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with the spontaneous breaking of spatial translations at microscopic scales, as in the case

of a lattice of atoms. We exhibit three quantum field theories that are renormalizable,

Poincaré invariant, and weakly coupled, and that admit states that on the one hand are

perfectly homogeneous down to arbitrarily short scales, and on the other hand have the

same infrared dynamics as isotropic solids. All three examples presented here lead to the

same peculiar solid at low energies, featuring very constrained interactions and transverse

phonons that always propagate at the speed of light. In particular, they violate the well

known c2
L >

4
3c

2
T bound, thus showing that it is possible to have a healthy renormalizable

theory that at low energies exhibits a negative bulk modulus (we discuss how the associated

instabilities are absent in the presence of suitable boundary conditions). We do not know

whether such peculiarities are unavoidable features of large scale solid-like behavior in the

absence of short scale inhomogeneities, or whether they simply reflect the limits of our

imagination.
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1 Introduction

All solids we know of are inhomogeneous and anisotropic at short distances. For instance,

in a crystal atoms arrange themselves in a well ordered lattice structure, which is invariant

only under a discrete subgroup of translations and rotations. In fact, the acoustic phonons

of a solid can be thought of as the Goldstone bosons associated with the spontaneous

breaking of translations [1]. Through the inverse-Higgs mechanism, they also serve as

Goldstone bosons for the spontaneously broken rotations (and boosts) [2].

Yet, at large enough distance scales, solids look like homogeneous and, sometimes,

isotropic continuous media. These two physical properties — large-scale homogeneity and

large-scale isotropy — have different origins, and one is more universal than the other. The

more universal one is large-scale homogeneity: at distances much larger than the lattice

spacing, the fundamental discrete translational symmetry of the lattice is well approxi-

mated by continuous translations. This is akin to other accidental symmetries that arise

to lowest order in a low-energy expansion, such as baryon number in the standard model

of electroweak interactions. Contrary to those, however, the “approximate” continuous

translational symmetry of solids is in fact exact to all orders in a small gradient expansion.

This applies to all the fields that live in the solid, including the phonons themselves.

To convince oneself that this is indeed the case, it’s enough to consider the example of a

one-dimensional solid. The unbroken discrete translational symmetry forces all coefficients
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in the action or Hamiltonian for the fields living in the solid to be periodic functions of x,

with period given by the lattice spacing a:1

g(x+ a) = g(x) , (1.1)

where g is a generic such coefficient. This means that g can be expressed in Fourier series,

or, equivalently, that its Fourier transform is a sum of delta functions,

g̃(k) =
+∞∑

m=−∞
gm × (2π)δ

(
k − 2πm/a

)
. (1.2)

Now, the small gradient expansion corresponds to Taylor-expanding in k around k = 0.

But all the delta functions above with m 6= 0 have a trivial Taylor expansion around k = 0.

To all orders in k, only the m = 0 survives, and we are left with:

g̃(k)→ g0 × (2π)δ(k) , (1.3)

which, going back to position space, yields

g(x)→ g0 = const . (1.4)

This is invariant under continuous translations.

As an explicit example, consider the simple case of a one-dimensional harmonic chain

of point-like atoms with mass m, spring constant κs and lattice spacing a (see e.g. [3]). In

the long wavelength limit, ka� 1, the Hamiltonian for the system can be written as

H =

∫
dx

{
u̇2

2
+
c2
s

2

[(
∂u

∂x

)2

− a2

3

(
∂2u

∂x2

)2

+ . . .

]}
, (1.5)

where u(x) is the lattice fluctuation field and c2
s = κsa

2/m the speed of sound, while the

dots stand for terms of higher order in ka � 1. As one can see, the higher-derivative

corrections due to finite lattice spacing exhibit continuous translational symmetry.

On the other hand, large-scale isotropy, although still very common, arises only if

the solid is made up of many domains with random orientations of the underlying lattice

structure, and if one looks at distances large enough so that anisotropic effects average

to zero. However, it makes perfect sense to also consider very large, possibly infinite

anisotropic lattices, which at distances larger than the lattice spacing can be viewed as

homogeneous but still anisotropic continuous media.

The mechanical deformations of solids at distances larger than the lattice spacing are

well described by effective field theories for the Goldstone bosons associated with the spon-

taneously broken translations [1, 4, 5]. In recent years, these theories have been applied

1Notice that this statement is independent of whether there is an actual lattice made up of zero-size

points, as it is sometimes assumed, or whether instead the discrete translational symmetry is achieved by

a more continuous (but inhomogeneous) mass distribution.
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in a number of contexts, from elasticity theory [6–8] to cosmic inflation [9–11].2 Consis-

tently with our remarks above, in these theories there is no sign of the underlying lattice

structures of the solids they model, although there can be residual large scale anisotropic

effects [11]. Notice however that these theories feature two copies of continuous transla-

tions: one is the fundamental one, spontaneously broken by the lattice structure, and thus

non-linearly realized by the Goldstone fields; the other is the aforementioned approximate-

but-exact-to-all-orders continuous limit of the discrete translational symmetry, unbroken

by the lattice, and thus linearly realized by the Goldstone fields.

Given all of the above, it is then natural to ask: can one have solidity without inho-

mogeneity? By which we mean: can one have, in some relativistic quantum field theory,

a state whose low-energy excitations have exactly the same dynamics as those of a solid

(the acoustic phonons), but which is nonetheless perfectly homogeneous (and, possibly,

isotropic) down to arbitrarily short distances? And, more ambitiously: for which solid

effective theories that are consistent at low energies can this be done (cf. [30])?

