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Figure 1: Examples of solid textures synthesized with our approach. Left: the statue appears to be carved out of a block of wood. Middle:
volume rendering this solid texture with the brown texels rendered as transparent reveals intricate internal structure. Right: cutting off a part
of the bunny reveals a consistent stone texture in the interior (we synthesized a displacement channel along with the RGB channels). The
input 2D exemplars are shown next to the solid textured models.

Abstract

We present a novel method for synthesizing solid textures from 2D
texture exemplars. First, we extend 2D texture optimization tech-
niques to synthesize 3D texture solids. Next, the non-parametric
texture optimization approach is integrated with histogram match-
ing, which forces the global statistics of the synthesized solid to
match those of the exemplar. This improves the convergence of
the synthesis process and enables using smaller neighborhoods.
In addition to producing compelling texture mapped surfaces, our
method also effectively models the material in the interior of solid
objects. We also demonstrate that our method is well-suited for
synthesizing textures with a large number of channels per texel.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture
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1 Introduction

Texture mapping is one of the most essential techniques for realis-
tic image synthesis, since it enables augmenting geometric models

with rich and realistic visual detail. Texture synthesis techniques
are thus of much interest. In this work we present a new method for
synthesizing a 3D solid texture from a 2D exemplar.

Solid textures [Peachey 1985; Perlin 1985] have several notable ad-
vantages over 2D textures. First, many natural materials, such as
wood and stone, may be more realistically modeled using solid tex-
tures (see Figure 1). Second, solid textures obviate the need for
finding a parameterization for the surface of the object to be tex-
tured, which is a challenging problem in itself. In fact, for objects
of general topology it is not possible to find a parameterization that
avoids seams and/or distortion. Although these problems may be
alleviated by synthesizing directly on the surface of an object (e.g.,
[Turk 1991; Turk 2001; Wei and Levoy 2001; Ying et al. 2001]),
they cannot be avoided altogether.

Furthermore, solid textures provide texture information not only on
surfaces, but also throughout the entire volume occupied by a solid
object. This is a highly convenient property, as it makes it possible
to perform high-fidelity sub-surface scattering simulations, as well
as break objects to pieces and cut through them, as demonstrated in
Figure 1.

So far, solid textures have (almost exclusively) been generated pro-
cedurally. Procedural textures are attractive, because they com-
pactly represent solid textures with unbounded spatial extent and
resolution. However, they can also be difficult to control. In par-
ticular, there’s no general automatic way of developing a procedure
that convincingly reproduces some specific natural pattern. This
challenging task is left to the user, and typically requires consider-
able expertise and trial-and-error. This makes example-based syn-
thesis an appealing alternative.

However, 3D texture exemplars are difficult to obtain, while synthe-
sizing a 3D solid texture from a 2D exemplar is in many respects
an extremely challenging task. For example, some of the most ef-
fective 2D synthesis methods directly copy patches of texture from
the exemplar to the result. Since the synthesized texture looks just



like the exemplar inside each patch, the synthesis process need only
to worry about hiding the seams between the patches. In contrast,
when the result has an additional dimension, every slice through
each texel in the volume has to look like the exemplar, and they all
need to agree with each other.

Time complexity is also a major concern for solid texture synthe-
sis, as the texel count grows cubically with the spatial resolution.
Thus, algorithms that are, e.g., of quadratic complexity are out of
the question for solid texture synthesis.

In this work we use a non-parametric global texture optimization
approach [Wexler et al. 2004; Kwatra et al. 2005] to synthesize
3D texture solids. This is done by simultaneously minimizing
an MRF-based distance between several orthogonal 2D neighbor-
hoods around each voxel of the 3D texture and their corresponding
neighborhoods in the 2D exemplar. We also introduce a novel re-
weighting scheme, inspired by Heeger and Bergen’s seminal work
[1995], which ensures that the result preserves the global statistics
of the exemplar. Thus, we achieve both histogram matching and
neighborhood matching, leveraging the strengths of both paramet-
ric and non-parametric texture synthesis methods.

