sensor surface or as an inert matrix to encapsulate 

the gas-sensitive agent e.g. [109-112]. However, research work in Germany has recently focused on 

devices where the zeolite itself acts as the sensitive element. 

After studying the effect of water vapor and polar organic molecules on zeolite conductivity in the 

temperature range from 40 °C to 110 °C, several German groups proposed (Guth et al., Fetting et al. 

and Plog et al.) coworkers were the first to propose a corresponding conductometric sensor concept for 

humidity and combustible gases [113-116]. Some years later, Simon and co-workers proposed an 

impedimetric zeolite-based sensor for humidity detection (400 °C  T  600 °C) in harsh environments 

[117]. Here, the impedance of a Si-rich zeolite film was found to respond linearly and reversibly even 

to traces of humidity. Assuming an adsorption-desorption equilibrium of water molecules in the zeolite 

framework, the effect was attributed to a solvate supported proton transport. 

Earlier results by the Simon group provided the basis for the development of a highly selective 

zeolitic ammonia sensor [118]. While studying the effect of ammonia on dehydrated zeolite BEA, they 

observed an increase in the protonic bulk conductivity of the material. These findings were attributed 

to the adsorption of NH3 molecules, which support the proton transport from one aluminum site within 

the zeolite framework to the next [119]. Since the effect depends essentially on the amount of adsorbed 

NH3, i.e., on the ammonia partial pressure pNH3, proton-conducting zeolites are promising candidates 

for conductometric or impedimetric ammonia sensors. The robust impedimetric zeolite sensor element 

discussed in [120] was intended for automotive exhaust gas applications and presented no significant 

cross-interference of hydrocarbons, CO2, CO, and O2 when operated at 420 °C. 

In later work [121], Simon et al. discussed a similar sensor concept using proton-conducting zeolite 

MFI for conductometric amine detection. Also in this case, reversible and concentration dependent 

changes of conductivity with a fast response time were observed. However, a refined model of 

interaction of the amines with the mobile protons of the zeolite remained unsolved. 

The Moos group reported a novel ammonia sensor using Fe-loaded zeolites of the framework type 

MFI [122]. This material is known as a highly active candidate for the selective catalytic reduction 

(SCR) of NOx with ammonia, a catalyst concept discussed for automotive exhaust gas aftertreatment 

[123]. The high-temperature stable zeolite was applied directly as the functional sensor film. By 

measuring its impedance at 500 °C, selective ammonia sensor elements were obtained. At this 

temperature, only comparatively high concentrations of NO2 and propane caused a small cross-

interference whereas the NO sensitivity was negligible. The same group also used the same zeolite 

without Fe-doping to prepare a mixed-potential ammonia sensor for automotive applications [6]. The 

     OzHAlOSiOMe 2y2x2

m

m/y  
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system MFI,Au / YSZ / Au presented a high ammonia sensitivity with the additional advantage to 

optimize independently the electrode (Au) and the zeolite catalyst (MFI) layer.  

In addition to bulk effects within the zeolite framework, interface effects between the zeolite and an 

adjacent material may cause a sensor response. Hagen et al. studied this effect by comparing Pt-loaded 

zeolite MFI/Cr2O3/Au to Pt-loaded zeolite MFI/Au [124] and by using four-probe impedance 

spectroscopy [125]. They showed that the sensor response to hydrocarbons, i.e., a pronounced increase 

of the low frequency impedance, only occurs in the presence of the metal oxide interfacial layer 

between the zeolite and the electrodes. If the zeolite/Cr2O3 interface is missing, the sensor device 

looses functionality. This discovery led to the successful transfer of the sensor concept from thin film 

processing to more cost-effective film technology without using PVD or vacuum processes [126]. A 

very selective sensor element was prepared, which was almost insensitive toward H2, CO, NO, CO2 

and O2 (if oxygen is available in excess). In recent work, Fischerauer et al. discussed a mechanistic 

model of the sensing mechanism [127] taking into account the ionic conductivity of the zeolite and the 

p-type semiconductor properties of Cr2O3. In addition, the blocking electrode characteristics of the 

zeolite/Cr2O3 interface were included. By this model, the charge carrier density in the Cr2O3 film was 

identified as a crucial parameter influencing the sensor current. Since the ambient hydrocarbon 

concentration modulates this density due to conventional semiconductor-gas interactions (confer 

Section 3.1), the sensor current and hence the impedance spectra respond to concentration changes.  

