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Abstract

We present a model problem for benchmarking codes that investigate
magma migration in the Earth’s interior. This system retains the essential
features of more sophisticated models, yet has the advantage of possess-
ing solitary wave solutions. The existence of such exact solutions to the
nonlinear problem make it an excellent benchmark problem for combi-
nations of solver algorithms. In this work, we explore a novel algorithm
for computing high quality approximations of the solitary waves in 1-,2-
and 3 dimensions and use them to benchmark a semi-Lagrangian Crank-
Nicholson scheme for a finite element discretization of the time dependent
problem.

1 Introduction

Benchmark problems are of great utility for verifying and comparing nu-
merical algorithms, and exact solutions play an important role in con-
structing such benchmarks. Unfortunately, exact solutions may be dif-
ficult, or impossible, to construct for nonlinear problems. In this work,
we formulate a benchmark problem for the simplest non-linear model of
magma migration, and explore algorithms for constructing the exact so-
lutions and simulating the system.

On the viscous time scale, many processes in the solid Earth, including
mantle convection, magma migration, and crustal deformation, occur at
such low Reynolds numbers that inertial terms can be neglected. These
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quasi-static systems generically take the form

∂tψ +∇ · (ψv) = sources and sinks of ψ (1a)

∇ · σ(v;ψ) = body forces on the medium (1b)

where ψ is some material parameter, such as temperature, fluid fraction
or chemical concentration, which influence constitutive relations such as
permeability or rheology of the medium. Though (1a) is written to suggest
a hyperbolic nature, it may of course be parabolic, with diffusive terms
appearing as sinks. All time dependence comes from the first equation,
(1a), which affects the velocity field through the elliptic problem (1b),
which then advects the scalar fields. This coupling introduces its own
set of scientific computing challenges; there is a simultaneous need for a
robust, fast, elliptic solver and an efficient time stepping algorithm.

1.1 A Reduced Model for Magma Migration

An important example of a coupled hyperbolic-elliptic systems in Earth
science is the PDE’s governing the flow of a low viscosity fluid in a vis-
cously deformable porous matrix which has been used to model the flow
of partially molten rock (magma) in the Earth’s interior. Beginning with
the primitive equations first formulated in [15], one can, after many sim-
plifications, arrive at the system:

φt = φmP, (2a)

[φm −∇ · (φn∇)]P = −∇ · φned. (2b)

In the above equations: (i) φ is porosity, or volume fraction of melt; (ii) P
is the “compaction pressure”, produced by volumetric deformation of the
viscously deformable rock matrix. (iii) ed is the unit vector in coordinate
d associated with the direction of gravity.

The dimensionless system (2) has been scaled as follows. Porosity is
scaled to a reference value φ0 ∼ 0.1− 1% and distance to the compaction
length, an intrinsic length scale of the primitive system [15]. The com-
paction length depends on porosity, but we scale to δ0, the compaction
length at the reference porosity. All computations here are performed
with respect to the dimensionless equations, however, we will often refer
to lengths in terms of multiples of the reference compaction length δ0.

The two exponents in (2), n and m, are related to the permeability
and bulk viscosity of the partially molten medium. The permeability is
often modeled as K ∼ φn, with n ∼ 2 − 3. The bulk viscosity takes the
form ζ ∼ φ−m with m ∼ 0 − 1, though most studies have taken either
m = 0 or m = 1.

The system (2), as written, is more amenable to adding additional
physics such as solid advection or melting. However, it can also be for-
mulated as a single equation, together with a far field boundary condition
as:

∂tφ+∇ · (φned)−∇ ·
[

φn∇
(

φ−m∂tφ
)]

= 0, lim
|x|→∞

φ(x, t) = 1. (3)
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Equation (3) is a nonlinear dispersive wave equation for the evolution of
porosity φ. Derivations from primitive equations for conservation of mass,
momentum, and energy are given in [7, 18,23].

The important feature of (3) is that it possesses solitary wave solu-
tions, localized states which propagate in space at a fixed speed without
changing shape. Such solutions are good for benchmarking as one need
only check the distortion of the transported waveform. Indeed, in a frame
moving with the solitary wave, the solution will appear constant. Numer-
ical studies of the equation and its solitary waves have been performed in
one [7, 18], two [19], and three [33] dimensions. Recent work [20–22] has
shown the well-posedness of (3) and the stability of its solitary waves in
dimension d = 1.

We demonstrate:

1. A novel algorithm for computing the solitary waves in all dimensions.
This algorithm solves a time independent equation, using the Car-
dinal Whittaker sinc function which provide better than polynomial
accuracy,

2. A semi-Lagrangian Crank-Nicolson algorithm for a finite element
discretization of (2), as one algorithm for the benchmarking.

An outline of this paper is as follows. In section 2 we review some
properties of the solitary waves. We then discuss the sinc collocation
method in section 3.1, and how it can be implemented for these equations.
Then, in section 4, we demonstrate the algorithm with convergence results.
Section 5 explains the time stepping algorithm and its performance. We
offer some remarks and comments in section 6.

2 Solitary Wave Solutions

The solitary wave solutions of (3) are exponentially decaying, radially
symmetric humps in excess of φ = 1, traveling in the xd direction at
a fixed speed. They are akin to the soliton solutions of the Zakharov-
Kuznetsov equation, [34], found in plasma physics.