The result is a new method for synthesis of solid textures from 2D
exemplars, which is generally superior to previous methods in terms
of the quality of the synthesized results. More importantly, it is ap-
plicable to a wider variety of textures, without sacrificing computa-
tional efficiency. We show that the method is effective for texturing
both the surface and the interior of solid objects. We also demon-
strate that our method is well-suited for synthesizing multi-channel
textures, with or without correlation between the channels. For ex-
ample, we can synthesize a variety of surface attributes (in addition
to surface color).

2 Related Work

During the past decade many example-based texture synthesis
methods have been proposed. Over the years we have witnessed
a shift from parametric methods [Heeger and Bergen 1995], to non-
parametric methods [De Bonet 1997], including pixel-based meth-
ods [Efros and Leung 1999; Wei and Levoy 2000], patch-based
methods [Efros and Freeman 2001; Kwatra et al. 2003], and most
recently to optimization-based methods [Kwatra et al. 2005], and
appearance-space texture synthesis [Lefebvre and Hoppe 2006].
Parametric methods attempt to construct a parametric model of
the texture based on the input sample, which has proven to be a
challenging task, and are mostly successful with homogeneous and
stochastic textures. Non-parametric methods have demonstrated
the ability to handle a much wider variety of textures, by growing
the texture one pixel/patch at a time. Optimization-based methods
evolve the texture as a whole, further improving the quality of the
results and making the synthesis more controllable. In this work
we integrate texture optimization with preservation of some of the
input texture’s global statistical properties; this both speeds up con-
vergence and helps to avoid undesirable local minima.

Example-based 2D texture synthesis methods have also been ex-
tended to synthesize 3D textures from 3D input samples. This has
been explored mostly with the third dimension being time [Szum-
mer and Picard 1996; Schödl et al. 2000; Wei and Levoy 2000; Bar-
Joseph et al. 2001; Soatto et al. 2001; Kwatra et al. 2003]. Solid
textures could probably also be generated in this manner. However,
digitized 3D texture samples of real materials are difficult to ob-
tain, especially for multi-channel textures, such as BTFs, while 2D
texture samples are abundant.

Applying a 2D texture to an object of arbitrary topology requires
finding a parameterization. Hence, several researchers explored
the idea of synthesizing the texture directly on the surface of the
target object. Wei and Levoy extend their texture synthesis method

[2000] by generalizing their definition of neighborhood search in
order to work on general surfaces [2001]. Turk [2001] uses a hier-
archy of meshes in combination with a user-specified vector field.
Tong et al. [2002] and later Liu et al. [2004] also synthesize BTFs
directly on arbitrary surfaces.

Shell texture functions [Chen et al. 2004] apply a relatively thin
shell on the object surface to speed up rendering of complex translu-
cent materials. The shell texture is synthesized using the approach
of Tong et al. [2002]. Complex inner structures cannot be repre-
sented here, since the inner core of the material is modeled as ho-
mogeneous.

While the above methods have been able to produce convincing re-
sults, they require re-synthesizing the texture from scratch for each
target object. In contrast, once a solid texture is available, it may be
applied to any 3D object, and the only remaining costs are those of
rendering the textured object.

The earliest pioneering attempts to synthesize solid textures from
2D texture samples used a parametric approach. For example,
Ghazanfarpour and Dischler [1995; 1996] attempt to match the
spectral characteristics of a 2D texture sample, while Heeger and
Bergen [1995] propose a multi-scale histogram matching approach.
Dischler et al. [1998] combine spectrum and histogram matching
and use orthogonal 2D views in order to synthesize anisotropic solid
textures. These methods are designed to handle textures whose ap-
pearance is well captured by global parameters, such as the fre-
quency spectrum and/or histogram, and thus cannot generally han-
dle the large class of natural textures exhibiting macro-structures.