It should be noted here that gas sensor research is just at the outset of possibilities arising from 

utilizing framework structures materials. This topic is not restricted to inorganic materials with 

channels and pores but may be greatly enlarged to organic materials. One example shall complete this 

section. Very recently, metal-organic framework (MOF) materials were investigated as impedimetric 

gas sensor materials in the range 120 °C - 240 °C. They show very reproducible responses to water 

[128] without being affected by O2, CO2, C3H8, NO, or H2.  

3.4. Further Approaches for Selectivity Enhancement 

A newly reported promising way for the improvement of the sensing capability of semiconducting 

metal oxides is to keep the base chemistry of the materials as it is and to work on “physical” methods 

to get to new sensitivities. Important improvements in this field came from Kohl et al. (University of 

Gießen). One relates to the notion that many oxides at elevated temperatures are mixed conductors. 

The usage of a polarizing electrical field during the measurement leads to a movement of bulk donors 

and results in changes of the surface charge. Instabilities as well as changes of sensitivity may occur 

due to that and are described in models. This leads to general considerations about improving the result 

by a careful selection of the dynamic measurement procedure [129]. The other approach imposes nano-

sized surface corrugations on materials with known chemistry. These mesoporous materials are created 

by structure replication e.g. hexagonal mesoporous silica variants. The sensitivity here obviously 

depends not only on the surface-to-volume ratio, but also on the nanoscopic structural properties of the 

base materials [130,131]. 

The University of Hamburg and Sony Research, Stuttgart (Vossmeyer) pursue a novel way of 

conductometric readout of non-oxidic materials that is targeted to a new generation of low-power / 

room temperature operated sensors [132]. They use nanoparticles from noble metals that are embedded 
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in a cross-linked way in dendrimetric organic materials. This matrix stabilizes the nanoparticles. 

Readout can be done mass sensitive (quartz microbalances) as well as conductometric by the 

application of such a film on an interdigitated electrode structure. With conductometric readout the 

resistances changes to gas exposures are relatively small (below 1 % relative change) but appear to be 

exploitable due to a low S/N [133,134] The aim is to arrive at a selective adsorption of guest molecules 

from the gas phase 

 

3.5. Novel Deposition Techniques  

 

Driven by the growing need for high performance gas sensors, a large number of innovative 

deposition techniques have been introduced and investigated. Compared to standard thick and thin film 

processes, the novel methods either present with direct-write features or offer precise control of micro- 

and nano-structural features of the deposited materials [135]. 

Among the most cost-efficient novel techniques feature various types of suspension-free spray 

deposition. Since no solvent needs to evaporate, these techniques present a major advantage over the 

wet sol-gel based coating methods. Hence, the films are more homogeneous and less prone to 

cracking. At the University of Tübingen [76], flame spray pyrolysis was studied for gas sensor 

preparation (results see Section 3.1). This versatile and effective technique allows to produce metal 

oxide powders and to deposit thin films with the possibility to control film morphology and powder 

particle size in the nm range. After formation in the flame by nucleation, coagulation, and coalescence, 

nanoparticles undergo direct (in situ) deposition onto suitable sensor substrates. A very fast and clean 

single step process for sensor preparation is thereby obtained. The resulting thick films are highly 

porous and present a large accessible surface, which makes flame spray pyrolysis a promising 

candidate for rapid and low cost sensor production. Quality and properties of the films and powders 

depend on the process parameters. In [136], highly porous pure or Pt-doped SnO2 powders were 

prepared by direct flame spray synthesis. The synthesized powders were screen-printed and annealed 

at temperatures up to 500 °C. With these devices, CO concentrations well below 10 ppm were 

detected. Functional nanoparticles were directly deposited from the aerosol phase onto standard sensor 

substrates forming highly porous films [137]. By repeating layer deposition, multilayer structures were 

prepared consisting of doped and undoped gas sensitive SnO2 and Al2O3 as a filter layer.  