Phrased in this way, this is a general quantum field theory question, which it would be

interesting to understand and answer at some fundamental level, non-perturbatively. Our

modest approach in this paper instead is to look for weakly coupled renormalizable theories

that achieve what’s being asked. We succeed only partially: we are able to reproduce the

low-energy dynamics of a solid with cubic symmetry, but these turn out to be those of

a highly relativistic solid (some phonons travel at the speed of light). Moreover, if we

tune the parameters of the theory in order to remove anisotropies and end up with an

isotropic solid, we are left with a still highly relativistic, isotropic solid with very constrained

interactions, much more constrained that those of the most general isotropic solid. We

verify this particular limit in three independent ways, using three different constructions

to approach it.

Conventions. We set c = ~ = 1 and, unless otherwise specified, we adopt a metric

ηµν = diag(−1, 1, 1, 1).

2 The EFT for solids

From an effective field theory standpoint (EFT), solids that in three spatial dimensions

are homogeneous and isotropic at large distances break Poincaré together with an internal

Euclidean group down to time translations and a diagonal Euclidean group — i.e.

ISO(3, 1)× ISO(3)→ Rt × ISO(3) . (2.1)

2Other approaches to model the spontaneous breaking of spatial translations and rotations include

holographic theories (see e.g. [12–22]), as well as non-renormalizable field theories with or without Lorentz

invariance (see e.g. [23–25]). The corresponding Goldstone modes — the phonons — have instead been

identified holographically in [26–29]. Note that the models of holographic solids present low-energy dynamics

that are far less constrained than those we obtain here, with transverse phonons that can be arbitrarily

nonrelativistic and quite general effective Lagrangians. However, the focus of our paper is to identify

possible UV-completions for the EFTs of solids. Their existence is not guaranteed a priori, in the same

sense as it is not guaranteed that a given gravity theory in the bulk of AdS is the low-energy limit of a

healthy theory of quantum gravity.
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This symmetry breaking pattern can be implemented by means of three real scalars φI(x)

— the comoving coordinates of the solid’s volume elements — which, at equilibrium, can

be aligned with the physical coordinates,〈
φI(x)

〉
= αxI , (2.2)

where α is an arbitrary constant that measures the level of compression or dilation of the

solid. Under the internal ISO(3) group the scalars transform as coordinates,

φI → OIJφ
J + cI , (2.3)

with cI an arbitrary constant vector, and OIJ an arbitrary constant SO(3) matrix [9, 26, 31].

It is important to mention that the value of the constant α is not necessarily determined

dynamically. This is because the bulk equations of motion of a solid are obeyed for any

value of α: α is measure of the level of compression or dilation of the solid. For a finite-

volume solid with free boundaries, α will relax to the value corresponding to zero pressure

or tension. But nothing prevents us from considering more general configurations with

arbitrary values of α (i.e. excited states), corresponding to having an external pressure

or tension acting on the solid, or, mathematically, to fixed boundary conditions. This is

closely analogous to what happens to an ordinary gas which, in the absence of external

constraints, will expand and eventually relax to a state of zero pressure — the vacuum, in

that case.

The low-energy fluctuations around equilibrium are the Goldstone bosons associated

with the spontaneous symmetry breaking pattern above, φI(x) = α (xI + πI(x)), which

are the (acoustic) phonons of the solid. The most general effective action for the phonons

must then be invariant under the Poincaré group and the internal ISO(3). To lowest order

in derivatives, the only quantity that is Poincaré and shift invariant is BIJ = ∂µφ
I∂µφJ .

The three independent SO(3) invariants that can be built out of BIJ can be conveniently

parametrized as X = trB, Y = tr(B2)/X2 and Z = tr(B3)/X3, so that X is the only

quantity that changes when α is changed — Y and Z are invariant under rescalings of our

solid [9].

The most general low-energy action for the phonons is then

S =

∫
d4xF (X,Y, Z) , (2.4)

where F is an a priori generic function, in one to one correspondence with the equation

of state of the solid at hand. The action above describes all possible interactions of the

phonons among themselves, with effective couplings given by derivatives of F evaluated at

equilibrium.

If the solid in question retains some anisotropies at large distances and is invariant only

under a discrete subgroup of rotations, the costruction above still applies, but the matrices

OIJ in (2.3) have to be taken in that subgroup, and as a consequence the function F

in (2.4) will be invariant only under that subgroup, and will be thus be a more general

function of BIJ rather than just a function of X, Y , and Z — see e.g. [11].
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3 UV-complete, weakly coupled homogeneous solids

As anticipated in the Introduction, we now try to construct a weakly coupled renormalizable

theory that achieves the symmetry breaking pattern just described without ever involving

inhomogeneities. Were we to succeed, this would provide a UV-completion for a solid that

is homogeneous down to arbitrarily short distances: a solid without an underlying crystal

structure.

Trying to reproduce directly the symmetry breaking pattern (2.1) is tricky. The reason

is the ISO(3) factor on the l.h.s., which should act as an internal symmetry. Being non-

compact, it does not admit finite dimensional unitary representations. There are however

a number of ways to approximate the symmetry breaking pattern (2.1) with arbitrary

precision.

The first is to consider a discrete subgroup of ISO(3): in particular, we will keep the

translation part of ISO(3) continuous, but we will restrict to the cubic subgroup of SO(3).

In this way, we can think of the three continuous translations as acting on the phases of

three complex scalars, thus making up U(1)3. Then, the cubic subgroup of rotations simply

acts as permutations of these three scalars. One can then check if the parameters of the

theory can be tuned in such a way as to make anisotropic effects arbitrarily small.

The second is to consider a solid on a very large sphere, so that the isometry group

of flat space — ISO(3) — is replaced by that of a 3-sphere — SO(4) —, which is compact

and thus admits unitary finite-dimensional representations. One can then take a suitable

flat-space limit, which corresponds to zooming in on a patch much smaller than the radius

of the sphere.

