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Solid stress and elastic energy as measures of 
tumour mechanopathology

Hadi T. Nia1, Hao Liu1, 2, Giorgio Seano1, Meenal Datta1, 3, Dennis Jones1, Nuh Rahbari1, Joao Incio1, 4, 

Vikash P. Chauhan1, Keehoon Jung1, John D. Martin1, Vasileios Askoxylakis1, Timothy P. Padera1,  

Dai Fukumura1, Yves Boucher1, Francis J. Hornicek5, Alan J. Grodzinsky6, James W. Baish7,  

Lance L. Munn1 and Rakesh K. Jain1*

Solid stress and tissue stiffness affect tumour growth, invasion, metastasis and treatment. Unlike stiffness, which can be  
precisely mapped in tumours, the measurement of solid stresses is challenging. Here, we show that 2D spatial maps of the 
solid stress and the resulting elastic energy in excised or in situ tumours with arbitrary shapes and a wide range of sizes can 
be obtained via three distinct and quantitative techniques that rely on the measurement of tissue displacement after disrup-
tion of the confining structures. Application of these methods in models of primary tumours and metastasis revealed that  
(i) solid stress depends on both cancer cells and their microenvironments, (ii) solid stress increases with tumour size and  
(iii) mechanical confinement by the surrounding tissue substantially contributes to intratumoral solid stress. Further study  
of the genesis and consequences of solid stress, facilitated by the engineering principles presented here, may lead to new  
discoveries and therapies.

I
ncreased tissue stiffness is a widely accepted and actively studied 
biomechanical property of fibrotic tumours and has been linked  
to several hallmarks of cancer, including growth, metabolism, 

invasion and metastasis1–7. However, the abnormal mechanics of 
tumours are not limited to tissue stiffening. We recently demon-
strated that solid stress represents a new mechanopathology that is 
consistently elevated in mouse and human tumours8,9. Solid stress 
is distinct from interstitial fluid pressure, as the former is contained 
in—and transmitted by—solid and elastic elements of the extracel-
lular matrix and cells rather than fluids10. Therefore, tumours are 
not only more rigid than many normal tissues, but cancer cells also 
produce and are exposed to these physical forces. Composed of a 
combination of tension and compression, these forces are signifi-
cant in tumours, but negligible in most normal tissues.

Early evidence for the existence of solid stress in tumours  
came from the discovery that blood and lymphatic vessels are 
mechanically compressed11–13. This can contribute to hypoxia9,14, 
promote tumour progression and decrease the efficacy of chemo-, 
radio- and immunotherapies15. In addition to these physiological 
consequences, forces can directly affect tumour biology: the exog-
enous application of solid stress in vivo can mechanically stimulate 
tumorigenic pathways, increasing β -catenin signalling in colon  
epithelia16, and the controlled application of compressive forces  
in vitro affects the growth8 of cancer cells and promotes their col-
lective migration17. Strategies designed to reduce solid stress and 
decompress blood vessels by reducing levels of collagen and hyal-
uronic acid14,18,19 have led to therapeutic approaches for enhancing 
the efficiency of conventional anticancer treatments and are cur-
rently being tested in clinical trials20,21.

Despite the important implications of solid stress and the 
immense potential for finding new mechanically activated path-
ways and targets, there are currently no high-resolution methods 
for quantifying solid stress in experimental or human tumours. 
Unlike stiffness, which can be measured using widely available mul-
tiscale techniques, measuring solid stress in biological tissues has 
proved challenging. Previous studies in our laboratory8,9, based on 
previous observations22,23 that arterial wall tissue relaxes if the con-
tained forces are surgically released, demonstrated the presence of 
residual tissue stresses in tumours. However, this approach is based 
on a partial cut through a spherical model of the tumour, which 
makes the precise release of solid stress and the measurement of 
the ensuing deformation challenging. This method is also limited to 
bulk estimation of solid stress and is not applicable in situ. The opti-
cal-depth limitations of alternative imaging-based methods, such as 
fluorescent oil microdroplet injection24 and single-molecule fluo-
rescent force sensors25, restrict their use to cellular- and subcellular- 
scale force detection.

We have developed experimental and mathematical frame-
works to provide 2D mapping of solid stress in tumours (planar-cut 
method), sensitive estimations of the solid stress in small tumours 
with small magnitudes of solid stress, as is the case for metastatic 
lesions (slicing method), and in situ quantification of solid stress in 
tumours, which retains the effects of the normal surrounding tissues 
(needle-biopsy method). All three methods are based on the con-
cept of releasing the solid stress in a controlled way with a defined 
geometry and then quantifying the stress-induced deformation 
via high-resolution ultrasonography or optical microscopy. Given 
the specific topography of the stress relaxation and the geometric  

1Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, 
USA. 2Leder Human Biology and Translational Medicine, Biology and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA. 
3Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA. 4Department of Internal Medicine, Hospital S. Joao, 
I3S, Institute for Innovation and Research in Health, and Faculty of Medicine, Porto University, 4200-319 Porto, Portugal. 5Orthopedic Oncology Service, Center 
for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA. 6Center for 
Biomedical Engineering, Departments of Mechanical, Electrical and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 
02139, USA. 7Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania 17837, USA. *e-mail: jain@steele.mgh.harvard.edu

http://dx.doi.org/10.1038/s41551-016-0004
mailto:jain@steele.mgh.harvard.edu


2  NATURE BIOMEDICAL ENGINEERING 1, 0004 (2016) | DOI: 10.1038/s41551-016-0004 | www.nature.com/natbiomedeng

ARTICLES NATURE BIOMEDICAL ENGINEERING 

and material properties of the tumour, solid stress and dis-
charged elastic energy are estimated using mathematical model-
ling. Applying these methods to multiple mouse cancer models in 
primary and metastatic settings has led to the following findings:  
(i) solid stress and elastic energy may differ between primary and 
metastatic settings, as they depend on both cancer-cell type and 
their microenvironment; (ii) tumours with higher elastic energy 
are not necessarily stiffer, and the stiffer tumours do not necessarily 
have higher elastic energy; (iii) solid stress increases with tumour 
size; and (iv) the normal tissue surrounding a tumour substantially 
contributes to intratumoral solid stress.