As another spray method, the aerosol deposition technique has recently been investigated for gas 

sensor preparation at University of Bayreuth [138]. This low-temperature technique was first proposed 

in 1999 as a simple method for the preparation of dense piezoelectric films at room temperature [139]. 

In a continuously shaken aerosol generator, the precursor powder is fluidized. Using a vacuum pump, 

the carrier gas stream loaded with powder particles is then accelerated towards the substrate. If the 

various process parameters, e.g. powder particle size, flow rate, or vacuum conditions, are carefully 

adjusted, the impact energy is sufficient to prepare a dense layer on the substrate without the need for a 

sintering step at high temperatures. For some materials, this low-temperature deposition process might 

simplify the sensor preparation to a large extent. One example is the SrTi1-xFexO3-δ perovskite system 

with its promising temperature-independent oxygen sensor characteristics (cf. Section 3.2 for details). 

When prepared by the conventional screen-printing technique, SrTi1-xFexO3-δ films present a stability 

problem during sintering at 1,200 °C when in direct contact with alumina. In an initial feasibility 
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study, SrTi0.7Fe0.3O3- sensor films were prepared at room-temperature by low-temperature aerosol 

deposition. The spray-deposited films presented a dense and homogenous microstructure (confer 

Figure 11b) with an excellent adhesion to the substrate. The oxygen sensing behavior of the films was 

assessed and found to be in perfect agreement with earlier literature data on this material [49].  

Figure 11.  One sensing material, different microstructures: (a) Porous SrTi1-xFexO3-δ film 

prepared by conventional screen-printing. (b) Aerosol-deposited compact layer. (c) 

SrTi1-xFexO3-δ fiber structures obtained by electrospinning. 

10 µm 1 µm

10 µm

Al2O3

Al2O3

Aerosol film

Pt electrode

porous inert diffusion

barrier layer

Screen-printed film

(a)

(b) (c)

10 µm 1 µm

10 µm

Al2O3

Al2O3

Aerosol film

Pt electrode

porous inert diffusion

barrier layer

Screen-printed film

(a)

(b) (c)

 

Due to the high surface-to-volume ratios achieved by electrospinning, this novel deposition method 

is a very promising tool for the preparation of conductometric sensor elements. Its operational 

principle relies on electric forces used during deposition. A high voltage, in the kV range, is applied 

between a substrate and the needle of a syringe, which contains the precursor solution and is operated 

by a programmable syringe pump to achieve a constant delivery rate. The precursor solution is 

prepared by adding an appropriate polymer solution to the unreacted solvated components of the 

sensor material. An important feature is the choice of an effective, highly volatile solvent, which 

evaporates in-situ. Appropriate systems are polyvinylpyrollidone (PVP) in ethanol or cellulose acetate 

(CA) in acetone. Under the action of the electric field, a fine polymer fiber network forms, which 

encapsulates the metal oxide precursor. During a subsequent thermal treatment, the polymer matrix is 

removed, and ceramic nano-wires remain on the substrate. In a collaborative study, researchers at 

University of Bayreuth investigated this technique for the preparation of fiber networks of ternary 

SrTi1-xFexO3-δ perovskites as shown in Figure 11c. The hydrocarbon sensor characteristics of the 

electrospun fibers were superior to those observed with conventional devices prepared by screen-

printing of microscaled powders [102]. 

In addition, the Simon group at RWTH Aachen and the Maier group at University of the Saarland 

directed considerable research effort to high-throughput methods for screening gas sensor materials. 

These methods, originally developed for pharmaceutical purposes, allow investigation of a multiplicity 

of materials prepared in the form of “libraries”. Compared to the conventional ‘one at a time' strategy, 
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this accelerates material synthesis and characterization. In [140], ZnO and In2O3 nanoparticle films 

were prepared on multi-electrode substrates using a laboratory roboting unit and functionalized with 

various noble metals by surface doping. High throughput impedance spectroscopy was used to identify 

the most suitable candidates for NO sensing. A similar technique was used in [141,142] to screen the 

gas sensing properties of a large variety of semiconducting metal oxide materials. An overview of the 

modus operandi is given in [143]. Besides the rapid identification of suitable gas sensor materials, the 

groups aim at the understanding of composition-to-property relations in semiconducting metal oxide 

nanoparticles. 