Making the ansatz

φ(x, t) = φc
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√

√

d−1
∑
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x2j + (xd − ct)2



 = φc(r), (4)

the solitary waves solve the third order equation
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with the boundary conditions

φ′
c(0) = 0 (6a)

lim
r→∞

φc(r) = 1 (6b)

Derivatives are taken with respect to r.
The existence of solitary wave solutions was proven by a phase plane

argument in dimension one. Further smoothness properties were stated
in [21] as part of the stability analysis. The formal existence of solitary
wave solutions in higher dimensions is an open problem, though it is
expected. Throughout this work, we assume that smooth, monotonically
decaying, solutions exist. A consequence of this is that all odd derivatives
vanish at the origin.

In one dimension, (5) can always be integrated up twice, reducing the
problem to quadrature. For example, in the case n = 3 and m = 0, after
one integration we have

− c(φc − 1) + φ3
c − 1 + cφ3

cφ
′′
c = 0 (7)

Two more integrations give the implicit expression

r2 =

(

A+
1

2

)[

−2
√

A− φc +
1√
A− 1

log

(√
A− 1−

√
A− φc√

A− 1 +
√
A− φc

,

)]2

(8)
where A = (c− 1)/2 is the amplitude.

2.1 Reformulation by Even Extension

For higher dimensions, such integrations of (5) are not possible and we
resort to numerical approximation. First, (5) is rewritten to make it more
amenable to computation. Integrating from r to ∞ yields the integro-
differential equation
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m 6= 1
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− c(d− 1)

∫ ∞

r

φn
c

(

1

r
(log φc)

′

)′

dr
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(9)

Barcilon & Lovera [6], also solved (9) numerically using a shooting method.
However, this approach was unstable for moderate amplitude waves and
only considered the parameters n = 3, m = 0. The sinc-collocation
method we use here appears to be robust for a wide range of wave param-
eters in all dimensions.

The sinc-collocation method, however, does not apply directly to prob-
lems posed on the semi-axis, (0,∞). The problem must be altered to live
on all of (−∞,∞). Let

φ̃c(x) = φc(|x|) (10)
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be the even extension of φc to the whole real line. Dropping the ’̃s, φc

solves

0 =
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(11)

We discretize and solve (11) using the sinc-collocation method, described
in Section 3.1.

3 Collocation & Continuation

Equation (11) is a nonlinear integro-differential equation posed on an un-
bounded domain. We employ a method, sinc-collocation, that respects
these features. The sinc spectral method is thoroughly formulated and
explained in [12,27–29] and briefly in Appendix A. In the sinc discretiza-
tion, the problem remains posed on R and the boundary conditions, that
the solution vanish at ±∞, are naturally incorporated. This method has
been applied to a variety of differential equations; see the above refer-
ences. It has been used to compute solitary waves in the early work [13]
and more recently in [14]. It was also used to study a time dependent
problem, KdV, in [2].

Collocation insists the equation be satisfied at the nodes of the mesh.
This is in contrast to a Galerkin formulation, which would have us dis-
cretely orthogonalize the residual against some family of functions. Col-
location can be interpreted as discretely solving the classical form of the
equation, while Galerkin discretely solves the weak form. Moshen & El-
Gamel found collocation to be superior for certain problems, [16].

This discretization will lead to a nonlinear system of algebraic equa-
tions, requiring a good initial guess for the solver. Our strategy for con-
structing such a solution is to take the d = 1 solution and then perform
numerical continuation in dimension, up to the desired value. Construct-
ing the d = 1 solution is also done by continuation, using an asymptotic
approximation in the small amplitude, c ∼ n, state; continuation is per-
formed in c to its desired value.

3.1 Sinc Discretization

Given a function u : R → R, u is approximated using a superposition of
shifted and scaled sinc functions:

CM,N (u, h)(x) ≡
N
∑

k=−M

uksinc
(x− xk

h

)

=
N
∑

k=−M

ukS(k, h)(x), (12)

where xk = kh for k = −M, . . . , N are the nodes and h > 0. There are
three parameters in this discretization, h, M , and N , determining the
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number and spacing of the lattice points. This is common to numerical
methods posed on unbounded domains, [9].

A useful and important feature of this spectral method is that the
S(k, h) functions act like discrete delta functions,

CM,N (u, h)(xk) = uk. (13)

For sufficiently smooth functions, the convergence of this approximation
is rapid both in practice and theoretically. See Theorem A.2 in Appendix
A for a statement on convergence.

Since the solution is even, we may take N =M ; we write

CM (u, h)(x) ≡ CM,M (u, h)(x). (14)

We further reduce the number of free parameters down to just M , by
slaving h to M as

h = π

√

1

2γM
, γ =

√

1− n

c
(15)

The motivation for this choice is discussed in Appendix A. It is closely
connected to the theory of the sinc method, and the asymptotic decay
properties of both φc − 1 and its Fourier transform.

Letting uc = φc − 1, the solitary wave with the asymptotic state sub-
tracted off, we formulate (11) as a nonlinear collocation problem at the
nodes {xk}:
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m 6= 1
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dx2
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+c(d− 1)
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{

1

x

d

dx
[logCM (uc, h)(x)]

}

dx.

m = 1

(16)
From here on we suppress the subscripts c in uc and φc.