2D mapping of the solid stress
To produce a 2D map of the solid stress, we made a clean cut through 
freshly excised tumours embedded in 2% agarose (Fig. 1a). The pla-
nar cut removes the mechanical confinement at the cut surface and 
allows this face of the tumour to deform accordingly, as previously 
predicted by our mathematical model9. The deformation is a mea-
sure of the stored elastic energy in the tissue caused by solid stress 
(Fig. 1b). The deformation in the z direction, uz(x,y), imaged over the 
x–y cross-section of the tumour, is an indicator of the magnitude and 
direction of the solid stress in the z direction at the incision plane: 
regions with positive deformation (bulged) were under compression 
and regions with negative deformation (depressed) were under ten-
sion (Fig. 1a,b). For tissues with negligible solid stress, such as nor-
mal kidney and liver tissues, deformation was negligible and uniform 
across the incision surface (Fig.  1c). The deformation is spatially 
mapped in 3D via high-resolution ultrasound (resolution of 30 μ m). 
By developing a mathematical model (a 3D finite-element model; 
Fig. 1b), the 2D map of deformation uz is converted to the strain ten-
sor ε = ∂ ∂ + ∂ ∂u x u x1 / 2( / / )ij i j j i , from which the stress tensor σij is 
estimated on the basis of Hooke’s law26, written in index notation as

σ ε ε δ=
+

+
+

E

v

v

v(1 ) (1 2 )
(1)ij ij kk ij











where E is Young’s modulus (stiffness), v is Poisson’s ratio of the tis-
sue (assuming linear isotropicity) and δij is the Kroenecker delta. We 
used the average Young’s modulus of the tumour, measured via an 
unconfined compression test at the macro scale or via atomic force 
microscopy measurements at multiple indentation sites. However, 
the finite-element model is capable of incorporating the previously 
reported 3D stiffness heterogeneities of the tumour27,28. Since the 
cut fully releases the stress component σzz at the cut plane, we report 
only this stress component at the cut surface throughout this study. 
The other stress components, such as the stresses in the x–y plane, 
are also affected and accounted for in the 3D model. However, since 
the planar-cut method does not fully release these stresses, we do 
not report them in this study.

Similar to a spring that is compressed (Fig. 1b), the solid-stress 
field does mechanical work as it accumulates in the tumour; this 
work is stored as elastic potential energy during tumour growth. 
The elastic energy density, W, released by the incision is calculated 
from the following equation26 for a tumour half with volume V:

∫ σ ε=W
V

V
1

2
d (2)

V
ij ij

Although W is averaged over the volume of the tumour hemi-
sphere, it is not equivalent to the total elastic energy of the tumour. 
The elastic energy W is only the energy that is released from the 
relaxation of the solid stress at the desired cut plane; for the loca-
tions far from the cut plane, the elastic energy and solid stress 
are not fully released. To enable an estimation of the total elastic 
energy in a tumour, it would need to be cut into infinitesimally 

small pieces to release all of the solid stress and elastic energy. 
The elastic energy is not independent of solid stress; however, 
it describes the tensor-based stress field more sensitively and in  
the form of a single scalar quantity. Furthermore, elastic energy  
rigorously differentiates between the forces emanating from the 
solid versus fluid phases1 of the tumour on the basis of the following  
considerations: (i) the interstitial fluid is incompressible, so the 
fluid pressure cannot do work on the fluid phase of the tumour; and  
(ii) the solid phase is porous and fluid can flow through it, so the 
fluid pressure cannot do work on the solid phase of the tumour in 
quasi-equilibrium events, such as tumour growth.

Using the planar-cut method, we mapped solid stress for three 
mouse models of orthotopically implanted primary tumours: breast 
(adenocarcinoma, MMTV-M3C), pancreatic (pancreatic ductal 
adenocarcinoma (PDAC), AK4.4) and brain (glioblastoma, U87) 
(Fig. 1d). For each model, a representative ultrasound image shows 
the stress-induced deformation quantified with respect to the cut 
plane (yellow dashed lines). The 2D deformations obtained via quan-
tification of δz based on the reference incision plane from ultrasound 
images, the 2D map of the solid stress σzz, estimated from the finite- 
element model, and the profile of σzz across the bisecting dashed lines 
are shown in the lower panels. The 2D maps of σzz in the breast and 
pancreatic tumours show a common pattern of compressive stresses 
in the central regions, and tensile stresses with higher magnitude 
in narrow peripheral regions. However, in the U87 model of glio-
blastoma, the tumour experiences compressive stresses over annu-
lar regions close to the periphery, rather than in the centre of the 
tumour. The maximum value of the solid stress varies from 0.21 kPa 
(1.56 mmHg) in brain tumours to 7 kPa (52.5 mmHg) in pancreatic 
tumours (which are highly desmoplastic). The planar-cut method is 
capable of estimating a large dynamic range of solid stresses in addi-
tion to the variation in the pattern of the compressive and tensile 
stresses stored in different tumour types. We also demonstrated the 
planar-cut method on human chondrosarcoma tumours, for which 
the 2D deformation maps are shown in Supplementary Fig. 1.

We hypothesized that structural elements such as collagen fibres 
are critical to transmitting solid stress9,14. To test this hypothesis, 
we enzymatically depleted collagen in the MMTV-M3C model of 
breast cancer using a collagenase treatment ex vivo. We showed that 
the average magnitude of the solid stress < |σzz|>  was reduced by a 
factor of more than two, whereas the elastic energy density W was 
reduced by a factor of more than six (Fig. 1e).

The microenvironment influences solid stress
Little is known about how biomechanical abnormalities vary 
between primary and metastatic lesions or how these differences 
affect tumour biology. To address this, we used the planar-cut 
method to estimate and compare the solid stress, elastic energy 
and mechanical stiffness in size-matched tumours formed from the 
same cell lines, and in primary versus metastatic sites.

We found that primary PDAC AK4.4 tumours had much higher 
levels of solid stress than PDAC liver metastases (Fig. 2a,b), despite 
the fact that both tumours were formed by the same cell line and 
were approximately size matched. Since these two tumours have 
similar elastic moduli (Fig. 2e), the higher deformation after incision 
results in higher stress values (Fig. 2f) and higher elastic energies 
(Fig.  2g) in primary sites than in liver metastases. This compari-
son shows that AK4.4 tumours growing in the pancreas generate a 
higher solid stress and store more elastic energy than AK4.4 liver 
metastases. Interestingly, this trend is reversed in colorectal carcino-
mas (Fig. 2c,d): the primary colorectal tumours have lower levels of 
solid stress and elastic energy than colorectal cancer liver metastases, 
despite having similar elastic moduli. Our data show that the growth 
in the liver microenvironment does not always result in lower stored 
elastic energy. An interesting comparison can also be made between 
metastases of different cancer cells in the same host organ (in this 
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Figure 1 | 2D maps of solid stress in tumours. a, The fresh tumour was embedded in 2% agarose (liquid at 40 °C), and then gellated in ice water.  