4. Field Effect Sensors  

Another very promising technique for low cost/low power gas sensors is the work function readout 

via field effect devices, which was first introduced with the H2-sensitive field effect transistors with 

heated Pd-gate [144]. In this case, H2 diffusing through the Pd-gate applied directly on the channel 

isolation of a FET-structure produces a potential at the Pd/channel insulation interface that modulates 

the drain-source current. Also called “Lundström-FET”, this approach is somewhat limited in terms of 

detectable gases. However, it triggered research on a multitude of sensor variants. They directly use an 

electrical potential arising due to gas adsorption at the sensitive material. This gas adsorption at the 

surface leads to what physicists call a change in the work function and chemists a change in the 

electro-chemical potential. Obviously it is quite easy to control since it directly relates to surface 

properties and is not affected by the multitude of effects of electrical currents crossing a solid state 

sensor device.  

4.1. Device Technology 

The size of these surface potential changes is in the order of 100 mV at suited sensitive materials 

and thus it can be used to drive a FET device. A sketch of the setup is shown in Figure 12. The 

insulation of the transistor channel has to be made of a chemically inert material to avoid additional 

gas reactions at this surface; otherwise an additional potential change occurs there. The usage of 

LPCVD deposited Si3N4 has shown to be a good choice for that. 

Figure 12.  Scheme of a suspended gate GasFET. The gate electrode is suspended and 

covered with a gas sensitive layer. The electrical potential generated by gas adsorption acts 

as an additional gate voltage and changes the source-drain current. Reprinted from [150] 

with permission from Elsevier. 
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Besides Janata [145], the pioneers in the construction of such type of set-up were Eisele and Doll 

[146,147], who used a hybrid approach with one part being a gateless FET done with conventional Si-

technology and the other a substrate equipped with a sensing film, both brought together to form a gas 

sensor. The weakness of such a device is that due to the small capacity of the air gap, only a small 

portion of the generated potential is actually driving the FET. Following work from Gergintschew 

[148], several options have been introduced to make more efficient use of the generated voltage. One 

significant improvement consists of the formation of a larger area capacitor build from the suspended 

gate and a floating gate. The floating gate then transmits the potential coming from the gas sensitive 

layer to a small FET-device with a short channel [149]. This basically minimizes the loss of sensing 

signal due to weak coupling via the air gap (Figure 13). 

Figure 13.  Schematic cross section of a floating gate (FGFET) type transducer that 

improves the coupling of the work function voltage to the FET. The capacitance well 

electrode can be additionally used to set the optimal working point in the transistor 

characteristics. 

 

For industrialization, a flip-chip variant of this device was designed, allowing easy mounting, a 

precise definition of the air gap, and low-processing temperatures [150]. The base idea for the 

formation of the air gap here is to have a channel in the Si and to mount the gate chip with a large flat 

surface area of the sensing layer in direct contact with the chip surface. The current state of this 

sensing technology is depicted in Figure 14: 

o An appropriate sensing material is deposited on a flat carrier substrate forming what 

eventually becomes the gate-electrode. The preparation conditions are not limited by any Si-

electronics related constraints. 

o The Si FET-chip is separately prepared in standard CMOS. Electronics for driving the 

sensor may be integrated in the Si-Chip 

o Finally both parts are bonded together so that a defined air gap is formed.  

Using an open gate FET in a setup like in Figure 14, the change in work function can be directly 

measured with a small device. When four FET-devices are included in the Si-Chip, they can be 

combined with four different sensing materials. Hence, a very compact sensor array can be constructed 

[151]. Alternatively, FET channels can be used to compensate for the influence of varying ambient 

temperature on the FET itself, or special temperature independent operation conditions of single 

transistors (“isothermal point” of the transistor characteristics) are chosen. 
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Figure 14. Actual state of the art of a GasFET: the gate part carrying the sensitive layers is 

glued to the silicon chip (below). The white ceramic part is a carrier that might be used to 

host the small chip. Attaching the sensitive layer to this ceramic constitutes an alternative 

construction of the device. 