Let u be the column vector associated with the sinc discretization of
u, at the collocation points {xk},

CM (u, h)(xk) 7→ u =
(

u−M u−M+1 . . . uM

)T
. (17)

Associated with u is φ = u+ 1.
We now define a series of matrices that operate on u. The derivatives

of sinc approximated functions are given by:

D
(l)
jk =

dl

dxl
S(j, h)(x)|x=xk

(18)
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Explicitly,

D
(1)
jk =

{

0 j = k
1
h

(−1)k−j

k−j
j 6= k

(19a)

D
(2)
jk =

{

1
h2

−π2

3
j = k

1
h2

−2(−1)k−j

(k−j)2
j 6= k

(19b)

The integration matrix is

D
(−1)
jk =

h

2
+
h

π
Si(π(j − k)) (20)

where Si is the sine-integral function,

Si(x) ≡
∫ x

0

sin(t)

t
dt. (21)

Being singular, the 1
x

d
dx

operator must be treated carefully. For smooth
even functions (u′(0) = 0), it is well defined. Taking limits of the sinc ap-
proximation of an even function (u−k = uk),

lim
x→0

1

x
∂xu0S(0, h)(x) = − π2

3h2
u0, (22)

lim
x→0

1

x
(∂xukS(k, h)(x) + ∂xu−kS(−k, h)(x)) = −4

(−1)k

h2k2
uk. (23)

The matrix D̃(1) approximating 1
x

d
dx

is defined as:

D̃
(1)
jk =















1
xj
D

(1)
jk j 6= 0,

− 2(−1)k

h2k2 j = 0, k 6= 0,
−π2

3h2 j = k = 0.

(24)

With these matrices, the discretization of (11) is equivalent to the non-
linear algebraic system

F(u) =































−cu+ φ
n − 1+

c

1−m
φ

nD(2)(φ1−m − 1)

+
c(d− 1)

1−m
D(−1)(φ)nD(1)D̃(1)(φ1−m − 1)

m 6= 1

−cu+ φ
n − 1+ cφnD(2) logφ

+ c(d− 1)D(−1)
φ

nD(1)D̃(1) logφ
m = 1

(25)

where 1 is a vector of size 2M +1 with 1’s in all entries. Nonlinear terms
should be interpreted as component-wise operations on the vectors.

3.2 Initial Guesses and Numerical Continuation

To solve (25), one needs a good initial guess for u. For dimension one, an
excellent guess is available. Integrating (5) reduces the equation to first
order, which can be solved by quadrature and root finding. Sometimes it
is even possible to obtain implicit solution, as in (8). This is not possible
for d > 1, nor is it always desirable to work out the quadrature formulas.
Thus, for a given c and d, we proceed in two sequential steps:
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• For d = 1, perform numerical continuation in c, from a value of
c ∼ n, up to the desired value.

• For d > 1, apply the continuation in c to construct the solution in
d = 1, then perform numerical condition in d, up to the desired
dimension.

Other continuation paths in (c, d) parameter space are possible, but this
proved to be robust. Throughout the two continuation sequences, we keep
the nonlinearities, n and m, fixed.

3.2.1 Continuation in c

In [32], the authors observed that in the limit of small amplitude distur-
bances of the reference state, (3) was, to leading order, governed by the
Korteweg - de Vries equation. Generalizing this observation in [21], let

γ =

√

1− n

c
, (26a)

φc(x1 − ct) = 1 +
γ2

n− 1
U(γ(x1 − ct)). (26b)

Then U solves the equation

− U +
1

2
U2 + ∂2

ξU = O(γ2), (27)

and small amplitude solitons, where 0 < γ ≪ 1, are approximately

φc(r) = 1 +
3γ2

n− 1
sech2

(

1

2
γr

)

+O(γ4). (28)

Given the desired value of c, we partition (n, c] into P points

n < c1 < c2 < . . . < cP = c (29)

we iteratively solve

G(u; c) =

{

−cu+ φn − 1+ c
1−m

φnD(2)(φ1−m − 1) m 6= 1

−cu+ φn − 1+ c
1−m

φnD(2) logφ m = 1
(30)

using u(j) as the initial guess for

G(u(j+1); cj+1) = 0 (31)

The u(1) guess is given by (28). We have successfully solved with P =
O
(

10 c
n

)

, though this could likely be refined with more sophisticated con-
tinuation algorithms.
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3.2.2 Continuation in d

For d > 1 we solve by numerical continuation in dimension by making d
a parameter:

H(u; d) =































−cu+ φ
n − 1+

c

1−m
φ

nD(2)(φ1−m − 1)

+
c(d− 1)

1−m
D(−1)

φ
nD(1)D̃(1)(φ1−m − 1)

m 6= 1

−cu+ φ
n − 1+ cφnD(2) logφ

+ c(d− 1)D(−1)
φ

nD(1)D̃(1) logφ
m = 1

(32)

Given the dimension d for which we desire a solution, we partition [1, d]
into

1 = d0 < d1 < d2 < . . . dP = d. (33)

Then, assuming we have solved

H(u(j); dj) = 0,

u(j) becomes the initial guess for dj+1. P , the partition size of [1, d], need
not be that large. P = O(10d) appears sufficient. As with continuation
in c, more sophisticated continuation algorithms might improve this.

3.3 System Size Reductions

The even symmetry can be exploited to reduce the size of the algebraic
system. Since u−k = uk, we need only track uk, k = 0, 1, . . .M . The sym-
metry is imposed on (25) by the following manipulations on a discretized
operator, A. Since only the last M + 1 rows are required, we only retain
Aij for i = M + 1, . . . 2M + 1. Next, we add or subtract the columns
Aij , j = 1, . . .M onto the columns j = 2M + 1, . . .M + 2. For even/odd

symmetry preserving operations, d2

dx2 and 1
x

d
dx

, we add. For even/odd

symmetry reversing operations, d
dx

and
∫ x

−∞
, we subtract. This reduces

the system to M + 1 points.