Wei [2002; 2003] made the first attempt to extend his non-
parametric 2D synthesis method to synthesize solid textures. His
results demonstrate the difficulty of such an extension: they exhibit
considerable blurring and are unable to preserve even fairly small
structures. In this work we are able to demonstrate better results by
extending a more recent global texture optimization approach.

Qin and Yang [Qin and Yang 2007] propose a method for synthesis
of solid textures using Basic Gray Level Aura Matrices (BGLAMs),
which are based on concepts originally introduced by Elfadel and
Picard [1994]. The BGLAMs of a texture characterize the cooccur-
rence probability distributions of gray levels at all possible displace-
ment configurations. While some of the presented results are im-
pressive, the approach has a significant drawback: the basic method
works only on grayscale images. To process color textures, the
color channels must be decorrelated as proposed by [Heeger and
Bergen 1995]. However, in most textures the color channels are
strongly correlated, and independently synthesizing the decorre-
lated channels leads to visual artifacts, as demonstrated in Figure
2. It should be noted that constructing aura matrices that capture
the cooccurrence probabilities of multi-channel texels is not a fea-
sible solution, since the size of this representation grows quadrati-

(a) (b) (c) (d)

Figure 2: Independent color channel synthesis. (a) Input texture,
(b) decorrelated color channels, computed as described by Qin and
Yang [2007]. Note that the channels are still correlated and inde-
pendent channel synthesis results in visual artifacts (c). (d) Our
result, where the channels are synthesized together.



cally in the number of distinct colors in the texture. Thus, the aura
matrices would be huge on the one hand, but very sparse and not
containing enough statistics, on the other hand. In contrast, our
new method is able to handle correlated color textures, as well as
other multi-channeled textures, in which the channels are also often
highly correlated.

Another approach that was explored is to estimate the parameters of
a procedural shader so as to match a given texture sample [Lefebvre
and Poulin 2000; Qin and Yang 2002]. This approach may be used
to generate a solid texture based on a 2D example, but assumes that
the shader is already available and only its parameters are unknown.

Finally, Jagnow et al. [2004] present an approach for solid texture
synthesis, based on stereology techniques. This is a statistical ap-
proach applicable to materials composed of particles embedded in
a binding medium. However, this approach requires having models
for the different particle shapes that may be present in the solid. We
show that our method is capable of delivering results of similar vi-
sual fidelity, but in a more automatic fashion and on a much wider
variety of textures.

3 Overview

Our method for synthesizing solid textures from 2D texture exem-
plars integrates ideas and techniques from non-parametric texture
synthesis together with a global histogram matching approach.

In the next section we describe how to extend global texture opti-
mization [Kwatra et al. 2005; Wexler et al. 2007] to the task of solid
texture synthesis. While the basic optimization framework is not
new, the challenging nature of the task demanded that we choose
and tune the parameters in a judicious manner.

The goal of the optimization process is to minimize a global tex-
ture energy function that measures the extent to which the synthe-
sized solid texture deviates from the exemplar over a variety of lo-
cal 2D neighborhoods. However, there is a danger that such a pro-
cess could get stuck in a local minimum; for example, repeating the
same exemplar neighborhoods over and over again, and failing to
make use of the full richness of the exemplar. In order to address
this issue, we integrate the optimization process with a histogram
matching scheme, described in Section 5. Histogram matching en-
sures that the synthesized solid is similar to the exemplar not only
over local neighborhoods, but also in its global statistics. We found
that this often results in solids that are more similar in appearance
to the exemplars. Furthermore, histogram matching significantly
improves performance by making the convergence of the optimiza-
tion process much faster, as well as allowing the use of relatively
small fixed size neighborhoods (8×8). It should be noted that these
improvements in quality and performance apply not only to solid
synthesis, but also to 2D texture synthesis.

Although for the sake of simplicity we sometimes refer in this paper
to the texels and voxels as having colors, none of the algorithms
or the equations below are limited to three channel RGB textures.
Rather, each texel can hold a high-dimensional vector.