 

These sensors are characterized by an unprecedented freedom in the choice of sensing materials. 

The gas receptor does not need to be an oxide. Organic molecules, polymers, metals, or salts may be 

used in the sensing platform. Since the sensors can be operated at room temperature, heating is not 

required. Multiple readout channels allowing for tiny sensing arrays can be realized on one single chip. 

The base potential of this sensing technology arises from the fact that the measurand comes from 

the direct measurement of surface effects. One consequence is that sensing materials in these devices 

do not need to be a semiconductor: metallic conductors or insulating materials can be used as well. 

4.2. Gas Sensing Materials for Suspended Gate FETS 

Similar to direct thermoelectric gas sensors (cf. Section 1.4), in contrast to classical semiconducting 

metal oxide gas sensors, the gas sensing properties do not depend on the morphology of the sensing 

materials. An example demonstrating this has been found during the investigation of gas-induced work 

function changes of TiN. TiN is quite inert in view of its chemical properties, but has been found to 

react mainly with NH3 and thus can be used as a selective material for NH3 detection in environmental 

air. The preparation of TiN as a sputter-deposited compact thin film and as screen printed porous thick 

film resulted in the same gas sensing properties due to the fact that mainly the TiN surface determines 

the gas sensing characteristics [152,153], see Figure 15. Since the device is working at room 

temperature, no heating power is required. The TiN-based sensor serves also as a nice example for a 

sensing material with metallic conductivity. 
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Figure 15. Work function change of two different preparations of TiN at room temperature 

in response to NH3 exposure in wet synthetic air measured with the Kelvin method. 

Reprinted from [152] with permission from Elsevier. 
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Several noble metals showing a stable surface configuration are applied detection layers. They 

comprise noble metals like Pt [154] or Pd [155] for H2 detection. Especially with the adsorption of H2 

on Pt, amazingly high surface potential changes of 500 mV and more are observed. The reason for this 

can be seen in the high reactivity of Pt to H2 even at room temperatures. The problem with high 

sensitivities is that the strong reaction with H2 implies a strong influence on the “natural” adsorbates 

on these sensing layers. In this case, it is a removal of the adsorbed oxygen on the Pt surface, which is 

reconstituted only after long periods, thus causing some hysteresis effects after repeated strong H2 

expositions. This leads to a new operation strategy for the reactive Pt, which is further coated with a 

gas diffusion filter [156]. Now, the differences in the diffusion of O2 and H2 cause the major sensing 

effect, significantly improving the reproducibility of the sensor readings for H2. 

Au is another example for a stable metallic sensor materials, which is suitable for the detection of 

strongly oxidizing gases like NO2 or O3 [157]. Semi noble metals like Ag are reported to be sensitive 

to H2S and Cl2 [158]. 

This leads to the metal oxides that form a large group of sensing layers suited for GasFETs. In 

contrast to the heated semiconducting metal oxides, which are a broad band sensor for reducing or 

oxidizing gases, metal oxides at room temperature do not show a significant reaction to the reducing 

capability of gases. This is demonstrated by an absence of a sensor effect to small reactive 

hydrocarbons using polycrystalline layers of porous Ga2O3 and work function readout. Such a layer, 

however, is reactive to solvents that couple to the metal oxide through their functional groups [159]. 
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Figure 16. Reaction of a porous Ga2O3 thick film at room temperature in wet synthetic air 

to ethanol. No signal to reactive small hydrocarbons (ethane, ethene, ethine, propane 

mixture) in the range of 1,000 ppm is observed. 

time [mim]Time [min]
 

Figure 17.  Work function change of the Ga2O3/Pt system to a reducing gas (CO) and 

ethanol at room temperature in wet synthetic air: (a) Immediately after preparation (last 

thermal budget 700 °C for 2 h to form nano-dispersed Pt. (b) After 800 h storage at room 

temperature. (c) After storage and thermal activation at 175 °C for 5 mins. The thermal 

activation worked repeatedly during all experiments. 

a) b)

c)

a) b)

c)

 