Finally, one can keep spacetime flat, but consider SO(4) rather than ISO(3) as internal

subgroup. One can then take a suitable “contraction” of SO(4) that reduces to ISO(3),

which is simply the group-theoretic version of the zooming-in procedure mentioned above

for the sphere.

We analyze these three possibilities in turn. As we will see, at low energies they all

reduce to the same peculiar solid.

3.1 The cubic solid, and an isotropic limit thereof

Consider a theory with three complex scalar fields, ΦI , with an internal U(1)3 symmetry,

acting in the obvious way, and a ΦI ↔ ΦJ permutation symmetry. The most general

Poincaré-invariant renormalizable theory that is compatible with the above symmetries is

S = −
∫
d4x

∑
I

[∣∣∂ΦI
∣∣2 −m2

∣∣ΦI
∣∣2 +

λ1

2

∣∣ΦI
∣∣4]− ∫ d4x

λ2

2

∑
I 6=J

∣∣ΦI
∣∣2∣∣ΦJ

∣∣2 , (3.1)

where the sign of the mass term has been chosen for later convenience.

We now look for field configurations that break the U(1)3 symmetry by a nontrivial

vev. We write the complex scalars in the polar parametrization:

ΦI(x) = ρI(x)eiφ
I(x) . (3.2)
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The phases are the comoving coordinates of our solid, which shift under the internal U(1)3.

Under the permutation symmetry they instead transform as φI ↔ φJ , showing that this

theory represents a solid with cubic symmetry. In terms of these fields, the action becomes

S = −
∫
d4x

∑
I

[(
∂ρI
)2 −m2ρ2

I + ρ2
I

(
∂φI

)2
+
λ1

2

∑
I

ρ4
I

]
−
∫
d4x

λ2

2

∑
I 6=J

ρ2
Iρ

2
J . (3.3)

We now want to integrate out the heavy radial fields ρI to obtain a low-energy EFT

for the comoving coordinates φI . We find it convenient to define the following objects:

~b ≡

B11 −m2

B22 −m2

B33 −m2

 , ~ρ2 ≡

ρ2
1

ρ2
2

ρ2
3

 , Λ ≡

λ1 λ2 λ2

λ2 λ1 λ2

λ2 λ2 λ1

 , (3.4)

where again BIJ = ∂µφ
I∂µφJ . At low energies we can neglect the derivatives of ρI , and

write the action as

S ' −
∫
d4x

[
~b · ~ρ2 +

1

2
~ρ2 · Λ · ~ρ2

]
, (3.5)

which gives the following equation of motion for the heavy mode

~ρ2 ' −Λ−1 ·~b . (3.6)

Plugging this into eq. (3.5) one gets the effective action for the φI fields, which is

Seff =
1

2

∫
d4x~b · Λ−1 ·~b

= −
∫
d4x

[
m2(ξ − 2ξ′)X +

ξ′

2
X2 + (ξ + ξ′)τ IJKLBIJBKL

]
,

(3.7)

where we omitted an unimportant additive constant, and as before X ≡ trB. We also

defined

ξ ≡ λ1 + λ2

(λ1 + 2λ2)(λ1 − λ2)
, ξ′ ≡ λ2

(λ1 + 2λ2)(λ1 − λ2)
,

τ IJKL ≡
3∑

N=1

δINδ
J
Nδ

K
N δ

L
N .

(3.8)

Now, of course, the action (3.7) does not describe an isotropic solid, and in fact it

does not take the form (2.4). However, isotropy is only spoiled by the term proportional

to τ IJKL, which is not invariant under continuous rotations. To recover isotropy we study

a regime where the couplings are such that the last term is negligible, i.e.

λ1 + 2λ2 � λ1 − λ2 , (3.9)

since this relation between the couplings implies that

ξ + ξ′ =
1

λ1 − λ2
�− 1

3(λ1 + 2λ2)
' ξ′ ∼ 1

λ1 + 2λ2
= ξ − 2ξ′ . (3.10)
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In this limit, the term involving the anisotropic tensor τ IJKL is subleading, and the effective

action for the comoving coordinates becomes

Seff = −
∫
d4x

1

λ1 + 2λ2

[
m2X − X2

6
+O

(
λ1+2λ2
λ1−λ2

)]
, (3.11)

which is a very special case of (2.4).

One might wonder whether the hierarchy of couplings in eq. (3.9) is a natural choice.

On the one hand, in the low-energy effective theory such a hierarchy corresponds to a

limit of enhanced symmetry — from cubic rotations to full SO(3) —, and should thus be

technically natural. On the other hand, as we tried to motivate above, there is no way to

implement such an enhanced symmetry in the full UV theory. In particular, the limit (3.9)

does not appear to correspond to any new symmetry of our original action (3.1). We

address this puzzle in appendix A.

Going back to (3.11), expanding the fields around their equilibrium configuration,

φI = α(xI + πI), one gets the quadratic action for the phonons:

S ⊃ α2(m2 − α2)

λ1 + 2λ2

∫
d4x

[
~̇π2 − c2

L

(
~∇ · ~πL

)2 − (∂JπIT )2] , (3.12)

where we split the phonon field in its longitudinal and transverse components, ~π = ~πL+~πT ,

such that ~∇ · ~πT = ~∇× ~πL = 0. Then, the longitudinal and transverse sound speeds are

c2
L = 1− 2

3

α2

m2 − α2
, c2

T = 1 . (3.13)

Since by definition α2 > 0, stability (c2
L,T > 0, and positive kinetic energy) and sublumi-

nality (c2
L,T ≤ 1) require

α2 < 3
5m

2 , λ1 + 2λ2 > 0 . (3.14)

In appendix B we show that these are indeed the conditions for the stability of the fluctu-

ations in the full theory (3.1) as well.