The tumour–agarose construct was incised at the plane of interest to release solid stress. The release of solid stress resulted in a deformation field  

δz(x,y) with respect to the agarose reference plane; δz and the tumour geometry were quantified via high-resolution ultrasound (resolution of 20 μ m).  

b, Using a finite-element model, σzz, the mechanical stress in the z direction, and W, the elastic energy stored by solid stress, were estimated from  

the deformation δz and Young’s modulus of the tissue on the basis of Hooke’s law. c, The stress-induced deformation δz was uniform and negligible in  

stress-free normal tissues (for example, kidney (top) and liver (bottom)). d, Representative ultrasound images showing the stress-induced deformation and  

agarose reference line (yellow dashed line), 2D deformation fields δz, 2D stress fields σzz, and representative stress profiles across the tumour diameter,  

all for mouse models of breast tumour (MMTV-M3C), pancreatic ductal adenocarcinoma tumour (AK4.4) and brain tumour (glioblastoma, U87).  

e, Enzymatic depletion of collagen in a (MMTV-M3C) breast tumour resulted in notable reduction of solid stress and elastic energy density (control,  

n =  5 mice; collagenase-treated, n =  4 mice; mean ±  standard error of the mean; *P <  0.05). A representative ultrasound image and a solid-stress map are 

shown for the control and collagenase-treated tumours.
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case, the liver). Although the elastic modulus of PDAC liver metasta-
ses is fivefold larger than that of the colorectal cancer liver metasta-
ses, the elastic energy actually shows the opposite trend. This is due 
to considerably larger stress-induced deformation in colorectal can-
cer liver metastasis and to the greater dependence of elastic energy 
on stress-induced deformation (equation  (2)). The solid stress 
shows a trend that is lower than but similar to the trend of the elastic 
modulus between the two metastases, as the solid stress follows a 
linear relationship with the deformation (equation  (1)). From the 
above comparisons we observe that (i) solid stress and elastic energy 
are mechanical abnormalities that vary between tumours; (ii) solid 
stress and elastic energy depend on both the cancer-cell type and 
the microenvironment in which they reside; and (iii) tumours with 
greater elastic energy are not necessarily stiffer, and stiffer tumours 
do not necessarily have greater elastic energy.

Tissue slices allow measurements in small tumours
To measure the solid stress and elastic energy in smaller tumours 
(for example, in micro- and macro-metastases), we developed a 
more sensitive method—also based on releasing elastic energy—
by slicing the tissue into thin slices (Fig.  3a). Again, the freshly 

excised tumour is embedded in 2% agarose, which is then sliced by 
a vibratome with a desired thickness in the range 100–500 μ m. The 
tumour slice, originally flat, undergoes expansion and contraction 
in the area of the slice when the in-plane stresses and elastic energy 
are released (Supplementary Fig. 2), as demonstrated in models of 
breast tumours (MMTV-M3C), pancreatic tumours (PDAC, AK4.4) 
and lymph-node metastasis of breast cancer (4T1) (Fig.  3b–d). 
Inhomogeneities in the in-plane stresses (shown for the partial 
release of these stress components in Supplementary Fig. 3) mean 
that the slice undergoes out-of-plane bending and buckling. This 
method is more sensitive than the planar-cut method since a thin 
slice is exposed to more degrees of freedom to deform and reacts 
to even small levels of solid stress. The deformed slices are then  
imaged in 3D using high-resolution ultrasound (used here for AK4.4 
and MMTV-M3C tumours) or optical frequency domain imaging 
(OFDI; used here for lymph node metastasis)29 after stress relax-
ation. The compressive and tensile stresses (as mapped in Fig. 1d) 
are released in different ways: the compressive forces are released 
by the slice volume expanding (which results in lateral bending 
and buckling) and the tensile forces are released by the periph-
ery of the tumours pulling inwards. Thus, the complex geometry  
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Figure 2 | Solid stress and elastic energy in primary versus metastatic tumours. a–d, Representative ultrasound images and  2D stress maps are shown for 

size-matched primary pancreatic ductal adenocarcinoma (PDAC, AK4.4; n =  4 mice) (a), liver metastasis of PDAC (AK4.4; n =  3 mice) (b), primary colorectal 

carcinoma (SL4; n =  3 mice) (c) and liver metastasis of colorectal carcinoma (SL4; n =  4 mice) (d). e–g, Comparison of Young’s modulus (unconfined 

compression) (e), average solid stress in the z direction, σzz (f) and elastic energy density (g) in these four tumour models shows that the type of cancer cell 

is not the only determinant of biomechanical abnormalities: the organ and microenvironment in which the cancer cells reside are equally important in the 

generation of solid stress and elastic energy in tumours. The data shown are mean ±  the standard error of the mean; n.s., not significant; *P <  0.05.
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formed from an originally flat disc-shaped slice is the result of  
non-uniformity and coexisting residual tension–compression in-
plane stresses released in the slice. We used this method on normal 
kidney and lymph node micro-metastases, and observed negligible 
deformation after slicing (Fig. 3e,f), consistent with the results of the  
planar-cut method (Fig. 1c).

The release of elastic energy via slicing results in the expansion 
of the surface area of the slice. The overall area expansion after slic-
ing represents the area strain, a quantitative index for in-plane solid 
stresses and the stored elastic energy in the slice. We defined the 
area-expansion ratio as follows:

=
−

I
A A

A
(3)ER

tumour blank

blank

where Atumour is the surface area of the tumour slice after the elas-
tic energy is released and obtained from the 3D image of the slice, 
and Ablank is the reference area of the tumour slice before slicing, 
obtained from the empty space left in the agarose gel (Fig. 3h,i). The 
expansion ratio has been quantified as 30.7  ±   5.8% for the breast 
tumour, 34.0 ±  4.9% for the PDAC and 17.2 ±  1.2% for the lymph 
node with breast cancer macro-metastasis, which are consider-
ably higher than the control tissues: 7.0 ±  1.9% for the kidney and 
5.0 ±  1.2% for the lymph node with micro-metastasis (Fig.  3j and 
Supplementary  Fig.  4). Note that with this method the tumour 
undergoes consecutive cuts before the desired tumour slice is 
obtained. In doing so, the out-of-plane stresses (σzz) are fully released, 
similar to the planar-cut method. In addition, the in-plane stresses 
(σxx and σyy) are also partially released, as shown in the example in 
Supplementary Fig. 3. For the representative case of the MMTV-M3C 
model of breast cancer, we showed that the slicing method releases 
the majority of the in-plane stresses compared with the relaxation 
of in-plane stresses that occurs before the slicing. The average area 
strain obtained via the slicing method in the MMTV-M3C model 
is IER =  30.7%, which results in < σin-plane>  =  0.27 kPa (E =  0.87 kPa). 
However, the average σxx and σyy released by the cuts prior to the 
desired slicing are 0.069 kPa and 0.078 kPa (Supplementary Fig. 3), 
respectively, no larger than one-third of < σin-plane> , which shows that 
the majority of the in-plane stresses are relaxed when using the slice 
method and are thus reported as area strain IER (equation (3)).

Evolution of solid stress during tumour growth
Investigating the accumulation of solid stress as a function of 
tumour growth provides invaluable information regarding both 
the genesis and the implications of solid stress. We used the slice 
method to measure IER (equation (3)) induced by the relaxation of 
solid stress in MMTV-M3C breast tumours, for tumours ranging in 
size from 2 to 7 mm in diameter (Fig. 4a). The elastic modulus was 
also measured via atomic force microscopy (AFM)-based indenta-
tion for a similar range of tumour sizes. The expansion ratio (equa-
tion (3)) induced by the relaxation of in-plane stresses in the slice 
increased considerably with increasing tumour diameter (Fig. 4a,b). 
Tumours with small diameters (2–3 mm) did not show a notable 
increase in area after slicing, whereas the larger tumours showed an 
area expansion of up to 30–40%. Notably, the AFM-based indenta-
tion modulus did not show any substantial trend with tumour diam-
eter (Fig. 4c). This confirms that solid stress and elastic energy can 
be considered as mechanical abnormalities distinct from stiffness.

The type I collagen (collagen I) network becomes more orga-
nized and more localized at the periphery with increasing tumour 
size in the MMTV-M3C breast tumour model, consistent with the 
increase in solid stress. As shown via immunofluorescence analysis, 
the type I collagen network is uniformly and randomly distributed 
in smaller tumours (diameter ~2 mm; Fig. 4d) and becomes more 
localized and organized at the periphery in larger tumours (diam-
eter ~7 mm). To quantitatively describe this collagen I localization 
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Figure 3 | Creating tumour slices provides a sensitive measure of  

the solid stress that is applicable to a wide range of specimen sizes.  

a, The fresh tumour is embedded in liquid 2% agarose, then sliced with a 

vibratome and left in phosphate-buffered saline (PBS) at room temperature 

so that stress-induced deformation occurs in the tumour slice. The 

deformed slice and the surrounding agarose disc are imaged using high-

resolution ultrasound (30 μ m resolution) or OFDI (1 μ m resolution) for 

small samples (for example, lymph node). b–d, Buckling and deformation 

of representative slices from breast tumour (MMTV-M3C) (b), pancreatic 

tumour (AK4.4) (c) and lymph node with macro-metastasis of breast 

cancer (4T1) (d). e,f, Tissues with negligible or low levels of stress, such as 

lymph node with micro-metastasis (e) and kidney (f). g, The blank space 

in the agarose disc represents the area of the tumour slice before the stress 

relaxation. Scale bars, 1 mm. h, 3D reconstructions of the slices in breast and 

pancreatic tumours compared that of with kidney tissue. i, The expansion 

ratio, an index of solid stress and elastic energy, is defined as the ratio of 

the surface area of the slice after stress relaxation, Atumour, to the area of the 

blank space in the agarose disc, Ablank (equivalent to the area of the slice 

before stress relaxation). j, The expansion ratios in breast (n =  3 slices) and 

pancreatic tumours (n =  3 slices) are substantially higher than the expansion 

in the kidney slice (n =  3 slices). The expansion ratio of lymph-node macro-

metastasis (n =  4 slices) is considerably higher than in the micro-metastatic 

lymph node (n =  4 slices). The error bars indicate the mean ±  standard error 

of the mean. PDAC, pancreatic ductal adenocarcinoma. *P <  0.05.
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effect, we defined a collagen spread radius, Rc, as the radius of an 
area that contains 50% of the positively stained collagen I. This 
radius increases substantially with the tumour diameter (Fig. 4d), 
consistent with a similar increase in area expansion ratio (Fig. 4b). 
The highly oriented collagen (Supplementary Fig. 5) with increased 
density at the periphery implies that the periphery of the tumour 
experiences tensile stresses. This tensile stress in the periphery, con-
sistent with the stress map in Fig. 1d, is hypothesized to originate 
from the direct contraction of carcinoma-associated fibroblasts30,31 
or from the resistance to the compressive forces emanating from the 
volume increase resulting from cell proliferation and extracellular 
matrix deposition.

Whereas solid stress increased with tumour size, the frac-
tion of perfused vessels showed the opposite trend (Fig.  4e; see 
also Supplementary  Fig.  6 for representative images), consistent 
with the hypothesis that solid stress can compress blood vessels 
and decrease tumour perfusion9,14,19. These data also suggest that  
stiffness, which showed no notable trend with tumour growth  
for the range of tumour diameters examined in this study, is not  

a major contributor to the compression and collapse of intratu-
moral blood vessels.

The surrounding tissue affects tumour solid stress
So far, we have estimated the solid stress and elastic energy of 
tumours ex vivo, independent of the surrounding normal tissue. 
Next, via in situ estimations of solid stress, we show that the resis-
tance to growth by the surrounding tissue also substantially con-
tributes to the solid stress in the tumour—as previously predicted 
by our mathematical model32,33. To measure in situ solid stresses, we 
performed a core biopsy of the tumour to create a cylindrical void. 
We call this the needle-biopsy method. The changes in the diame-
ter of the cylindrical void, measured by ultrasonography, represent 
a 1D stress profile of the tumour. We first evaluated this method  
ex vivo to release the solid stress in the MMTV-M3C model of 
breast tumours: the cylindrical void reduced in diameter in the 
centre and increased in diameter at the periphery of the tumour 
(Fig.  5b). This deformation profile indicates that there are com-
pressive stresses in the centre and tensile stresses in the periphery 
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of the tumour, consistent with the results obtained by the planar-cut  
method (Fig. 1d). As expected, the diameter profile of the biopsy 
void remained unchanged in control tissues (kidney and liver), in 
which solid stress is negligible (Fig. 5c,d).