Using films of metal oxides that carry a catalyst dispersion, a reactivity to the reducing character of 

gases can be obtained even at room temperature, when a thermal activation was done. Figure 17 

illustrates this for a nanosized catalyst dispersion supported on a polycrystalline Ga2O3 sensing layer. 
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This layer is developed to create a room temperatures-operated TVOC (total volatile organic 

compounds) sensor. Without activation, the sensitivity is almost completely lost. Using an intermittent 

thermal activation at moderate temperatures (< 200 °C in wet room air that might be done one time 

daily for a few minutes), a sensitivity for all tested reducing gases can be maintained, even when the 

sensing material is operated at room temperature. Obviously some reactive oxygen species are formed 

during the thermal activation. They are the stored in the sensing material [160]. The oxide enhances 

the lifetime of the activated species. Using only Pt as sensing layer, the gas sensitivity declines after a 

few hours after thermal activation. Using the Pt/Ga2O3 systems, the gas sensitivity is preserved at least 

one order of magnitude longer. Sensitivity to all gas groups relevant for indoor air smell monitoring 

can be achieved with a proper combination of finely dispersed Pt and thermal activation [160]. 

Also the classical SnO2/Pd system can be used to detect CO (Figure 18). According to the model 

with the formation of some reactive oxygen species at the surface, it needs some intermittent thermal 

activation. Then, CO can be detected even at room temperature with the SnO2/Pd system [161,162]. 

Selectivity to interfering gases is roughly comparable to the classical heated conductometric 

semiconducting SnO2/Pd sensors. 

Figure 18. Sensing characteristics towards CO in ambient air of a GasFET equipped with a 

polycrystalline sensing layer of Pd-doped SnO2. In the inset, the size of SnO2 crystallites 

with the impregnated Pd clusters are shown. Measurements were conducted at room 

temperature after a preceding thermal activation. Reprinted from [162] with permission 

from Elsevier.  
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Even sensors for gases that are hard to detect with semiconducting metal oxide gas sensors could 

have been implemented due to the versatility in the chemical structure of the sensitive layer. In one 

example, the base idea was to work with carbonate-based sensing layers, since they show some 

chemical similarity to CO2. The best material found in this system was BaCO3. It appeared to be a 

reversible sensing material for CO2 even at ambient temperature [163]. Again, the sensitivity is 

independent on the morphology (Figure 19a). Thin films prepared by a colloidal suspension showed 

the same CO2 sensing characteristics like large-grained thick films. The slope of the sensor 

characteristics temperature independent within a certain range and obeys a logarithmic behavior 
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(Figure 19b), which emerged to be typical for most work function based sensing materials over a wide 

concentration range. 

Figure 19.  Detection of CO2 with the BaCO3 system: (a) Work function change of two 

different preparations of BaCO3 at room temperature in response to CO2. (b) Sensor 

characteristics for CO2 detection in wet synthetic air. Reprinted from [163] with 

permission from Elsevier. 
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b)  

One obvious question with the gas detection by surface reaction at ambient temperature is the role 

of water in the detection process. In atmospheres with humidity, always several monolayers of water 

exist on the surface. They might hinder the gas sensing process. Results by Kelvin probe investigations 

demonstrated that the presence of humidity is necessary. The discussed BaCO3 films completely lose 

their CO2 sensitivity in absolutely dry atmospheres. IR spectroscopic investigations have shown that 

the CO2 detection process is a reversible formation of dimeric HCO3
-
 in the water film on the surface 

[164]. These films are open porous, allowing gases to diffuse through the whole film and to reach the 

bottom electrode. Therefore, the electrode material has a significantly affects the cross sensitivity of 

the sensors [165]. 

Mixed oxide systems on the basis of BaTiO3/CuO [166] are also suitable for room temperature 

detection of CO2. The sensitivity is perhaps correlated with the formation of a surface phase of BaCO3. 

Following the approach of the acid-base reaction mechanism for the detection of CO2, even better 

results have been obtained with polymers that contain basic-type groups [167]. 
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The class of polymeric materials turned out to be extremely powerful for this type of sensors. 

Besides materials like polysilsesquioxane that appeared to be selective sensors for solvents, the 

classical humidity sensing polymers can be incorporated into the FET sensing platform. Figure 20 

shows two examples of such materials for humidity sensing [168]. The usage of these materials in the 

GasFET sensing platform is twofold. One is the direct readout of surface potentials. On the other hand, 

an active readout strategy can be pursued. Then, a voltage pulse is applied to the gate electrode and the 

following transient reaction of the source-drain current is evaluated. This mimics the capacitive 

readout of the polymers in the classical humidity sensors. 