The value of the longitudinal and transverse sound speeds in eq. (3.13) do not re-

spect the standard c2
L > 4

3c
2
T bound [32]. This, however, is not an issue. As we show in

appendix C, the instability related to violating such a bound only concerns finite-volume

solids whose boundaries are left free, and can never be triggered by localized perturbations

in an infinitely extended solid. Our analysis applies to an infinite solid or, equivalently,

to the bulk dynamics of a solid of finite volume but whose boundary conditions are fixed.

This is similar to the point we raised in the paragraph after eq. (2.3).

It is clear that the solid modeled here is far from ordinary. First of all, the violation

of the c2
L >

4
3c

2
T bound, as also discussed in appendix C, is due to the presence of negative

bulk modulus. Indeed, in the EFT of solids the Lagrangian density is nothing but minus

the energy density [9]. Comparing eq. (3.12) with standard elasticity theory at zero tem-

perature [32], one easily finds that the shear modulus, µ, and the bulk modulus, K, are

given in terms of the parameters of the UV theory by

µ ∝
2α2

(
m2 − α2

)
λ1 + 2λ2

, K ∝ −
2α2

(
m2 + α2

)
3(λ1 + 2λ2)

, (3.15)
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up to a common positive proportionality constant which depends on the normalization of

the phonon field. Given that stability implies λ1+2λ2 > 0, the bulk modulus is negative. As

a by-product of our analysis, we thus see that there are Poincaré invariant, renormalizabile,

perturbative theories with K < 0, which is then a priori allowed by quantum field theory.

A second interesting, but related, point is that the transverse sound speed is always

luminal. This is due to the fact that the effective theory we obtained here only depends

on the trace of BIJ — see eq. (3.11). Indeed, deviations from c2
T = 1 would be due to

the dependence of the action on Y and Z [9, 26]. Moreover, this is not a peculiarity

of the isotropic limit (3.11): one can check that already for the more general case (3.7),

transverse phonons propagating along x̂, ŷ, or ẑ always move at the speed of light. So,

with this construction we can only reproduce the dynamics of a highly relativistic solid.

To facilitate comparison with what follows, we notice that rescaling the fields and

defining λ ≡ (λ1 + 2λ2)/6, λ′ ≡ (λ1 − λ2), the effective action (3.11) becomes3

Seff = −
∫
d4x

[
1

2
X − λ

4m4
X2 +O

(
λ2/λ′

)]
. (3.16)

3.2 Flat limit of a solid on a sphere

Another possibility is to study a solid living on a 3-sphere of radius r.4 Note that a solid

living on a sphere (like a thin spherical shell) is not a spherical solid (like a marble). Taking

the large radius limit — i.e. looking at a patch of size much smaller than the radius of the

sphere — one can recover the effective theory for a solid in flat space.

The spatial part of the symmetry breaking pattern of a solid living on a spherical

surface is now SO(4)×SO(4)→ SO(4), since SO(4) is the isometry group of a 3-sphere. We

then consider a theory involving a real scalar multiplet ~Φ in the fundamental representation

of the internal SO(4). The most general Lorentz invariant renormalizable theory is

S = −
∫
d4x
√
−g
[

1

2

∣∣∂~Φ∣∣2 − m2

2

∣∣~Φ∣∣2 +
λ

4

∣∣~Φ∣∣4] . (3.17)

We again choose the sign of the mass term so that the vev of the scalar field spontaneously

breaks internal and spatial rotations by picking out a direction. Using standard angular

coordinates for S3, the metric in (3.17) is

ds2 = −dt2 + r2
[
dθ2

1 + sin2 θ1

(
dθ2

2 + sin2 θ2dθ
2
3

)]
. (3.18)

To implement the symmetry breaking pattern of a solid on a sphere we consider the

following background 〈
~Φ(θ)

〉
= ρ̄ r̂(θ) = ρ̄ R(θ) · x̂4 . (3.19)

3As usual, the phonon EFT will break at energies higher than some UV energy scale ΛUV. In the present

theory, this is of the order of the mass of the lightest radial modes that have been integrated out, ΛUV ∼ m.

Such an EFT cutoff has, in general, no relation with the scale of inhomogeneity, even more so here, where

the system is homogeneous at all distances. This is contrary to what happens for solids with an underlying

lattice, where ΛUV is of the same order as the inverse lattice spacing (times the phonon speed).
4The theories presented in this section and in the following one are heavily inspired by the results

obtained in [26].
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In the expression above R is an SO(4) rotation matrix:

R(θ) = e(θ3−
π
2 )T 34

e(θ2−
π
2 )T 24

e(θ1−
π
2 )T 14

. (3.20)

with (TAB)CD = δADδ
B
C − δACδBD being the SO(4) generators in the fundamental representa-

tion (the indices A,B, . . . range from 1 to 4). The background configuration (3.19) breaks

both spatial and internal SO(4) rotations, but not their diagonal combination. For the

angular components of ~Φ in field space, it is the spherical analog of eq. (2.2).

From the equations of motion one finds ρ̄2 = (m2 − 3/r2)/λ. Since we are ultimately

interested in the large r limit, the positivity of this expression for ρ̄2 is ensured, provided

m2 is positive.

The fluctuations around the background can be parametrized by introducing a radial

mode and promoting the angles to fields, i.e.

~Φ(x) = R(Θ(x)) · ~ρ(x) , (3.21)

with ~ρ(x) = ρ(x)x̂4 and

Θi(x) ≡ π

2
− φi(x) , (3.22)

where from now on i, j, . . . = 1, 2, 3, and so that at equilibrium Θi = θi.