In addition to the void left by the biopsied material, the biopsy 
core also contained useful information about the state of solid stress 
in the probed tissue. The tip of the core shrank because of the tensile 
contraction at the periphery, and the diameter in the middle region 
increased because of the release of compressive stresses (Fig. 5b). 
The biopsy cores from the control tissues (kidney and liver) did 
not deform, again because of the negligible solid stress and elastic 
energy in these tissues (Fig. 5c,d).

Next, we utilized the needle-biopsy method for in situ stress mea-
surement and showed that the solid stress in ex vivo brain tumours 
(glioblastoma, U87) is lower in magnitude and different in profile 
than in tumours that are surrounded by the brain and cranium  

(in situ; Fig. 5e–g). We used the same glioblastoma model (U87) for 
which the 2D stress map was quantified in Fig. 1, and released the 
solid stress via a biopsy punch while the tumour was still surrounded 
by brain and cranium. For in situ measurements, we first made a 
2-mm-diameter hole in the cranial window (Fig. 5h) through which 
we accessed the tumour with a biopsy punch (1.5 mm diameter). 
The biopsy void reduced in diameter at regions close to the tumour 
rim, consistent with the 2D map of deformation (Fig.  1d) but in 
contrast to the primary breast tumours, where the maximum defor-
mation occurred in the centre (Fig. 5b). For ex vivo measurements, 
the tumour was surgically resected from the brain and embedded 
in 2% agarose; the stress was released by the same biopsy tech-
nique (Fig. 5g). We observed an overall smaller deformation for the  
ex vivo tissues than for the in situ tissues, and these differences in 
deformation were notable in regions closer to the outer rim of the 
tumour (Fig. 5f). Using a mathematical model, the maximum radial 
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stress for the in situ case was estimated as 0.1 kPa in compression 
compared with 0.02 kPa in the ex vivo case.

Discussion
On the basis of the fundamental concept that tissues containing 
solid stress deform after release from physical confinement, we 
developed three different experimental techniques and appropriate 
mathematical models to quantify solid stress and elastic potential 
energy in solid tumours. The first method, based on releasing solid 
stress at a plane created by bisecting the tumour, revealed the 2D 
spatial distribution of solid stress. This method allowed us to dis-
tinguish regions with tensile stresses, mostly at the periphery, from 
the central regions of the tumour that experience mainly compres-
sive stresses. The second method, based on releasing solid stress by 
creating thin tumour slices, provides a sensitive approach to quan-
tifying low levels of solid stress in small specimens, such as small 
metastatic lesions in mice. The third method, based on releasing 
solid stress by core biopsy, is capable of both in situ and ex vivo esti-
mations of solid stress. The in situ feature of this method allowed 
the determination of the contribution of the surrounding tissue to 
intratumoral solid stress. Importantly, we found that biopsy cores 
also undergo ex vivo stress-induced deformation and could poten-
tially be used for the measurement of solid stress in the clinic (see 
Supplementary Table 1 for the capabilities and limitations of each 
method). These methods overcome the previous technical chal-
lenges in measuring these biomechanical abnormalities.

The reliable and precise quantification of solid stress and elastic 
energy has the potential to promote the discovery of new signalling 
pathways and therapeutic strategies. The repurposing of losartan14, 
an angiotensin receptor inhibitor, and PEGPH2018, a recombinant 
hyaluronidase, in cancer therapies is partly based on releasing the 
mechanical forces exerted on blood vessels in tumours by targeting 
collagen I and hyaluronic acid. The administration of both drugs 
increased the efficacy of chemotherapy in preclinical models, lead-
ing to two phase II clinical trials20,21. Similar to the earlier method 
of estimating solid stress9, the methods developed here could also 
be used to compare agents that can lower solid stress. Moreover, 
characterization of solid stress would help elucidate the relationship 
between obesity and the cancer immune microenvironment. As we 
recently found in PDAC tumours34,35, synergies between adipocytes, 
immune cells and fibroblasts lead to an exacerbated desmoplastic 
microenvironment during obesity, further promoting blood vessel 
compression. This is arguably the most important consequence of 
solid stress demonstrated so far.

Solid stress and elastic energy can also be used as prognostic and 
diagnostic markers. Factors such as tumour growth pattern and col-
lagen architecture, both closely associated with solid stress, have 
been shown to have prognostic values. Growth pattern, histologically  
categorized as pushing versus replacing phenotypes, has been 
linked to overall survival36 and recurrence risk37. As shown in Fig. 2, 
colorectal cancer liver metastases with pushing growth patterns have 
higher elastic energies than pancreatic cancer liver metastases with 
replacing growth patterns (Supplementary  Fig.  7). Furthermore, 
collagen orientation and alignment have been shown to correlate 
with prognosis in patients with breast cancer38. As shown, the col-
lagen network in our breast tumour model becomes more organized 
as the solid stress increases with tumour growth. The quantification 
of solid stress and its association with growth pattern and collagen 
architecture suggests that solid stresses may reveal the mechanisms  
that underlie these histological patterns and lead to further prog-
nostic biomarker discoveries.

The needle-biopsy and planar-cut methods both provide quan-
titative measurements of solid stress and have potential for use in 
the clinic. Biopsy samples are obtained routinely during the diagno-
sis and treatment of cancer; as we show in Fig. 5a,b for the needle-
biopsy method, the biopsy core contains useful information about 

solid stress in tumours. The solid stress in the biopsy core could be 
initially evaluated in clinical trials as a new biomarker and used to 
investigate the mechanism underlying the link between solid stress, 
collagen orientation and growth patterns. The planar-cut method 
currently requires the sample to be embedded in agarose and imaged 
via high-resolution ultrasound; clinically, this procedure may affect 
the routine processing of tumours by pathologists. To facilitate this 
procedure, we are working with pathologists to develop methods 
of generating 3D reconstructions of stress-induced deformation of 
patient specimens utilizing laser scanning technologies. This meth-
odology will eliminate the agarose-embedding step, shorten the 
imaging time and provide the strain field in a larger field of view 
in the tumour and its surrounding tissue; it could be coupled with 
routine pathological processes on freshly excised tumours. Using 
fiducial markers, solid stress maps would be matched and com-
pared with histological images from the same cut plane. We expect 
that clinically accessible and quantitative measurement of solid 
stress and elastic energy will provide new prognostic and diagnos-
tic markers, similar to those provided by stiffness39,40 and intersti-
tial fluid pressure41–43, two mechanical abnormalities that have been 
used as prognostic biomarkers.