4 Example Solitary Wave Computations

We implemented our algorithm using NumPy/SciPy. This has the advan-
tages of being open source and easily integrating with our time dependent
algorithms through Python. The codes for computing the sinc-collocation
matrices were motivated by the Matlab codes discussed in [31]. For solv-
ing the nonlinear system, we used the fsolve routine in SciPy, which is
a Python wrapped MINPACK routine.

4.1 Solitary Wave Forms

As a first example of our results, we compute a collection of solitary
waves for different parameter values and dimensions. These wave forms
are pictured in Figure 1. The amplitudes and width of the waves tend to
increase with dimension. We have not observed a choice of (c, n,m) for
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Figure 1: Examples of computed solitary waves with different values of c, n, m,
and M .
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Figure 2: Dispersion relations between c and solitary wave amplitude.

which this does not happen. This observation was previously noted in [33]
for the n = 3, m = 0 case.

We can further consider this relationship between dimension and am-
plitude by plotting “dispersion relations” between the parameter c, and
the amplitude of the associated solitary wave. See Figure 2. The n = 2,
m = 1 case has a much more nonlinear dispersion relation than n = 3,
m = 0 case.

4.2 Convergence

Not only does the sinc-collocation approach work, but it also converges
quite rapidly to the desired solution. We now present some benchmarks
on the convergence of the amplitudes of the solitary waves in different
dimensions, for different choices of (c, n,m). We focus on comparing the
amplitudes (φc(0)). Other points are more difficult to compare as the
grids change with M . The results are given in Table 4.2.

5 Time Dependent Simulations

Spectrally accurate solitary wave profiles are extremely useful as initial
conditions for benchmarking and exploring numerical solutions of the full
space time PDE’s. For example, Figure 3 shows a solution for an off-
center collision of two 2-D solitary waves with speeds c = 5 and c = 7
initialized with two sinc-collocation solutions. This calculation is done in
a moving frame translating at the mean velocity of the two waves which
allows long runs in limited numerical domains. More specifically we solve
a variation of the coupled hyberbolic-elliptic problem, (2) for porosity φ
and compaction pressure P [10]:

Dφ

Dt
= φmP (34a)

[−∇ · φn∇+ φm]P = −∇ · φned (34b)
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Table 1: Convergence of the solitary wave amplitude for three difference c, n
and m configurations.

(a) c = 4, n = 3, m = 0

M d = 1 d = 2 d = 3
20 1.50021353765 1.70417661440 1.96849289246
40 1.50000080060 1.70608902282 1.97466312561
60 1.50000000989 1.70617046612 1.97486670209
80 1.50000000023 1.70617690685 1.97488105982

100 1.50000000001 1.70617767812 1.97488264950
200 1.50000000000 1.70617782834 1.97488293768
400 1.50000000000 1.70617782848 1.97488293789
800 1.50000000000 1.70617782848 1.97488293789

(b) c = 5, n = 2, m = 1

M d = 1 d = 2 d = 3
20 14.3312283238 22.5954364016 36.4572095987
40 14.2972695906 22.6643001828 36.8255142055
60 14.2972368619 22.6667057152 36.8329976531
80 14.2972367260 22.6668188493 36.8333101100

100 14.2972367248 22.666827544 36.8333323307
200 14.2972367248 22.6668286095 36.8333348778
400 14.2972367248 22.6668286096 36.8333348781
800 14.2972367247 22.6668286095 36.8333348777

(c) c = 6, n = 4, m = .5

M d = 1 d = 2 d = 3
20 1.47945862654 1.67961148369 1.94941026371
40 1.47938232695 1.68059282799 1.95217168937
60 1.47938214568 1.68062352158 1.95223978609
80 1.47938214411 1.68062557559 1.95224385885
100 1.47938214408 1.68062579033 1.95224425280
200 1.47938214408 1.68062582653 1.95224431473
400 1.47938214408 1.68062582655 1.95224431476
800 1.47938214408 1.68062582655 1.95224431476
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where ed is the unit vector in the direction of gravity and

Dφ

Dt
=
∂φ

∂t
+ v · ∇φ

is the material derivative in a frame moving at speed v (which we assume
is constant for these problems, but can vary in space and time for more
general magma dynamics problems).

Given any numerical method for solving (34), the sinc solitary wave
solutions provide a straightforward benchmark problem: use a high res-
olution (M = 400) solitary wave as an initial condition and solve. A
perfect scheme would have the wave propagate at speed c with no change
in shape; anything else is numerical error.

5.1 Numerical Methods

System (34) has previously been solved by finite difference and finite vol-
ume methods with explicit time stepping and operator splitting [33, e.g.].
Here we describe and benchmark more recent implicit finite element codes
with semi-Lagrangian/Crank-Nicolson time stepping for the advection
terms. Specifically, we solve the non-linear variational problem

F (u) =

∫

Ω

[fn∇v · (∇p− ed) + vfmp] dV +

∫

∂Ω

fned · dS

+

∫

Ω

q(f − ∆t

2
fmp− g(x∗))dV = 0

(35)

for consistent porosity, f , and pressure, p, at time t+∆t. Here, u = (p, f)
is a solution for pressure and porosity in a mixed finite element space
V with test functions v = (v, q). For the problems shown here we use
second order elements on triangular (2D) and tetrahedral meshes (3D)
(e.g. V = [P2× P2]). The semi-Lagrangian source function

g(x∗) = f(x∗, t) +
∆t

2
f(x∗, t)mp(x∗, t), (36)

depends on the porosity and pressure at the previous time step evaluated
at the takeoff point of the characteristics that intersect the quadrature
points at time t + ∆t [25, 26, e.g.]. For constant background advection
x∗ = x− v∆t.