4 Solid Optimization

The solid optimization process begins with a volume where the
value of each voxel is randomly chosen from the exemplar. The
goal is to iteratively increase the similarity between the solid tex-
ture and the exemplar by minimizing an energy function that mea-
sures the differences between the two. Specifically, for isotropic
solid textures we would like every local neighborhood on any 2D
slice through the 3D solid to be similar to some neighborhood in the
exemplar. In order to reduce computation time and to avoid resam-
pling issues, we only measure the differences on the three slices or-
thogonal to the main axes of the volume, as in previous approaches

Figure 3: The neighborhoods used in our equations.

[Wei 2002; Qin and Yang 2007]. As we shall see, this approxi-
mation works well in practice, and the resulting solid textures are
similar to the exemplar on arbitrary slices through the volume.

Denoting by e the input exemplar, and by s the synthesized solid,
the global texture energy that we seek to minimize is defined as

E (s,{e}) = ∑
v

∑
i∈{x,y,z}

∥
∥sv,i − ev,i

∥
∥r

. (1)

Here sv refers to a single voxel, and sv,x, sv,y, and sv,z are the vec-
torized neighborhoods of v in the slices orthogonal to the x, y, and
z axis, respectively, as shown in Figure 3. The exemplar neighbor-
hood closest to sv,i (in L2 norm) is denoted by ev,i. The exponent
r = 0.8 causes the optimization to be more robust against outliers
[Kwatra et al. 2005].

The texture energy is minimized in an iterative fashion, alternat-
ing between two phases. In the optimization phase we update the
value of each voxel sv, based on the best matching neighborhoods
of the neighboring voxels. In the search phase we search for the
best matching exemplar neighborhoods ev,i for each voxel sv,i. The
two phases are described in more detail in the remainder of this
section. The process is carried out in a multiresolution fashion: we
start with a coarse version of the volume, using trilinear interpola-
tion to switch to a finer level once the coarser level has converged.

4.1 Optimization phase

We use iteratively re-weighted least squares (IRLS), similarly to
Kwatra et al. [2005], to minimize the energy. To this end, we
rewrite the terms of the energy functional (1) as follows:

∥
∥sv,i − ev,i

∥
∥r

=
∥
∥sv,i − ev,i

∥
∥r−2

︸ ︷︷ ︸

ωv,i

∥
∥sv,i − ev,i

∥
∥2

= ωv,i

∥
∥sv,i − ev,i

∥
∥2

(2)
and minimize the following quadratic functional:

E (s,{e}) = ∑
v

∑
i∈{x,y,z}

∑
u∈Ni(v)

ωv,i,u

(
sv,i,u − ev,i,u

)2
(3)

Here, Ni(v) denotes the neighborhood of the voxel v in the slice
perpendicular to the i-th axis, and (for now) ωv,i,u = ωv,i. Note
that each voxel participates in a number of terms: one for each
neighborhood it belongs to. Assuming that the weights ωv,i,u are
constant during the optimization phase, and setting the derivative
of (3) with respect to sv to zero yields the following solution:

sv =
∑i∈{x,y,z} ∑u∈Ni(v) ωu,i,v eu,i,v

∑i∈{x,y,z} ∑u∈Ni(v) ωu,i,v
. (4)

Here, eu,i,v denotes the exemplar texel in the neighborhood eu,i that
corresponds to v. Thus, the optimal value of each voxel is simply a



weighted average of a collection of texels from different exemplar
neighborhoods.

In practice, computing the weighted average using (4) may some-
times produce blurry results, if the variance of the exemplar texels
eu,i,v is too large. In such cases, we employ a clustering approach,
proposed by Wexler et al. [2007]. Treating the texels eu,i,v in equa-
tion (4) as points in a high-dimensional space, we cluster them us-
ing the Mean-Shift algorithm. We then average only those exemplar
texels that belong to the dominant cluster.