Figure 20.  Polymers for humidity detection employed in the GasFET platform. Left: 

polyvinylpyrrolidone with classical work function readout. Right: polyamide readout by 

the gate pulse method. Both signals are compared to a standard capacitive humidity sensor. 
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4.3. Applications of GasFETs 

One promising field for applications of such sensors is air monitoring in buildings. Due to their 

small dimensions and moderate costs, they can be used for distributed sensing networks allowing local 

sensing of air properties. Due to their low power consumption at ambient temperature operation, 

battery-operated sensing nodes that communicate wireless can be established. Since there are no high 

labor costs for wiring, an additional and decisive cost advantage for the sensor user occurs. 

An important application of such distributed sensors will be the control of the of indoor air quality 

to allow for an on demand ventilation of different locations in a building. Good examples are meeting 

rooms. Usually, when the room is unused the ventilation is too high, and is much too low, when a 

meeting takes place. Similar situations occur at work places due to the changing occupancy and due to 

the varying loading of the air with contaminants. The real air quality will be determined by measuring  

o Temperature and humidity. The relative humidity (r.h.) has to be kept optimally at a level 

between 40 - 60 % which is best for comfort as well as for the performance of people.  

o The CO2-content: human breath enriches the air with CO2. At a level of 1,000 ppm, the first 

physiological reactions occur. Above 2,000 ppm people tend to become tired.  
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o The overall smell level. Smell arising from human sources as well as from building 

components has a distracting effect, lowering the comfort level as well as the effectiveness 

of people. Some components have direct unhealthy effects. 

The detection of all these quantities is required to come to a proper view on how inhabitants will 

perceive the environment. Due to the array capability and the versatility of the GasFETs, it will be the 

first time that a moderate cost solid state gas sensor detects all influential factors in various places in a 

building. The local sensing of the air quality will then allow for a local adjustment of the ventilation. 

The benefit of such improved air conditioning systems will not only be significant energy savings but 

also an increase in comfort. Extending the capabilities of the sensor array by developing and adding 

additional layers will allow detecting a wide range of possibly hazardous situations as well.  

Figure 21.  Detection of the lead gases for “smell” with a Ga2O3/Pt sensing layer with a 

room temperature-operated GasFET. To keep the sensitivity to the full gas spectrum, an 

intermittent thermal reactivation (e.g. once in the night for a few min) is necessary. 

 

More complex than determining r.h. and CO2 is smell detection. An analysis of the indoor air with 

classical chemical analytical equipment like GC reveal the presence of hundreds of volatile organic 

compounds in indoor air with concentrations ranging from the sub-ppb to the ppm range. The 

development of receptor layers is not able to take this full range into account. The solution here is to 

group the gases into classes with similar chemical structure and reactivity to select a “lead-component” 

for the groups and to define a trigger level that is either adapted to the level of human smelling 

perception or to the maximum allowed exposure level. Typical classes are, e.g., aldehydes, alcohols, 
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ketones, or unsaturated aliphatic hydrocarbons. All lead-components of these classes can be detected 

with a polycrystalline Ga2O3 sensing layer and a nano-dispersed Pt catalyst [160], see Figure 21. 

Besides the classical use of gas sensors, an upcoming application field for gas sensors are medical 

applications. This relates to the analysis of human breath with the goal to detect marker gases that are 

characteristic for metabolic malfunctions or diseases. In classical Chinese medicine, physicians smell 

the odor of their patient’s breath to obtain an indication for their health state. The analysis of exhaled 

breath by gas sensors offers the potential for minimal disruptive measurements for diagnosis or therapy 

control. Since the marker gas concentrations are usually very low and since they need to be selectively 

detected, only advanced and versatile gas sensors can be used for these purposes.  

A valid medical example for this is bronchial asthma, where the biomarker NO is already well 

established [169]. An increase of the regular value of 10-30 ppb of NO in the human breath to a 

threshold of 100 ppm indicates pulmonary inflammation processes. For asthmatics, elevated NO has 

been validated as a reliable marker for the onset of an asthmatic crisis. 