Equation (35) is non-linear with F (u) being the residual for any func-
tion u ∈ V. We solve F (u) = 0, using pre-conditioned Newton-Krylov
methods implemented in hybrid FEniCS (http://www.fenics.org) and PETSc
[3–5] codes. FEniCS is a suite of advanced, open-source software libraries
and applications that allows for high-level description of weak forms using
a “unified form language” (ufl) that can be translated into efficient, com-
pilable C++ code using their form compiler FFC. In addition ufl has the
capability of describing and calculating the weak form of the exact Jaco-
bian (J(u) = δF/δu) by automatic functional differentiation. Given weak
forms for both the residual and Jacobians, FEniCS provides routines for
assembling variational forms into discrete vectors and matrices, which are
used in PETSc’s non-linear equation solvers (SNES). These codes are flex-
ible and can easily compose a wide range of PDE based models and adjust
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(a)

(b)

Figure 3: Figure showing the off-center collision of two solitary waves with wave-
speeds c = 7 and c = 5 and material exponents n = 3, m = 0 in dimension
d = 2. (a) Porosity. (b) Compaction Pressure. Model domain is 64 × 128
compaction lengths with 128× 256 degrees of freedom (node spacing h = 0.5δ).
Courant number is 1. This model is calculated in a frame moving at the mean
speed of the two waves (V = 6) and shows the typical non-linear phase shift
interaction with some radiation loss on collision.
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Table 2: Parameters for solitary wave benchmarks
n m c Amplitude Ω (compaction lengths) |C′′|max

2D runs:

3 0 5 2.33407 64× 64 0.11054
3 0 10 5.18711 64× 64 0.31226
2 1 2.5 2.44620 64× 64 0.17679
2 1 4 11.03790 64× 64 3.61868
3D runs:

3 0 5 2.72588 32× 32× 32 0.12869

solver strategies at run time. We have used these codes to explore a vari-
ety of physics-based block preconditioning strategies for iterative solutions
of the magma equations. Appendix B provides details of the numerical
method used here. Benchmark codes are available through the Computa-
tional Infrastructure for Geodynamics, CIG, www.geodynamics.org.

5.2 Benchmark problems and results

Table 2 gives parameters for four 2-D problems and one 3-D problem.
For each problem we set the background advection velocity to v = −ced

so that the wave appears stationary in the moving frame. Each model
run is calculated on a square or cubic domain large enough so that the
tails of the solitary wave are φc − 1 . 10−7, with boundary conditions
(f, p) = (1, 0) on the top edge and “free-flux” (∇P · n̂ = 0) on the other
three sides. For each wave, we consider a series of spatial and temporal
discretizations by varying the inter-node spacing h = .25, 0.5 and 1.0δ0
where δ0 is the compaction length in the constant porosity background.
Time steps are chosen such that each wave moves a fixed multiple of a
compaction length in a time-step, i.e. c∆t/δ0 = 0.125, 0.25, 0.5, 1.0 and
2.0. The Courant number is c∆t/h.

Semi-Lagrangian schemes are characteristic based and do not have a
CFL stability condition. This allows for large time steps. Nevertheless, as
the results here show, accuracy is degraded at large time-steps. For this
problem, the most efficient and accurate runs occur at CFL = 1.

For this problem, two natural measures of error are distortion of the
wave shape and disturbance of the phase speed. Given a computed solu-
tion for porosity f(x, t), we identify both types of errors by first minimiz-
ing the functional

E(δ) ≡
∫

(f(x, t)− φc(x+ δ, t))2 dx (37)

where φc is a high quality approximation of the solitary wave at time t.
Though this can be done by direct minimization of the functional, it is
more accurate to solve the nonlinear system

〈f(x)− φc(x+ δ),∇φc(x+ δ)〉 = 0 (38)

Numerical experimentation shows that this optimization/root finding
problem reduces to a single parameter system for the vertical component
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Figure 4: Relative errors in (a) Shape and (b) Velocity for a 2-D, n = 3, m = 0,
c = 10 wave as a function of time, grid spacing h/δ0 (symbols) and time-step
∆t (line color). Note, problems with the same time-step but different grid
spacing overlap and have nearly identical errors. Grid spacing is the distance
between nodes for quadratic elements and is relative to the compaction length
in the constant porosity background. c∆t/δ0 gives the number of reference
compaction lengths traveled in a time step. The Courant number is c∆t/h. For
all runs, there is a rapid adjustment from the initial condition and then a steady
evolution with little to no change in shape or velocity.

of the displacement δ due to the symmetries of the equation. δ measures
the phase shift, from which we can find the error in the speed parameter,

δ ≈ (c̃− c)t

where c̃ is the speed of the numerically perturbed solitary wave. Once we
have found δ, we can directly compute the L2 error in the approximations.