It is also useful to introduce a covariant derivative Dµ = ∂µ + R−1 · ∂µR, so that the

action (3.17) becomes

S = −
∫
d4x
√
−g
[

1

2

∣∣D~ρ ∣∣− m2

2
ρ2 +

λ

4
ρ4

]
= −

∫
d4x
√
−g
[

1

2
(∂ρ)2 +

1

2
ρ2(∂R−1 · ∂R)44 −

m2

2
ρ2 +

λ

4
ρ4

]
,

(3.23)

where with the subscript we indicate the entries of the corresponding matrix. At low

energies, we can neglect the kinetic term of the radial mode, and solve its equation of

motion. This gives ρ2 ' (m2−(∂R−1 ·∂R)44)/λ. The low-energy effective action then reads

Seff = −
∫
d4x
√
−g
[
m2

2λ
(∂R−1 · ∂R)44 −

1

4λ
(∂R−1 · ∂R)2

44

]
. (3.24)

We can now take the large radius limit, in line with what done in [26]. To this end,

we focus on a small patch of the sphere around θi = π
2 , write θi = π

2 −
xi
r , and expand for

xi � r. Here xi are the coordinates of the space tangent to the sphere. In this case the

metric becomes gµν = ηµν +O(1/r2), and the fields reduce to

φi(x) =
1

r
(xi + πi(x)) ≡ α(xi + πi(x)) . (3.25)

Note that, for a local observer that can only probe a region of space close to the patch,

1/r ≡ α plays the role of a free parameter, which can only be determined by boundary

conditions.
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In this limit we also have R(Θ) = 1− φi(x)T i4 +O(1/r2), and hence

(∂R−1 · ∂R)44 = X +O(1/r3) . (3.26)

Performing the field redefintion φi →
√
λφi/m, one finds the low-energy effective action

for the phonons in the large radius limit:

Seff = −
∫
d4x

[
1

2
X − λ

4m2
X2

]
+O(1/r3) , (3.27)

which is the same as in eq. (3.16).

3.3 Group contraction of an SO(4) theory

Yet another way of writing down a UV-complete theory that induces the symmetry breaking

pattern of a homogeneous and isotropic solid is to employ the so-called Wigner-Inönü

contraction [33], which allows one to obtain the ISO(3) algebra starting from the SO(4)

one. Note that, contrary to what we did in the previous section, we are doing this only for

the internal symmetry group. The underlying spacetime is flat.

Let us briefly review how the group contraction works. Separating the SO(4) generators

TAB into those that transform as vectors (T i4) and those that transform as tensors (T ij)

under the SO(3) subgroup acting on the first three directions, the complete algebra is

given by

[T ij , T k`] = δikT j` + δj`T ik − (k ↔ `) , (3.28a)

[T ij , T k4] = δikT j4 − δjkT i4 , (3.28b)

[T i4, T j4] = T ij . (3.28c)

Rescaling T i4 = ζP i and taking the ζ →∞ limit, the SO(4) algebra reduces to the ISO(3)

one, with P i and T ij being the generators of shifts and rotations respectively.

Consider now a real multiplet ~Φ in the fundamental representation of SO(4). Under a

transformation with parameters θAB and rescaled generators, it transforms as

Φi → Φi + θijΦ
j − 1

ζ
θi4Φ4 , Φ4 → Φ4 +

1

ζ
θi4Φi . (3.29)

Let us now rewrite our multiplet as Φi(x) = ρ(x)φi(x) and Φ4(x) = ζρ(x), with both ρ

and φi independent of ζ. When ζ → ∞, one sees that ρ is invariant under ISO(3) while
~φ transforms exactly as the solid comoving coordinates, with θij and θi4 corresponding to

the parameters associated respectively with constant rotations and shifts.5

Our strategy is now the following. We write down a renormalizable theory in flat

space for the above multiplet, integrate out the heavy mode, and then take the ζ � 1

limit. In doing so, we will also take a suitable limit of the parameters of the original

5Interestingly, from this viewpoint the fact that translations are nonlinearly realized is due to the spon-

taneous breaking of SO(4) because of the large vev acquired by Φ4.

– 10 –



J
H
E
P
1
1
(
2
0
2
0
)
0
2
1

theory, namely small mass and coupling. This is done to ensure that the final theory of

phonons is non-trivial for large ζ. The starting action is once again

S = −
∫
d4x

[
1

2

∣∣∂~Φ∣∣2 − m2

2

∣∣~Φ∣∣2 +
λ

4

∣∣~Φ∣∣4] , (3.30)

but now spacetime is flat from the outset.

We now break SO(4) with a large vev, 〈~Φ〉 = ζ ρ̄ x̂4. From the action above we find

ρ̄2 = m2/(λζ2). To keep ρ̄ = O(ζ0) one then needs to rescale the parameters of the action

so that m2/λ = O(ζ2).

A convenient way of parametrizing the full field is

~Φ(x) = ζO(x) · ~ρ(x) , O(x) ≡ e−
φi(x)
ζ

T i4
, (3.31)

where ~ρ(x) = ρ(x)x̂4. Proceeding in a way very similar to the previous section, one finds

the action to be

S = −
∫
d4x

[
ζ2

2
(∂ρ)2 +

ζ2

2
ρ2(∂O−1 · ∂O)44 −

ζ2m2

2
ρ2 +

λζ4

4
ρ4

]
. (3.32)

After integrating out the radial mode at low energy, the effective action reads

Seff = −
∫
d4x

[
m2

2λ
(∂O−1 · ∂O)44 −

1

4λ
(∂O−1 · ∂O)2

44

]
.

To recover ISO(3) we take the large ζ limit, which implies

(∂O−1 · ∂O)44 =
X

ζ2
+O

(
1/ζ3

)
. (3.33)

Before finding the final effective action we need to decide how to take the ζ � 1 limit of the

parameters of the theory. In particular, consistently with what discussed after eq. (3.30),

one could choose, for instance, m2 = m̂2, λ = λ̂/ζ2 or m2 = m̂2ζ2, λ = λ̂, with both

m̂2, λ̂ = O(ζ0). However, one can show that in the large ζ limit, they both lead to an

uninsteresting theory of free phonons. The only choice that produces an interacting theory

is m2 = m̂2/ζ2 and λ = λ̂/ζ4.