With the GasFET technology it seems possible to develop sensing systems being sufficiently 

selective, sensitive, and stable. No proper sensing layer for NO has been realized up to now, however, 

sensing layers based on Cu-Phthalocyanine have shown the ability to selectively detect NO2 down to 

the ppb range [170]. An efficient NO to NO2 converter for human breath has been developed [171]. 

The base idea is to let pass the exhaled air through a two stage filter. The first stage consists of pure 

silica gel and removes excessive humidity from the breath. Silica gel which is impregnated with a 

strong oxidizing agent (KMnO4) to oxidize NO to NO2 is the second stage (Figure 22). Results 

obtained at a gas flow 2.5 l/min showed an NO to NO2 conversion rate of 95 % after the filter. Some 

loss of nitrous oxides due to adsorption on the filter has to be considered, but the actually obtained 

recovery of NO2 amounts to approx 90 % and is therefore sufficient for this application. 

Figure 22.  Schematics of the NO to NO2 converter for human breath analysis. The gas 

passes through a two stage filter that dehumidifies and performs the oxidative conversion.  
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Sensors for selective detection of those low levels of NO2 are possible using the GasFET 

technology (Figure 23). They need to be heated to avoid possible condensation effects of water and 

sticking of NO2 on the walls and to respond sufficiently fast [172]. The results shown in Figure 24 

demonstrate the ability of such systems to detect the increase of the NO concentration in human breath 

to the threshold of 100 ppb which needs to be detected. Since these sensing systems are moderate in 

costs, they have the potential to provide an in-home warning and therapy control device for asthmatics, 

a group of persons which is a significant part of the population in industrialized countries - with rising 

tendency. 
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Figure 23.  NO2-Sensing behavior of GasFETs with Cu-Phtalocyanine thin films: (a) 

Transient response of the work-function. (b) Sensing characteristics. 
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Figure 24. Results for the NO2 detection in simulated human breath using the NO to NO2 

converter and a GasFET equipped with a Cu-Phthalocyanine sensing layer. The rise of the 

NO content from the normal value of up to 30 ppm to the threshold of 100 ppm can be 

clearly separated. 
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4.4. Field Effect Sensors: Discussion and Outlook 

The gas sensors based on suspended gate FETS are characterized by some interesting features: 

o They are able to work at room temperature. This reduces the energy demand for operation 

and avoids thermal decomposition of instable gases at the sensing surface. 

o Due to their functional principle they make direct use of surface properties, thus facilitating 

the preparation of materials with reproducible sensing properties. 

o They enable the application of various classes of sensing materials. This enhances the 

chances to generate a sensing surface that has a surface chemistry that allows the direct and 

selective reaction with the target gas to be detected. 
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Arrays with these gas sensors tend to be available. In addition, it has to be stated that the potential 

for new sensing layers is far from being exhausted. Due to the possibilities to incorporate existing 

sensing layers known from other transducers and to use even new chemical affinity systems, various 

new sensors will come up that are based on this platform. One tendency is the research for selective 

sensing layers, e.g. ones assisted by a sterical selectivity mechanism like molecular imprinted 

polymers (MIPS), zeolites and the newly investigated mesoporous oxides [173]. The other tendency is 

research on new variants of the GasFET transducers that will allow operation temperatures above the 

normal Si-regime [174]. In the future, this might close the gap between high-temperature operated 

semiconducting metal oxides and work function devices. 

Conclusions 

The present status report highlighted how gas sensor research prospers in Germany. Many types of 

sensors are under development for various applications. In addition to step-by-step improvements of 

conventional principles, e.g. by the application of novel materials or by understanding-driven tailoring 

of the sensor films, novel principles turned out to open new markets. In the field of high-temperature 

gas sensing, real-time in-situ diagnosis of chemical reactions, for example in combustion processes or 

in exhaust gas aftertreatment, is an increasing application field, in particular for potentiometric or 

conductometric principles. With respect to low-temperature gas sensing, novel field effect devices 

present a high potential to enter the market for indoor air control or medical applications.  
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