Figure 4 shows the relative shape error
√
E/||φc||2 and relative veloc-

ity error |c̃/c − 1| as a function of time for a n = 3,m = 0, c = 10 wave
and a range of grid spacing and time steps. Similar to previous solitary
wave studies [24], the initial conditions rapidly adjust to an approximate
solitary wave in the discrete function space and then propagates with
constant form and phase speed. An interesting feature of this algorithm,
is that it appears that the errors in both shape and wave-speed depend
primarily on the absolute time step ∆t and not on the grid-spacing h.
This can be seen in Figure 4 where runs with different grid spacing and
the same time-step have nearly identical errors for problems with integer
Courant number. Figure 5 shows the convergence of the same set of runs
with respect to time step at the maximum run time t = 0.45. For all
Courant numbers, the convergence is O(∆t2), but there are discrepancies
for non-integer Courant numbers. Most likely, this is due to accumu-
lated interpolation errors at very small time steps. However, for integer
CFL=1, 2, the error at for the same time-step is nearly identical. Figure
6 shows the same plot for all initial wave forms in Table 2 (both 2- and
3-D and integer Courant number.
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Figure 5: Convergence behavior as a function of time step at t ∼ 0.45 for the runs
shown in Fig. 4. For any given Courant number, the error shows second order
convergence and runs with integer Courant number show nearly identical errors
for the same time-step ∆t. Runs with fractional Courant number show similar
convergence but larger shape errors (and in this case smaller velocity errors) at
the same time-step. For these runs highest accuracy per computational work
occurs for Courant number CFL = 1 runs.
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Figure 6: Convergence behavior for all runs as a function of time-step. All
problems show second-order convergence with ∆t and integer Courant number
(and is independent of h). Relative error for all waves is . 10−3 for grid-spacing
h = 0.25, CFL=1.
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Figure 7: Convergence behavior of pressure solution with respect to grid spacing
h. Figure shows the L2 norm of the absolute error (||p − ph||2) between the
discrete FEM solution with quadratic elements and the “true” solution given
by an extremely high-resolution sinc-collocation solution. Dotted line shows
expected convergence if O(h3).

To explain these results, we note that this algorithm has two sources of
error. The first source is in the solution of the elliptic problem, (34b), for
the pressure field, which depends on the grid-spacing h. Figure 7 shows
that the error in pressure, given an exact porosity profile for a solitary
wave φ = φc(r), scales as O(h3) for quadratic elements. Thus, for fine
meshes, we expect that the pressure is well resolved.

The second source of error comes from the semi-Lagrangian time-
stepping algorithm. Equation (34a) can be written exactly for a constant
advection velocity v as

φ(x, t+∆t) = φ(x∗, t) +

∫ t+∆t

t

C(x∗ + v(τ − t), τ)dτ (39)

where C = φmP is the “compaction rate”, [23]. The final term is the line
integral across the straight characteristic between point (x, t + ∆t) and
(x∗, t) where x∗ = x− v∆t.

In the special case that φ is a solitary wave of speed c and v = −ced,
then the solitary waves are independent of time in this coordinate system;
φc = φc(x). If the line integral could be done exactly, then (39) reduces
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to the identity:

∫ t+∆t

t

C(x∗ + v(τ − t), τ)dτ

=

∫ t+∆t

t

φ′
c (r(x

∗ + v(τ − t)))
∂r

∂τ
(x∗ + v(τ − t)) dτ

=

∫ t+∆t

t

∂

∂τ
φc (x

∗ + v(τ − t)) dτ

= φc(r(x
∗ + v∆t))− φc(r(x

∗))

= φc(x)− φc(x
∗)

(40)

where r = |x|. Clearly, this is valid for any time step ∆t.
Were the integration exact, the numerical errors in the pressure field

would lead us to expect a single step error of O(h3∆t) arising from er-
rors in the solving the elliptic problem. Here, however, we implemented
a trapezoidal rule for the integral, and expect a single-step error of or-
der O(∆t3 max |C′′| + h3∆t) and a global error of O(∆t2 max |C′′| + h3).
Thus, for a well resolved pressure field, we expect time step errors to dom-
inate. Table 2 lists max |C′′| calculated from the sinc-collocation solitary
waves benchmarked here which is clearly larger for larger amplitude/faster
waves, and in particular, is noticeably larger for the n = 2, m = 1 waves,
in qualitative agreement with the general results shown in Figure 6.

These results indicate that a higher order time-integrator could im-
prove the accuracy of this algorithm, at least until the spatial errors be-
came dominant. While many approaches could be used for the special
case of a single solitary wave in a co-moving frame, the challenge remains
to find a high quality, but easily adaptable, time integrator/advection
scheme for more general magma dynamics problems.

6 Discussion

One of the challenges of studying Eq. (3) is that it is fully nonlinear. This
carries over to the solitary wave equation (5). As previously discussed, for
d > 1, this cannot be reduced to a first integral. For other multidimen-
sional equations, such as the Nonlinear Schrödinger (NLS) equation and
the Zakharov-Kuznetsov (ZK) equation, one can apply spectral renormal-
ization/Petviashvilli’s method [1, 11, 17]. However, these equations are
semilinear, i.e. they are already of the form

−∇2u+ λu− f(u) = 0.

Thus, this popular approach is not immediately applicable to (5).
Another approach to solving for solitary wave profiles would be to use a

shooting algorithm, though it is highly unstable, [6,33]. Other approaches
are comparable to our sinc collocation approach: use finite differences or
finite elements to construct a nonlinear algebraic system. The advantage
of using sinc is that it naturally incorporates the boundary conditions
at infinity, whereas one would need to introduce an artificial boundary
condition for these problems.
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It was necessary to extend φc from (0,∞) to be a function along the
whole real axis to use sinc collocation. We accomplished this by an even
extension. However, there are other possibilities, such as Laguerre poly-
nomials, which naturally reside on the half line. These are summarized
in [9]. The challenge to computing solitary wave solutions in higher di-
mensions is not particular to (3). There are similar difficulties with ZK
and NLS. This method is likely to also prove effective in those problems.