In this case, again after a field redefinition, the final effective action turns out to be

one more time

Seff = −
∫
d4x

[
1

2
X − λ̂

4m̂4
X2

]
+O(1/ζ2) . (3.34)

4 Concluding remarks

Our paper addresses a conceptual QFT question: is it possible to have a renormalizable,

Poincaré invariant theory whose low-energy dynamics are those of a solid, but which does

not feature inhomogeneities at any scale? We have found that the answer is ‘yes’. In par-

ticular, we have exhibited renormalizable weakly coupled quantum field theories that can
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reproduce the infrared dynamics of solids without relying — like ordinary solids do — on

short-scale inhomogeneities. To be precise: our field theories do break spatial translations,

spontaneously, but they do so while preserving a linear combination of those and certain

internal symmetry generators, so that there are some unbroken translation-like generators.

As a consequence, directly observable quantities such as the energy momentum tensor

are exactly invariant under translations, down to arbitrarily short distances (cf. [31]). In

contrast, for an ordinary crystalline solid, all physical quantities are modulated at short

distances with the same periodicity as the underlying lattice structure.

The solid-like behavior we are able to reproduce in this way is highly non-generic:

phonons have very constrained interactions, and the transverse ones are always ultra-

relativistic — they move at the speed of light. It remains to be seen whether such restric-

tions are unavoidable within this framework, following perhaps from symmetries, locality,

and unitarity in a non-trivial way, or whether they are instead a consequence of our consid-

ering only weakly coupled scalar field theories. We leave these questions for future work.
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A RG flow and naturalness of the isotropic limit

We want to understand how “natural” the limit in eq. (3.9) is, according to the standard

criterion of so-called technical naturalness. To address this question, let us work in the

simplified case of a solid in 2 + 1 space-time dimensions. In polar coordinates for field

space, the complete action including the radial modes then reads

S = −
∫
d3x

∑
I

(∂ρI)
2 +

∑
I

bIρ
2
I +

1

2

∑
I,J

ΛIJρ
2
Iρ

2
J

 ,
with now I, J = 1, 2 and

~b ≡

(
B11 −m2

B22 −m2

)
, Λ ≡

(
λ1 λ2

λ2 λ1

)
. (A.1)

For our purposes, it is convenient to define ε ≡ λ1 + λ2 and γ ≡ λ1 − λ2. The limit we are

interested in, analogous to eq. (3.9), is ε� γ.

To lowest order in derivatives, the radial modes acquire the following expectation

values:

〈ρ1〉 =

√
γX̃ − ε∆X

2εγ
, 〈ρ2〉 =

√
γX̃ + ε∆X

2εγ
. (A.2)
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Here X̃ ≡ 2m2 −X and ∆X ≡ B11 −B22, the latter being the only anisotropic operator.

We now introduce fluctuations around the configurations (A.2). After diagonalizing

the quadratic term, the action reads

S =− 1

ε

∫
d3x

[
− X̃

4
− ε

γ

∆X

4
+

1

2

(
∂χ1

)2
+

1

2

ε

γ

(
∂χ2

)2
+
X̃

2

(
χ2

1 + χ2
2

)
+

1

2

√
X̃

2
χ3

1

+
1

16
χ4

1 +
1

2

(
ε

γ

)3/2 ∆X√
2X̃

χ3
2 +

1

16

(
ε

γ

)2

χ4
2 +

√
X̃

2
χ1χ

2
2 (A.3)

− 1

2

√
ε

γ

∆X√
2X̃

χ2
1χ2 −

1

4

√
ε

γ

∆X

X̃
χ3

1χ2 +
1

4
χ2

1χ
2
2 +

1

4

(
ε

γ

)3/2 ∆X

X̃
χ1χ

3
2 + . . .

]
,

where we have normalized the fields χ1,2 in order to pull out a factor of 1/ε from the action,

and for them to have the same mass term. The dots stand for subleading terms: for each

interaction, we have only retained the leading contribution in the ε� γ limit.

Keeping in mind that the 1/ε upfront can be ignored for classical computations, there

are two things to notice about the above action: (i) the kinetic term for χ2 (first line) is

suppressed by ε/γ, and (ii) the cubic and quartic self-interactions of χ1 (second line) are of

order unity. The first property implies that χ2 can be treated as non-dynamical or, in other

words, that it is much heavier than χ1 and it can therefore be integrated out. The second

property, instead, implies that one can build all possible tree level amplitudes starting only

from the self-interaction of the χ1, and that these ones will be of order one. It is easy to

convince oneself that, instead, the tree level amplitudes involving χ2 on the internal legs

will be subdominant, since they always involve at least one vertex that is suppressed by

powers of ε/γ.

This means that to integrate out χ2 at lowest order in ε/γ we can simply set it to zero,

and obtain the following intermediate EFT, valid for energies much smaller than its mass,

m2 =
√

γ
εm1 =

√
γ
ε X̃. The result is

Seff = −1

ε

∫
d3x

[
− X̃

4
+

1

2

(
∂χ1

)2
+
X̃

2
χ2

1 +
1

2

√
X̃

2
χ3

1 +
1

16
χ4

1 + . . .

]
. (A.4)

It is easy to check that further integrating out χ1 yields the (2+1)-dimensional analogue

of eq. (3.11).

Again, the dots in (A.4) stand for terms that are suppressed in the small ε/γ limit.

Notice that, to zeroth order in this parameter, the intermediate effective action in (A.4)

is isotropic: it does not depent on ∆X, which was the only anisotropic combination of

Goldstone fields. This stems from the structure of (A.3), in which ∆X only enters through

couplings involving χ2. Since at low energies and to lowest order in ε/γ, χ2 can be set to

zero, ∆X disappears from the action.