Finally, we used the above methods to demonstrate that ele-
vated solid stress and stiffness are two distinct biomechanical 
abnormalities. This important distinction implies that attempts  
to normalize the tumour’s mechanical environment should not be 
limited to decreasing the stiffness. Two of our independent (but 
consistent) findings demonstrate that (i) primary and metastatic 
tumours can have substantially different levels of solid stress despite 
similar stiffness values (Fig. 2e,g) and (ii) solid stress increases with 
tumour growth, even though stiffness did not change in our tumour 
models (Fig.  4b,c). These results clearly suggest that the external 
compressive or tensile solid stresses of tumour cells may be inde-
pendent of the cellular focal-adhesion forces that are generated in 
response to changes in the stiffness of the matrix in their vicinity. 
With the methods and results shown here, we now have the tools 
to investigate how cancer and stromal cells sense and respond to 
tensile or compressive forces. And the techniques that we have 
described will complement our understanding of the effects of 
altered stiffness44.

Methods
Planar-cut method. Releasing solid stress. �e 2% agarose was made from low-
gelation temperature agarose (Sigma-Aldrich) mixed with PBS bu�er. �e agarose 
solution was in a liquid state at 40 °C. �e freshly excised tumour was �rst washed 
with PBS and then immersed in the liquid agarose inside a custom-made alu-
minium cast. �e cast was then cooled in ice water. A�er the agarose gel solidi�ed, 
the tumour–agarose construct was removed from the cast and manually cut with a 
razor blade at the plane of interest. �e solidi�ed agarose that surrounded and held 
the tumour allowed the tumour to be cut with minimal displacement relative to the 
gel. One half of the tumour was removed from the gel and �xed in 4% formalde-
hyde for histological analysis; the other half, still inside the agarose construct, was 
kept immersed in PBS for at least 10 min to allow the tissue to relax and deform 
with the release of the solid stress and elastic energy. �e same method was used 
for the control tissues.

Tissue imaging and post-processing. The tissue deformation map was acquired  
via high-resolution ultrasound (Vevo 2100 system; FUJIFILM Visual Sonics) on 
the half of the tumour–agarose construct that was immersed and relaxed in PBS. 
We used the probe MS550S for large samples such as primary breast tumours 
(depth of view =  13 mm, frequency =  32–56 MHz) and the probe MS700 for smaller 
samples such as brain tumours (depth of view =  9 mm, frequency =  30–70 MHz). 
The high-resolution ultrasound provides a resolution of 20–30 μ m. For higher 
resolutions and smaller samples, optical systems such as the OFDI system29 can be 
used (resolution =  1 μ m, depth of view =  2–3 mm). The 3D images were exported 
from VisualSonics software to MATLAB (The MathWorks) for post-processing. 
The post-processing included smoothing, which was performed with moving  
averaging on the top (cut plane) and bottom surfaces of the tumour to remove  
any noise introduced by ultrasound imaging. The top and bottom surfaces were  
exported to SolidWorks (Waltham) for 3D reconstruction of the surfaces into  
a solid object. This solid object was then exported to the compatible finite-element 
model, as described below.
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Mathematical modelling. In the planar-cut method, to translate the  
stress-induced deformation to solid stress, we developed a mathematical  
model using the general-purpose commercial finite-element software  
ABAQUS (Version 6.9, SIMULIA). The 3D geometry of the tumour was  
imported from the SolidWorks software as described above. We used the  
element type C3D10, a quadratic tetrahedral element with two elastic parameters: 
Young’s modulus and Poisson’s ratio, which were obtained as described below.  
The assumptions for the use of equation (1) are justified in Supplementary Note 1. 
We have shown that the viscoelastic time constant is on the order of 10 min  
(Supplementary Figs 8 and 9) for the length scales comparable to tumour  
diameter (this time constant is mainly determined by Young’s modulus  
and hydraulic permeability in poroelastic materials45,46). In contrast,  
the biological processes that give rise to solid stress in tumours, such as  
proliferation, extracellular-matrix deposition and cell contraction, occur  
on a timescale that ranges from several hours to several days. Since this is  
much longer than the viscoelastic time constant, the equilibrium mechanical  
properties that we are measuring reflect the appropriate properties in the  
generation and application of solid stress.

The agarose gel was solidified from a liquid state under no external or 
internal residual stress. Thus, the cut surface in the agarose gel provided the 
reference plane that represented the original plane of the tumour tissue before 
stress relaxation in the tumour. A displacement profile was assigned to the top 
deformed surface of the tumour to translate it back to the original reference 
plane. This assigned deformation was only in the direction perpendicular to the 
surface of the tumour (the z direction), and the top surface of the tumour was 
free to move parallel to the surface direction (the x–y plane). This displacement 
assignment translates the tumour geometry from the relaxed state (deformed 
surface) to the original stressed state before the cut (flat surface). The stress 
component σzz generated after the displacement assignment is reported as the 
solid stress in the intact tumour. For ex vivo applications of the planar-cut 
method, the boundary condition on the bottom surface of the tumour was 
defined as zero force. This assumption is justified for cases such as mouse mod-
els of breast tumours where the solid stress field is mainly generated internally 
and the tumour is not experiencing any major external confinement or resist-
ance. For in situ application of the planar-cut method, a contact surface was 
defined between the tumour and the surrounding normal tissue. In these cases, 
such as with brain tumours, the normal tissue was also modelled as an elastic 
material with known Young’s modulus, obtained as described below. The solid 
stress component in the direction perpendicular to the cut surface (z direction) 
σzz is reported. The model also reports the elastic energy density, equivalent to 
the work done to displace the deformation back to the original coordinates,  
normalized by the tumour volume.