Beyond methods for accurate computation of non-linear waves, these
results provide the first critical tests for any code on magma dynamics.
It should be stressed that the system (34) represents the most simpli-
fied version of magma dynamics that only includes the contributions of
non-linear permeability and rheology to porosity evolution. More general
systems are required to investigate the role of thermodynamics, chem-
istry, and the interaction with the large scale mantle flow. However,
at their core, all of these problems need to reproduce the non-linear
waves and the benchmarks presented here are a necessary and reason-
ably straightforward exercise in code verification. Moreover, these larger
systems, still have the general quasi-static structure of the basic magma
equations and require accurate and efficient multi-physics solvers for cou-
pled hyperbolic/parabolic/elliptic systems. The physics based, block-
preconditioners demonstrated here for magma may be a useful approach
for more general problems.
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A Sinc Approximation

Here we briefly review sinc and its properties. The texts [12, 28] and the
articles [8, 27, 29] provide an excellent overview. As noted, sinc colloca-
tion and Galerkin schemes have been used to solve a variety of partial
differential equations.
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A.1 Overview

Recall the definition of sinc,

sinc(z) ≡
{

sin(πz)
πz

, if z 6= 0

1, if z = 0.
, (41)

and for any k ∈ Z, h > 0, let

S(k, h)(x) = sinc

(

x− kh

h

)

. (42)

A sinc approximation is only appropriate for functions satisfying cer-
tain criteria. To define such functions we first define a strip about the
real axis in the complex plane as

Dν = {z ∈ C | |ℑz| < ν} . (43)

Defining the function space:

Definition A.1 Bp(Dν) is the set of analytic functions on Dν satisfying:

‖f(t+ i·)‖L1(−ν,ν) = O(|t|a), as t→ ±∞, with a ∈ [0, 1), (44a)

lim
y→ν−

‖f(·+ iy)‖Lp + lim
y→ν−

‖f(· − iy)‖Lp <∞. (44b)

we have the following

Theorem A.2 (Theorem 2.16 of [12]) Assume f ∈ Bp(Dν), p = 1, 2,
and f satisfies the decay estimate

|f(x)| ≤ C exp(−α|x|). (45)

If h is selected such that

h =
√

πν/(αM) ≤ min
{

πν, π/
√
2
}

, (46)

then

‖∂n
x f − ∂n

xCM (f, h)‖L∞ ≤ CM (n+1)/2 exp
(

(−
√
πναM)

)

.

This theorem justifies the sinc method, and guarantees rapid convergence
for appropriate functions. Checking that a function satisfies all the hy-
potheses is non-trivial, and in practice it is omitted. However, it is es-
sential to have a proper value of h to ensure convergence of algorithm;
Theorem A.2 states the bound on h is related to estimates of both the
decay rate and the domain of analyticity of the function.
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A.2 Decay Rate

The decay rate is often easy to estimate. For the solitary waves solutions
of (5), the asymptotically linear equation is

−cφ′
c + nφ′

c + c

(

φ′′′
c +

d− 1

r
φ′′
c − d− 1

r2
φ′
c

)

= 0

Integrating once,

− c− n

c
(φc − 1) + φ′′

c +
d− 1

r
φ′
c = 0. (47)

The solutions in dimensions n = 1, 2, 3 which decay as r → ∞ are

φc − 1 ∝















e−
√

1−n/cr n = 1,

k0(
√

1− n/cr) n = 2,
1
r
e−

√
1−n/cr n = 3.

k0 is a Bessel function, and it decays exponentially. Continuing to assume
that (47) governs the large r behavior, the general decay relationship is

|φc(r)− 1| ∝ r−
d−1

2 e−
√

1−n/cr (48)

The decay rate for Theorem A.2 is thus α =
√

1− n/c.

A.3 Analyticity

The second parameter, ν, the distance into the complex plane which the
function can be analytically continued off the real axis, is not as readily
observed. Others have found ν = π/2 sufficient. We use ν = π/2 and can
numerically confirm a posteriori that this is a reasonable value.

Checking this condition is equivalent to identifying the decay rate in
Fourier space; ν satisfies

|û(k)| ≤ Ke−ν|k| (49)

To see this, write u(x) in terms of its Fourier Transform,

u(x) =

∫ ∞

−∞

eixkû(k)dk.

Evaluating u at z = x+ iy,

u(z) =

∫ ∞

−∞

eixke−ykû(k)dk.

u(z) is defined, provided

|u(z)| ≤
∫ ∞

−∞

e−yk|u(k)|dk <∞

If û is bounded by e−ν|k|, then this integral is guaranteed to be finite for

−ν < y < ν
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Figure 8: Fourier transforms of the solitary waves computed by the sinc algo-
rithm.

Thus, we can compute the Fourier transform and assess its decay rate to
identify ν. This was used in [30] to study the analyticity of the solutions
to several partial differential equations.