So, as far as naturalness of the isotropic limit is concerned, the situation is the following.

The UV theory has two dimensionless couplings consistent with cubic symmetry, λ1 and

λ2, or, equivalently, ε and γ. The small ε/γ limit does not correspond to an enhanced

SO(2) symmetry of UV theory, and so it is not technically natural in the standard sense.
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However, as usual with classically marginal couplings, ε and γ feature at most a logarithmic

dependence on the scale of new physics at high energies, and so the required fine-tuning to

ensure ε/γ � 1 is perhaps not too severe. It so happens that ε/γ directly controls the ratio

of the masses of the two radial modes. So, when ε/γ is very small, one of the radial modes

(χ2) can be integrated out, and one is left with an intermediate EFT for the other radial

mode (χ1) and the angular modes, with an approximate SO(2) symmetry. From this point

on — in the RG direction, from high to low energies — there is an approximate enhanced

symmetry, which will not be spoiled by quantum corrections within this low-energy EFT.

Notice that our small ε/γ limit is tied, in the full theory, to one of the radial mode’s being

much heavier than the other. Such a hierarchy of masses for scalar fields is the quintessential

naturalness problem, usually associated with a quadratic dependence of (squared) masses

on high energy physics’ scales. In our case, as we emphasized, the necessary fine tuning is

only logarithmic rather than quadratic, thanks to the direct relationship between masses

and dimensionless couplings. In conclusion, how natural our small ε/γ limit looks depends

on the scale and field parametrization one is looking at: it goes from being logarithmically

unnatural (full theory in cartesian parametrization for the fields), to looking quadratically

unnatural (full theory in polar parametrization for the fields), to looking technically natural

(low-energy EFT below the mass of χ2).

B Stability of the isotropic solid

Here we check what conditions on the parameters of the theory (3.1) are needed to ensure

stability of the fluctuations around the background. On the 〈φI〉 = αxI background, the

equations of motion imply

〈ρ2
I〉 =

m2 − α2

λ1 + 2λ2
∀ I . (B.1)

As already mentioned, α2 > 0 by definition, and therefore positivity of the above expression

can be achieved if

1. m2 > α2 > 0, λ1 + 2λ2 > 0: this case corresponds to having spontaneous symmetry

breaking even in the absence of the solid background (α = 0). There is only a limited

range of allowed values for α: introducing a nonzero α corresponds to pushing the

field towards the center of the potential. The α = 0 vacuum is perturbatively stable.

We will see below that there is a critical value for α (α = 3
5m

2) beyond which the

system becomes unstable.

2. m2 < 0, λ1 + 2λ2 < 0: this situation corresponds to having a perturbatively stable

origin in the ΦI field space. In particular, for α = 0 there is no spontaneous symmetry

breaking. However, the potential is not positive definite for large field values, and

the solution (B.1) corresponds to a perturbatively unstable configuration, which for

α = 0 is a saddle point or a maximum of the potential.

3. 0 < m2 < α2, λ1 + 2λ2 < 0: this case is the most unstable one: even for α = 0, there

is no perturbatively stable vacuum, in the sense that the potential has no minima.

We discard this option.
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Let us now study the stability of the background against small fluctuations. Consider

first the mass matrix of the radial modes that we integrated out. With our normalization

of fields, this is given by

M2
IJ = −1

2

∂2L
∂ρI∂ρJ

= 2〈ρ2
I〉ΛIJ , (B.2)

where the matrix Λ has been defined in eq. (3.4), and repeated indices are not summed

over. The eigenvalues m2
i of M2 are thus proportional to those of Λ, which are ε ≡ λ1 +2λ2

and γ = λ1 − λ2 with twofold degeneracy. We thus have

m2
1 = 2(m2 − α2) , m2

2,3 = 2(m2 − α2)
γ

ε
. (B.3)

Recall that the isotropic limit corresponds to ε� γ, in which case m2
1 � m2

2,3.

A necessary condition for the stability of the configuration (B.1) above is the positivity

of the mass matrix for the radial modes. This implies α2 < m2 and γ/ε > 0, which isolates

case 1 above as the only viable option.

However, this is not the end of the story. The reason is that in the presence of our

nontrivial field configuration for the phases φI , there are gradient-energy mixings between

the radial modes’ fluctuations and those of the angular modes, and these could destabilize

the system: even though in the original theory all kinetic and gradient energies are positive

definite, once we expand about a background with nontrivial gradients, in principle there

can exist excitations that lower the gradient energy (see e.g. [34] for an analysis of this

phenomenon in a simpler model).

With this in mind, we analyze the quadratic Lagrangian for radial excitations, ρI(x) ≡
〈ρI〉+ hI(x), and angular ones, φI(x) ≡ αxI + ϕI(x)/〈ρI〉, where the normalization of the

latter is chosen for later convenience. Working in (t,~k ) space, after straightforward algebra

from (3.3) we get

L →
∣∣~̇h ∣∣2 +

∣∣ ~̇ϕ ∣∣2 −( ~h
~ϕ

)†
·K ·

(
~h

~ϕ

)
, (B.4)

where the 6× 6 matrix K is defined in terms of 3× 3 blocks as

K ≡

(
k21 +M2 2iα~k · ~1
−2iα~k · ~1 k21

)
, (B.5)

and the notation ~k · ~1 is shorthand for diag(k1, k2, k3).

Stability of our background configuration at finite ~k corresponds to positivity of K,

that is, to its eigenvalues being positive. The general six dimensional problem is quite

complicated to analyze. However, we can first simplify it somewhat by focusing on the

determinant of K: if for some values of α this becomes negative, certainly at least one

eigenvalue must have become negative.