Slicing method. Releasing solid stress. �e tumour was embedded in 2% agarose  
gel as described in the planar-cut method, except that the solidi�cation occurred  
in a stainless steel cast provided with the commercial VF-300 compresstome  
(Precisionary Instruments). �e tumour–agarose construct, fully immersed  
in PBS, was then sliced using the compresstome with the desired thickness in  
the range of 100–500 μ m. �e tumour slice was detached from the agarose slice, 
leaving an empty area in the agarose gel. �is empty area, here called the ‘blank’, 
represents the tumour area before stress relaxation by slicing. �e tumour slice was 
detached from the surrounding agarose manually with a pair of sharp tweezers; 
detachment occurred spontaneously in some cases. �e slice was kept immersed  
in PBS for at least 10 min while solid stress was released. As a result of stress  
relaxation, the sample slice underwent expansion in area through di�erent  
modes of bending and buckling.

Imaging and post-processing. The sample slice and the blank agarose gel were  
imaged in 3D via high-resolution ultrasound (for larger tumours) or OFDI  
(for small samples such as a lymph node). The surface areas of both the sample  
slice and the blank were then calculated by custom in-house MATLAB codes.  
The change in the ratio of the surface area after stress relaxation to the surface  
area before stress relaxation (equal to the blank area) was defined as an index  
of the solid stress and elastic energy.

Needle-biopsy method. Releasing solid stress. �e solid stress of the tumour  
was released by punching a hole with rotating biopsy punches (Integra-Miltex) 
with diameters of 1.5–3 mm. �e rotating punch was made by detaching the  
stainless steel blade of the biopsy punch from the plastic holder and rotating it  
with a Dremel rotary tool (Dremel). �e rotary punch reduced cutting artefacts  
by minimizing the mechanical disturbance otherwise caused by non-rotating 
punching. In ex vivo cases, the sample was either held gently by tweezers or  
embedded in 2% agarose to be secured during the punch. For in situ cases such  
as brain tumours, we made a 2-mm-diameter hole in the plastic coverslip of the 
cranial window without disturbing the underlying brain tissue. �rough this hole 
in the cranial window, we then punched the brain tumour with a 1.5-mm-diameter 
punch. �e samples were le� submerged in PBS for at least 10 min, the time needed 
for stress relaxation. �e biopsy core, which also changed in diameter due to solid 
stress, was similarly preserved in PBS.

Imaging and post-processing. The stress-induced deformation and the sample geometry 
were imaged via high-resolution ultrasound as described in the planar-cut method. 
Using custom in-house semi-automated MATLAB codes we calculated the area of the 
biopsy hole along the punch axis, from which we calculated the mean hole diameter.

Mathematical modelling. An axisymmetric finite-element code was developed  
in ABAQUS to translate the stress-induced deformation to the solid stress.  
A deformation profile was assigned that transformed the deformed punch  
profile to the original profile before stress relaxation. The original hole profile was 
simply determined by the biopsy punch diameter, which was uniform along the 
hole axis (the z axis) and equal to 1.5 mm for small samples such as brain tumours 
and 2–3 mm for larger samples. In the ex vivo cases, a zero-force boundary  
condition was prescribed at the outer surface of the tumour to simulate the  
physiological conditions. For in situ cases, a contact surface was defined between 
the tumour and the normal tissue, such as brain, with known elastic properties.  
We used the four-node axisymmetric element CAX4R for both the tumour and  
the surrounding tissue. The material properties of both the tumour and the  
surrounding tissue were obtained via micro and macro measurements of the  
stiffness, as described below. The stress σrr, the component of the solid stress  
on the cut surface, in the direction perpendicular to the axis of the hole  
(z direction), is reported. The mathematical model also reports the elastic  
energy density, equivalent to the work done to displace the deformation back  
to the original coordinates, normalized by the volume of the tumour.

Micro and macro measurement of tumour stiffness. The stiffness of the  
tumours was measured using AFM on the microscale as the indentation  
modulus, and on the macroscale as the unconfined compression modulus.  
For both cases, the measurement was obtained within 1 h after excision  
of the tumours. The samples were maintained in PBS with protease inhibitors 
(Complete Protease cocktail tablets, Roche Applied Science) at 4 °C before  
testing. All of the measurements were performed in near-physiological PBS  
at ambient temperature (25 °C).

AFM-based measurement of the indentation modulus. The indentation moduli  
of tumours were quantified using an Asylum MFP3D AFM (Asylum). We used 
polystyrene colloidal probe tips with an end radius (R) of ~12.5 μ m (Polysciences) 
attached to tipless cantilevers with nominal spring constant k ~ 0.12 N m–1  
(Bruker). The colloidal probes were attached to the cantilever by the lift-off  
process: a dot of glue (M-Bond 610, Structure Probes/SPI Supplies) was placed on a 
tipless cantilever by making quick contact between the cantilever and a thin layer  
of glue (1 μ l thick) spread over a 10 mm ×  10 mm mica surface. We then made 
immediate contact between the tip of the cantilever and a colloid probe resting  
on a glass slide and waited for 1 min with the cantilever pushing against the colloid. 
This process was followed by heat curing for 2 h at 150 °C. For each probe tip, the 
exact spring constants of the cantilevers were directly measured using the thermal 
calibration method47. The relationship between the detected voltage and the applied 
force was calibrated by bringing the cantilever into contact with a glass slide and 
calculating the slope of the voltage–displacement curve. The displacement, d, was 
translated to force, F, using Hooke’s law (F =  kd). The indentation was performed 
under a force control scheme (maximum force ~20 nN) limiting the indentation 
depths to 0.5–3 μ m. The tip displacement was obtained by subtracting the  
cantilever deflection from the vertical movement of the piezoelectric actuator.  
An indentation approach velocity of 2 μ m s–1 ensured that the elastic modulus was 
probed at a lower rate, close to equilibrium conditions.

The effective indentation modulus Eind was computed using Hertzian contact 
mechanics models via least-squares linear regression of the experimental loading 
force–displacement curves. For the spherical colloidal probe tip with end radius R 
on the sample with thickness h ≫  R (here, h ~ 5 mm, R ~ 12.5 μ m)

=
−

F
E

v
R D

4

3 (1 )

ind

2

1/2 3/2

where F is the indentation force and D is the indentation depth (we assumed 
v  =  0.1, as measured in other soft tissues48,49). A representative force–displacement 
curve is shown in Supplementary Fig. 10.

Macroscale unconfined compression test. Young’s moduli of tumours were  
determined by unconfined compression tests50. Slices of freshly excised tissue, 
3 mm in diameter and ~2 mm thick, were placed in an unconfined compression 
chamber submerged in PBS. The chamber was mounted in an ultrasensitive  
servo-controlled materials tester (Dynastat Mechanical Spectrometer; IMASS). 
Each specimen was compressed by 5% of the original height in ramps of 20 s and 
allowed to relax for 20 min. Four successive measurements were performed with  
each tissue slice. Young’s modulus was determined as the ratio of the linear fit to 
stress–strain data (Supplementary Fig. 8).