Using our computed solitary waves, we approximate their Fourier
transforms as follows. First, we form the even extension by reflection.
Then we delete the node at x−M ; the solution now sits on 2M grid points.
This extended solution is treated as periodic on [x−M+1, xM ] and its trans-
form is computed. Figure 8 shows the resulting transforms. In these cases,
we have resolved them to machine precision. More importantly, the solu-
tions decay more rapidly than than e−π/2|k|. This justifies using ν = π/2.
This value, together with α =

√

1− n/c, tells us that the largest value of
h for which we can expect convergence is

h = π

√

1

2γM
, γ =

√

1− n/c

which is (15).
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B Notes on Numerical Methods for so-

lution of space-time PDE’s

The algorithm demonstrated here uses second-order mixed Lagrange finite
elements (P2-P2) in space for porosity and pressure and a second-order,
semi-Lagrangian Crank-Nicolson scheme in time. The latter approach
discretizes the generic hyperbolic advection-reaction PDE

Df

Dt
= s(x, t) (50)

as a two level scheme via the trapezoidal rule

f(x, t+∆t) = f(x∗, t) +
∆t

2
[s(x, t+∆t) + s(x∗, t)] (51)

where x∗ is the take-off point of the characteristic that intersects point
x at time t +∆t [25, 26]. We use this scheme to approximate the strong
form of equations (34) and then multiply by test functions and integrate
to produce the non-linear weak form of the residual at time t + ∆t (Eq.
(35)).

Semi-Lagrangian methods in finite elements can be considered a distor-
tion and re-projection problem. For the pure advection problem,Df/Dt =
0, the weak-form becomes

∫

Ω

vfdx =

∫

Ω

vf(x∗)dx. (52)

This is just the projection of the advected continuous function f(x∗, t)
back onto the function space. To evaluate the RHS of Eq. (52) by quadra-
ture, f(x∗) must be evaluated at the quadrature points. Therefore x∗

should be the coordinates of the take-off points of the characteristics that
intersect the quadrature point. This is different from finite difference
problems where the characteristics intersect the grid points.

Given the weak form of the residual, it is straightforward to calculate
the weak form of the Jacobian by functional differentiation. This exact
Jacobian is assembled by FEniCS into a 2× 2 non-symmetric block linear
problem

[

A(f) B(f, p)
∆tC(f) D(f, p)

][

δp
δf

]

= −
[

Fp

Ff

]

(53)

where δu = [δp, δf ]T is the correction to the solution at each Newton step.
Note if ∆t = 0, the problem becomes linear. If we begin with an initial
guess f = f0, p = 0, then the problem reduces to solving

[

A(f0) B(f0, p)
0 M

][

δp
δf

]

= −
[

Fp(f0)
0

]

(54)

where M is the porosity mass matrix. Thus for ∆t = 0, δf = 0 and
δp = −A(f0)−1Fp(f0) which is just the discrete solution to (34b) for the
pressure given porosity f0.
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For a non-zero time-step, we solve the linear problem, equation (53),
using a block-preconditioned Newton-Krylov scheme implemented in PETSc,
using their FIELDSPLIT block preconditioners1. Our preconditioner uses

P =

[

A 0
∆tC D

]

(55)

as a lower triangular block pre-conditioner with one V-cycle of algebraic
multi-grid on the A block and 2 sweeps of SOR on the D block, and then
GMRES on the entire Jacobian. Other choices of preconditioners and
solvers can be passed by command line arguments. However, we find this
particular recipe to be robust and efficient in both 2 and 3-D, converging
quadratically in two Newton steps with total residuals ||F (u)||2 < 10−14

independent of dimension, grid-size, time-step and choice of model (n,m)
or initial condition. Using the pre-conditioner as a solver, turns the al-
gorithm into a Picard scheme with linear convergence (and a residual
reduction of about an order of magnitude per non-linear step).

Given a high quality initial condition for porosity generated by the
sinc-collocation scheme, we first project that solution onto our initial
porosity as f0, the general time stepping algorithm is:

Algorithm 1 SLCN-Newton-Krylov algorithm for Magma

Require: at t = 0, step k = 0: Set initial condition fk = f0, pk = 0,
set ∆t = 0, Solve for pk (k = 0) by Newton
set ∆t = dt
for k = 1, 2, . . . do {loop until t ≥ tmax}

Set initial Guess:
set pk = pk−1

solve Mfk =
∫

q
(

g(x∗) + ∆t/2fm

k−1
pk
)

dx
while ||F (u)||2 > tol do

Iterate preconditioned Newton-Krylov method for fk,pk
end while

t← t+∆t
end for

As with all non-linear solvers, having a good initial guess is critical to
robustness. In the above algorithm we make a prediction for the porosity
at the future time by solving Eq. (34a) as a projection problem with a
lagged pressure field. M is the symmetric porosity mass matrix which can
be solved with a few iterations of ICC preconditioned CG.

Though the above algorithm uses a constant time step, it is straight-
forward to implement adaptive time stepping in these two-level schemes
for variable ∆t.

1PETSc gives considerable flexibility for experimenting with a wide range of solvers and
pre-conditioners

27


	Introduction
	A Reduced Model for Magma Migration

	Solitary Wave Solutions
	Reformulation by Even Extension

	Collocation & Continuation
	Sinc Discretization
	Initial Guesses and Numerical Continuation
	Continuation in c
	Continuation in d

	System Size Reductions

	Example Solitary Wave Computations
	Solitary Wave Forms
	Convergence

	Time Dependent Simulations
	Numerical Methods
	Benchmark problems and results

	Discussion
	Sinc Approximation
	Overview
	Decay Rate
	Analyticity

	Notes on Numerical Methods for solution of space-time PDE's