The bandwidth (window size) of the Mean-Shift algorithm is gradu-
ally reduced as the optimization of each resolution level progresses.
Large bandwidth results in larger clusters, containing many or all of
the colors, and the result is similar to plain averaging. As the band-
width is reduced, the dominant cluster becomes smaller, in turn re-
ducing the blurring.

4.2 Search phase

In this phase we optimize (1) with respect to ev,i by finding the best
matching exemplar window for every neighborhood sv,i. This is a
standard nearest neighbor search in a high-dimensional space, and
it dominates the running time of our optimization.

We speed this step up in a number of ways. First, we apply a PCA
projection to the neighborhood vectors in the exemplar [Hertzmann
et al. 2001; Liang et al. 2001; Lefebvre and Hoppe 2006]. We keep
only the number of coefficients sufficient to preserve 95% of the
variance. For RGB textures with 8×8 neighborhoods the dimen-
sionality is usually reduced from 192 to about 10–30 dimensions,
depending on the size and richness of the exemplar. Thus, perfor-
mance is improved drastically. For multi-channel textures, such as
BTFs, initial experiments show the improvements to be even more
dramatic, with the dimensionality dropping from tens of thousands
to a couple of hundreds.

The dimensionality reduction paves the way for using approximate
nearest neighbor techniques, which are far more efficient for the
resulting relatively low dimensional spaces. We use the ANN ap-
proximate nearest neighbor library [Mount and Arya 2006]. ANN
takes as a parameter an ε value, and returns an approximate nearest
neighbor that lies no farther than (1 + ε) times the distance to the
true nearest neighbor. We found in our experiments ε = 2 to be a
good compromise between speed and accuracy.

Finally, we do not search for the best neighborhoods at every voxel,
but rather on a sparser grid. More specifically, for slices orthogonal
to the x axis, we perform the search only for a sparser set of voxels
gx = {(i, m · j, m · k) , ∀i, j,k}, and similarly for the y and z axes.
For all the results in this paper we used m = 2.

5 Histogram Matching

For many textures the optimization process described in the pre-
vious section could converge to a wrong local minimum, because
the energy function measures only the similarity of local neighbor-
hoods, without accounting for any global statistics. This is demon-
strated by the first and third rows of images in Figure 4. The con-
verged results achieve low texture energy because the local neigh-
borhoods fit well together, yet the result does not look quite sim-
ilar to the exemplar; only a small number of neighborhoods from
the exemplar participate in the result and it does not reflect the full
richness of the exemplar.

We address this problem by introducing a re-weighting scheme de-
signed to make certain global statistics of the resulting texture to
remain close to those of the exemplar. More specifically, we care-
fully adjust the weights in eq. (4) so as to effectively ensure that
certain histograms of the synthesized texture match the exemplar.

exemplar

noise level 1 level 2 level 3

exemplar

noise level 1 level 3 level 4

Figure 4: The convergence of the texture optimization process with-
out (rows 1 and 3) and with (rows 2 and 4) histogram matching. For
each method we show the initial noise texture followed by the result
at the end of each resolution level.

During the optimization phase we construct and keep track of one
16-bin histogram for each of the texture’s channel, e.g., for each of
the R, G, and B channels in the case of a color texture. In principle
it is also possible to use other histograms, such as histograms of
gradients or of steerable coefficients, as done by Heeger & Bergen
[1995]. Whenever a value of a voxel is to be updated according
to eq. (4), we examine all of the exemplar texels that participate in
this weighted average and reduce the weight of each texel that might
contribute to an increase in the difference between a histogram of
the result and the corresponding histogram of the exemplar.