To compute the determinant of K, we use standard results for block matrices, in

particular

det

(
A B

C D

)
= detD × det(A−B ·D−1 · C) , (B.6)
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We thus get

detK = k6 det
(
M2 + k21− 4α2(k̂ · ~1 )2

)
, (B.7)

where, as usual, k̂ ≡ ~k/k.

Notice that, so far, we have made no approximations, and in the above expressions ~k

is generic. However, we expect instabilities, if present at all, to be there only at low enough
~k’s: in the original theory all gradient energies are positive-definite, which means that if

one only considers perturbations with high enough momenta such that the potential and

the solid background can be neglected — spontaneous symmetry breaking is an infrared

phenomenon — any background configuration will be stable against those perturbations.

This is evident in the r.h.s. of (B.7): k21 appears as a positive-definite correction to M2

inside the determinant. On the other hand, the last matrix only depends on the direction

of ~k — not on its magnitude — and thus survives at arbitrarily low momenta. Since it

appears as a negative-definite correction to M2, it can in principle trigger an instability.

We are thus led to consider the positivity conditions for

det
(
M2 − 4α2N

)
, N ≡ (k̂ · ~1 )2 = diag(k̂2

1, k̂
2
2, k̂

2
3) . (B.8)

Notice that, regardless of the direction of k̂, the matrix N obeys

trN = 1 , 0 ≤ Nij ≤ 1 . (B.9)

Now we can use the fact that, in the isotropic limit, there is a hierarchy between the

eigenvalues of M2,

m2
2 = m2

3 � m2
1 . (B.10)

In this case, to leading order in m2
1 and N we get

det
(
M2 − 4α2N

)
' m2

2m
2
3 (m2

1 − 4α2N11) , (B.11)

where N11 is the 1-1 entry of N in the basis of eigenvectors of M2. The approximate

expression above can be derived, for instance, by applying again eq. (B.6) in such a basis.

In terms of the original basis, the normalized eigenvector of M2 corresponding to m2
1

is 1√
3
(1, 1, 1), and so

N11 = 1
3(k̂2

1 + k̂2
2 + k̂2

3) = 1
3 . (B.12)

The system thus develops a low-~k instability when the combination

m2
1 − 4

3α
2 (B.13)

becomes negative. This corresponds to α2 exceeding 3
5m

2, precisely as we concluded in

section 3.1 through a purely low-energy analysis.
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C An instability for c2L < 4
3
c2T?

We now show that the instability arising when c2
L < 4

3c
2
T [32] can only be induced by

modes that diverge at spatial infinity and, therefore, can never be triggered by localized

perturbations in the bulk of a solid, or in a solid whose boundary conditions are kept fixed

(e.g. through an external pressure).

We will first briefly review the derivation of such a bound, following [32]. Consider

inducing in the solid a deformation with strain tensor uij which, in terms of our Goldstone

field is given at linear order by uij ∝ 1
2(∂iπj + ∂jπi). The corresponding variation of the

free energy density of the solid, f , is

f = f0 + µ
(
uij − 1

3δijukk
)2

+ 1
2K u2

kk +O
(
u3
)
, (C.1)

where f0 is the free energy density at equilibrium, and µ and K are known as the shear and

bulk moduli. To ensure positivity of the variation of the free energy (so that a deformation

cannot lower it arbitrarily) one typically demands that both µ and K be positive.

The longitudinal and transverse sound speeds in terms of the moduli are given by [32]

c2
L =

3K + 4µ

3ρm
, c2

T =
µ

ρm
, (C.2)

where ρm is the mass density of the solid.6 Their ratio is therefore
c2L
c2T

= 4
3 + K

µ and,

for positive K/µ, is bounded from below by 4/3. In order to evade this bound one thus

needs K/µ < 0. Let’s consider the µ > 0, K < 0 case, which is the case relevant for

us (see section 3.1): the free energy (C.1) is unstable against pure-trace deformations,

i.e. deformations such that uij − 1
3δijukk = 0. In terms of the Goldstones, this reads

∂iπj + ∂jπi =
2

3
δij ~∇ · ~π . (C.3)

This is nothing but the conformal Killing equation in 3D Euclidean space — see e.g. [35]

— whose four independent solutions correspond to infinitesimal dilations and special con-

formal transformations:

πi = a xi , and πi = bi ~x
2 − 2

(
~b · ~x

)
xi , (C.4)

with a and ~b free parameters.

The configurations under which the solid would be unstable are therefore always di-

vergent at spatial infinity and are not associated with localized perturbations. In other

words, the c2
L >

4
3c

2
T bound comes from boundary effects, which are irrelevant for infinite

solids or in the bulk of a solid with fixed boundary conditions.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

6For simplicity and for consistency with [32], we are considering a non-relativistic solid, but the derivation

works equally well for relativistic solids upon minor notational modifications.
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[22] A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Diffusion and universal relaxation of

holographic phonons, JHEP 10 (2019) 068 [arXiv:1904.11445] [INSPIRE].

[23] M. Nitta, S. Sasaki and R. Yokokura, Spatially Modulated Vacua in a Lorentz-invariant

Scalar Field Theory, Eur. Phys. J. C 78 (2018) 754 [arXiv:1706.02938] [INSPIRE].

[24] D. Musso, Simplest phonons and pseudo-phonons in field theory, Eur. Phys. J. C 79 (2019)

986 [arXiv:1810.01799] [INSPIRE].

[25] D. Musso and D. Naegels, Independent Goldstone modes for translations and shift symmetry

from a real modulated scalar, Phys. Rev. D 101 (2020) 045016 [arXiv:1907.04069]

[INSPIRE].

[26] A. Esposito, S. Garcia-Saenz, A. Nicolis and R. Penco, Conformal solids and holography,

JHEP 12 (2017) 113 [arXiv:1708.09391] [INSPIRE].
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