Cell culture. Cells (MMTV-M3C, AK4.4, SL4, U87, 4T1) were cultured  
in DMEM (ATCC 30-2002) medium containing 10% fetal bovine serum.  
Cells were harvested at ~80% confluency, washed twice with PBS, counted and  
re-suspended in DMEM before injection. All cell lines repeatedly tested  
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negative for mycoplasma using the Mycoalert Plus Mycoplasma Detection Kit 
(Lonza), authenticated before use by IDEXX laboratories.

Tumour models. Primary tumour models. MMTV-M3C cells (Her2+) were  
provided by P. Huang (Massachusetts General Hospital, Boston, Massachusetts, 
USA) and were isolated from lung metastases of mammary adenocarcinomas in 
mice generating spontaneous mammary tumours (MMTV-PyVT). Orthotopic 
breast tumours were generated by implanting a small piece (1 mm3) of viable 
tumour tissue (from a source tumour in a separate animal) or by injection  
of 1 ×  105 cells into the mammary fat pad of a 6- to 8-week-old female FVB  
mouse (MMTV-M3C). AK4.4 cells (KrasG12D and p53+/−) were provided  
by N. Bardeesy (Massachusetts General Hospital, Boston, Massachusetts,  
USA) and were isolated from mice generating spontaneous pancreatic tumours 
(Ptf1-Cre/LSL-KrasG12D/p53Lox/+). Orthotopic pancreatic tumours were similarly 
generated by implanting a small piece (1 mm3) of viable tumour tissue into the 
pancreas of a 6- to 8-week-old male FVB mouse (AK4.4 model). The SL4 mouse 
colorectal cancer cells were provided by T. Irimura51. For the orthotopic SL4 model, 
5 ×  105 cells in 10 μ l of PBS and extracellular-matrix-rich gel (Corning Matrigel) 
were injected into the caecal wall between the serosa and mucosa from the serosa 
side using an insulin syringe with a 27G needle. For the glioblastoma model, cranial 
windows were implanted into nude mice as previously described52, and the mice 
were allowed to recover for 1 week before tumour implantation. U87 fragments  
(0.2–0.3 mm in diameter; from a source tumour in a separate animal) were 
implanted into the left cerebral hemisphere 0.5–1 mm deep in 6- to 8-week-old 
female nude mice. All animal procedures were carried out following the  
Public Health Service Policy on Humane Care of Laboratory Animals and  
were approved by the Institutional Animal Care and Use Committee of 
Massachusetts General Hospital.

Liver metastasis model. Mice were anaesthetized with an intraperitoneal injection  
of ketamine (100 mg per kg) and xylazine (10 mg per kg). A left-flank incision  
was made through the skin and abdominal wall, and the spleen was exteriorized. 
The middle of the spleen was ligated with a suture before transection, with  
the goal of preserving the vascular pedicles to both hemispleens. 1 ×  105 cells 
(AK4.4 or SL4) in 100 μ l DMEM were injected slowly into the distal lobe  
with a 30G needle. After 10 min, the hemispleen used for tumour cell injection  
was resected. The remaining spleen was placed back into the abdomen.  
The abdominal wall was closed with a continuous suture. The skin was closed  
with surgical staples.

Lymph node spontaneous metastasis. 2 ×  105 4T1 cells in DMEM were injected into 
the second mammary fat pad of syngeneic BALB/c mice. On day 15 post-injection, 
the primary tumour was resected. Animals were killed 2–3 weeks post-resection  
to evaluate the metastatic lymph nodes.

Histology. Before death, mice were slowly (~2 min) injected with 100 ml  
of 1 mg per ml fluorescein isothiocyanate (FITC)-conjugated lectin (Vector Labs) 
via the tail vein 5 min before tumour removal, long enough for FITC-lectin to  
reach perfused vessels. The tumours were then excised, fixed in 4% formaldehyde 
in PBS overnight and embedded in paraffin blocks. Transverse tumour sections, 
5 μ m thick, were immunostained with antibodies for endothelial marker CD31 
(DIA310, Dianova, 1:100 dilution) and counterstained with DAPI (Vector Labs). 
Collagen I and hyaluronan were, respectively, detected using the LF-68 antibody 
(1:500 dilution) provided by Larry Fisher (NIDCR) and a biotinylated hyaluronan 
proteoglycan fragment (385911, Calbiochem). For the detection of collagen I, the 
paraffin-embedded sections were treated with a pH-9.0 trypsin antigen-retrieval 
solution and counterstained with DAPI. Staining for aSMA (C6198 antibody,  
Sigma, 1:100 dilution) was also carried out. The entire tumour section at  
× 10 magnification was taken from each slide using a confocal microscope 
(Olympus) or slide scanner (TissueFAXS). For vascular analysis, vessels were  
segmented using a custom semi-automated tracing program developed in 
MATLAB, allowing the analysis of each vessel according to its size and  
staining intensity. Tumour perfusion was assessed by identifying the fraction  
of CD31+  vessels that were also positive for FITC-lectin, indicating that those 
individual vessels were perfused before the mice were killed, and are therefore 
functional and uncompressed.

Collagenase treatment. The collagenase (Sigma-Aldrich) solution was prepared 
by dissolving 10 mg collagenase in 10 ml DMEM. After excision, the tumour was 
placed in the collagenase solution remaining at 37 °C for 2 h before solid stress 
measurement.

Statistical analysis. The data are presented as the mean ±  standard error of the 
mean. Groups were compared using an unpaired two-sided Student’s t-test  
(due to independent sampling) with equal or unequal variance. The variance  
similarity was tested via F-test with P =  0.05. All of the results are based on pilot 
studies (not reported) preceding the main experiments (reported). The sample  
size for the main experiments were determined from the pilot studies. Mice were 
size-matched as appropriate for each experiment. No additional blinding or  
randomization was required for the animal studies.

Code availability. Custom scripts for MATLAB are available in the Supplementary 
Information.

Data availability. Source data for the figures in this study are available in figshare 
with the identifier https://dx.doi.org/10.6084/m9.figshare.3796092 (ref. 53). The 
authors declare that all other data supporting the findings of this study are available 
within the paper and its Supplementary Information.
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