More formally, let Hs, j and He, j denote the j-th histogram of the

synthesized result and the exemplar, respectively, and let H(b) de-
note the value of bin b in a histogram H. Next, for a color c, let
b j(c) specify the bin containing c in the histograms Hs, j and He, j.
We modify the weights for equation (4) in the following way:

ω
′
u,i,v =

ωu,i,v

1+∑
k
j=1 max

[
0, Hs, j(b j(eu,i,v))−He, j(b j(eu,i,v))

] (5)

Intuitively speaking, the above equation reads as follows. If an
exemplar texel eu,i,v has a large weight in the average, it “pulls”
the synthesized texel sv to the bin b = b j(eu,i,v) in the result his-
togram. If the result histogram has a smaller count than the exem-
plar histogram in this bin (Hs, j(b) < He, j(b)), this is desirable, be-

cause increasing the count Hs, j(b) would make it closer to He, j(b).
However, in the contrary case that He, j(b) < Hs, j(b), increasing the
count would increase the difference between the two histograms. In
such a case, we interfere by reducing the weight assigned to eu,i,v.

Histogram matching causes the global statistics of the texture to
match the exemplar, while the neighborhood matching terms of the
optimization enforce local similarities. The integrated approach
automatically adapts itself to the current situation: If the synthe-
sis histograms are far off the exemplar ones we effectively prevent
“bad texels” from contributing to the synthesized value, whereas if
the histograms are close, the weights are largely unaffected and the
synthesis turns to neighborhood-matching only.



Figure 5: Various solid textures generated with our method, applied to objects with complex geometry and topology. The 2D exemplar (and
the feature map, when one was used) is shown next to each texture mapped object. Note the anisotropy in some of the textures.
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Figure 6: Comparison with previous methods.

Our experiments have shown that the histograms must be kept up
to date as the synthesis progresses. For example, if the histograms
are only updated once before each iteration, all neighborhoods get
reweighted in the same manner, which causes overshooting and di-
vergence of the algorithm. Therefore, to keep track of the evolving
result histograms we update them simultaneously with the voxel up-
dates. To avoid any directional bias, we visit the voxels in a random
order.

We found histogram matching to dramatically improve the con-
vergence of the algorithm (see the supplementary video). More-
over, it allows us to successfully synthesize textures using small,
fixed-sized neighborhoods. Specifically, we use 8×8 windows,
whereas previous methods reported using much larger neighbor-
hoods (32×32 and larger) to recreate the features of the exemplar.
The smaller neighborhoods cause our algorithm to be much faster,
which is crucial since for solid textures we deal with a very large
number of voxels and long runtimes in general.

6 Results

We implemented our approach in C++ and used it to generate a
wide variety of solid textures from 2D exemplars. In all of our
experiments we use a three-level synthesis pyramid, with a fixed-
size 8×8 neighborhood at each level. The synthesis times depend
on the size and richness of the exemplar textures. Synthesizing a

1283 solid texture with 3 color channels per texel takes anywhere
between 10 and 90 minutes on a 2.4GHz CPU.

Figure 5 shows some representative results of synthesized solid
RGB textures, effortlessly mapped on a variety of 3D objects with
non-trivial geometry and topology. Additional results are available

in the supplemental materials and on the accompanying video. It
should be noted that although some of the input textures do not
necessarily correspond to a 2D slice through a solid material, our
solid synthesis approach is still able to generate a very plausible
solid texture, which looks quite convincing when applied to these
(and many other) 3D objects.

Even though the formulation of the global texture energy (1) as-
sumes isotropic textures, it may be seen that some of our results are
actually quite anisotropic (for example, the dunes and the bricks
solid textures in Figure 5). Note that in these cases, no isotropic
extension of the exemplar to 3D exists! Nevertheless, our method
automatically produces a highly plausible solid texture. Although
we attempt to match the exemplar on all three orthogonal slices
through each voxel, it appears that two out of the three directions
become dominant and succeed in matching the exemplar. Slices
corresponding to the third direction are less similar to the exemplar,
but are still coherent and plausible.

It has been shown that some textures can be synthesized better with
the aid of feature maps, which provide non-local feature informa-
tion [Wu and Yu 2004; Lefebvre and Hoppe 2006]. We found
feature maps to be particularly helpful for textures with strong
large structures, such as stone patterns. In such cases we provide
our method with a feature map as an extra channel. Our feature
maps encode the signed feature distance, similarly to [Lefebvre and
Hoppe 2006]. When showing results produced using a feature map
we show the map next to the exemplar (except in Figure 1).

Figure 6 shows a comparison with several previous approaches (us-
ing images extracted from the corresponding papers and/or web-
sites). It may be observed that our results do not suffer from blur-
ring and preserve structures better than those by Wei [2002]. The



RGB Specular Shininess Displacement

Figure 7: Synthesis of a 6-channel solid. The top row shows the
channels of the 2D exemplar. The spheres show the correspond-
ing channels from the synthesized texture. Note the correlation
between features in the synthesized channels. Bottom: object ren-
dered using all six channels in the synthesized solid.

same observations are true for the Aura 3D [Qin and Yang 2007]
results shown in the figure. In addition, these results exhibit some
color smearing due to the independent synthesis of correlated color
channels. It should be noted that the Aura 3D paper and web-
site contain a large number of other textures on which that method
seems to perform remarkably well. However, all of these other re-
sults are generated from input exemplars which are fairly unstruc-
tured, and have decorrelated color channels to begin with, which is
not that common in practice. Furthermore, we have not been able
to reproduce these results. The Aura 3D results that we chose to in-
clude in our comparison are the only ones we found that use input
exemplars from other texture synthesis works, and they are also the
only ones with correlated color channels.

Our approach produces results comparable to those produced by
stereological texture synthesis [Jagnow et al. 2004], but our method
did not require modeling the particle shapes. Our method did make
use of a feature map in these cases. Additional examples may be
found in the supplementary materials.

6.1 Multi-channel textures

Our algorithm is directly applicable to multi-channel textures,
where each exemplar texel is a high-dimensional vector. As an ex-
ample, consider the exemplar shown in Figure 7 (top row). In ad-
dition to three color channels, each texel consist of three additional
values: displacement, shininess, and specularity. These additional
channels were crafted by hand from the original color texture, and
are highly correlated with it. In such cases, independent channel
synthesis is doomed, and capturing the cooccurrence probabilities

Figure 8: Finished curly maple texture. Left: the 9-channel ex-
emplar (top: diffuse reflectance channels, middle: fiber reflectance
channels, bottom: fiber axis channels). Middle and right: two ren-
derings with different lighting of a vase textured using the result-
ing 9-channel solid. The renderings correctly exhibit the shifting
anisotropic highlights characteristic of this type of finished wood
(see supplemental video).

(as in [Qin and Yang 2007]) of the 6D texels is simply impractical
for the reasons explained in Section 2.

With our method we were able to synthesize a 1283 volume of
6D voxels, and the results (rendered with displacement mapping
on programmable hardware) are shown in Figure 7. Using a PCA
projection in this example reduces the dimensionality of a neighbor-
hood vector from 384 to 19. Because the channels are correlated,
we found the reduced neighborhood size (and hence the synthesis
time) scale sublinearly with the number of channels.

As another example, we were able to synthesize a solid texture from
one of the finished wood textures of Marschner et al. [2005]. These
textures have nine channels per texel, containing parameters for a
sophisticated RenderMan shader that simulates the appearance of
finished wood. Figure 8 shows an object textured using the result-
ing nine-channel solid. As may be seen in the figure, the first six
channels of the exemplar are strongly correlated. The solid synthe-
sized by our method may be used to render convincing images of
objects made from this type of wood, as demonstrated in Figure 8
and in the supplemental video.

6.2 Synthesis Control

Our approach offers the user several simple means of controlling
the outcome of the synthesis process. First, similarly to several pre-
vious approaches [Dischler et al. 1998; Wei 2002; Qin and Yang
2007], a different exemplar may be specified for each of the or-
thogonal “views” of the volume. Thus, the optimization process at-
tempts to match each of the three orthogonal neighborhoods around
each voxel to one on a different exemplar.

An example is shown in Figure 9. The solid on the left was syn-
thesized with all three views constrained to match the zebra pattern
shown next to the solid. The solid on the right was generated with
a polka dot pattern as the exemplar for the top view. The result is
a very different solid, where horizontal slices look similar to the
polka dot pattern, while vertical slices still look similar to the zebra
pattern.

Second, in several cases, we found it helpful to constrain only two,
rather than three views, making is easier for the synthesis process
to find a good minimum. For example, the wood texture shown in
Figure 1 was generated in this manner.



Figure 9: Synthesis control by constraining different views with
different exemplars.

Figure 10: Constraining colors in the solid. Colors on a single slice
in the solid were constraint with the maps shown on the left. Note
how the other regions of the solid are unaffected, and the smiley
cannot be detected in a perpendicular slice through the solid, shown
on the right.

Finally, we can also directly constrain colors of specific voxels
in the volume. The user specifies a volume of constraint colors,
and constraint weights. During synthesis, we use the following re-
weighting scheme to enforce the constraints:

ω
′
u,i,v =

ωu,i,v

1+
∥
∥eu,i,v − tv

∥
∥τv

(6)

Here, tv denotes the constraint color and τv the constraint weight
for voxel v. The intuition is, similarly to the histogram matching,
to downweight any exemplar colors that pull the synthesized solid
away from the specified target. The weights τv allow to restrict the
matching only to some areas in the solid.

Figure 10 shows an example of this kind of controllability. The
image in the center shows a slice of a solid, which we have con-
straint with the color and weight maps shown on the left. Since
other voxels were not constrained, the remaining parts of the solid
are unaffected, as can be seen in the view of the whole cube or the
perpendicular slice.

6.3 Limitations

While our method is able to extend a surprisingly wide variety of
2D exemplars to solids (sometimes it was not even clear to us in
advance what such an extension should look like), there are some
cases where it fails to synthesize coherent structures.

In many of these cases we are still able to successfully synthesize
a solid texture that preserves such structures by providing a feature
map as described in Section 6. However, there are cases where,
even with a feature map, we were not able to generate a solid texture
that would meet our expectations. Figure 11 shows such a case. The
2D exemplar here is a stone texture that exhibits a cellular structure,
but the solid extension of this exemplar contains many elongated
tube-like cells. Thus, when slicing the volume in certain directions,

Figure 11: A failure case. Our method was not able to preserve
the cellular characteristics of the exemplar, but produced elongated
features instead.

the result looks quite different from the 2D exemplar, which is not
what the user might expect. A possible solution to this problem
might be to include additional slices in the optimization. This is an
interesting direction for future work.

Finally, even with the Mean-Shift clustering technique described in
Section 4.1, some fine grain detail may be lost due to smoothing.
This may be seen, for example, in our comparison with the results
of Jagnow et al. [2004] in Figure 6.

7 Conclusion

We have presented a new method for the challenging task of syn-
thesizing solid textures from 2D exemplars. We have successfully
extended 2D texture optimization techniques to the task, and inte-
grated them with global histogram matching. Our results demon-
strate that our new method is applicable to a wide variety of tex-
tures, including anisotropic textures, textures with large coherent
structures, and multi-channel textures. This wide applicability and
the quality of our results significantly exceeds that of previous auto-
matic methods. We believe that our method brings example-based
texture synthesis to the point where it is truly a practical and use-
ful tool for image synthesis. Furthermore, we are excited about the
possibilities of using example-based texture synthesis as a tool for
3D modeling.

Interesting directions for future research include further improving
the quality and the speed of the synthesis. For example, we plan
to experiment with additional kinds of histograms, in addition or
instead the per-channel histograms we use right now. Another way
to improve some textures might be to include additional slices in
the optimization. We also plan to extend our method to synthesize
a set of Wang cubes, instead of a single cube with toroidal bound-
ary conditions. This should enable generation of high resolution
solid textures, while eliminating visible periodicities and avoiding
excessive storage requirements. Another promising and important
direction is to develop additional control mechanisms that would
enable more control via simple and intuitive interfaces.
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