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ABSTRACT

A parallelized three-dimensional (3D) boundary element method is used to simulate the interaction between an incoming solitary wave and
a 3D submerged horizontal plate under the assumption of potential flow. The numerical setup follows closely the setup of laboratory experi-
ments recently performed at Shanghai Jiao Tong University. The numerical results are compared with the experimental results. An overall
good agreement is found for the two-dimensional wave elevation, the horizontal force and the vertical force exerted on the plate, and the
pitching moment. Even though there are some discrepancies, the comparison shows that a model solving the fully nonlinear potential flow
equations with a free surface using a 3D boundary element method can satisfactorily capture the main features of the interaction between
nonlinear waves and a submerged horizontal plate.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0043912

I. INTRODUCTION

Submerged horizontal plates are common coastal engineering
structures that are used for several purposes. When located close to or
at the mean water surface, they can act as effective breakwaters for off-
shore wave control and harbor protection as discussed by Yu.1

Meanwhile, a pulsating reverse flow may occur below these break-
waters under certain circumstances. Turbines can be put under the
plate (Graw2 and Carter3) to convert wave energy. A lot of other
coastal structures, such as bridges, docks and very large floating struc-
tures, can be modeled as submerged plates in order to study the effects
of storm surges, tsunamis, and other extreme wave events.

Periodic wave scattering by submerged plates has been widely
studied. Siew and Hurley4 provided first-order reflection and trans-
mission coefficients for the scattering of long waves by a submerged
plate. Patarapanich5 studied forces and moments exerted on plates
both experimentally and numerically using a finite element method.
The effects of various parameters such as the ratio of plate length to
wavelength and the submergence depth were investigated as well.

Cheong et al.6 extended the eigenfunction expansion method to the
complete range of water depths and compared reflection and trans-
mission results with finite-element simulations. Dong et al.7 used a
modified matched eigenfunction expansion method to analyze
wave scattering on a submerged horizontal plate over variable
topography.

Due to their simplicity for experimental studies, solitary waves
have been used extensively by researchers. Lo and Liu8 conducted shal-
low water experiments of solitary waves incident on a submerged
plate. Experimental results were compared with numerical simulations
and analytical solutions based on linear long wave theory. Strong vorti-
ces were observed near the trailing edges using particle image velocim-
etry (PIV). Seiffert et al.9 conducted a series of laboratory experiments
to investigate the forces exerted on a submerged plate by solitary
waves. Hayatdavoodi and Ertekin10 studied wave-induced loads due to
solitary and cnoidal waves using Green-Naghdi theory and the influ-
ence of several parameters was discussed. Dong et al.11 conducted
experiments and simulated solitary-wave interactions with a submerged
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horizontal plate both on a flat bottom and on a sloping beach. Christou
et al.12 studied the influence of the angle of attack when a solitary wave
propagates over a thin finite square plate. They used Hydro3D, an open
source large eddy simulation code. Xie et al.13 used a multiphase flow
model combined with the large-eddy simulation approach to investigate
the interaction of a solitary wave with a thin submerged plate. Wang
et al.14 performed three-dimensional (3D) experiments and measured
the spatial and temporal variation of the two-dimensional (2D) free-
surface deformation using a multilens stereo reconstruction system.
The hydrodynamic loads were measured by underwater load cells.
Wave focusing induced by the plate led to an increased maximum ele-
vation along the streamwise centerline of the plate. A six-stage loading
process based on the maxima of the vertical wave force and the pitching
moment was proposed. One of the conclusions is that the vertical wave
force on the plate is reduced compared to that obtained in previous 2D
experiments. Although strong vortices were observed at the trailing
edges of the plate, it is legitimate to ask the following question: can this
problem only be solved by Computational Fluid Dynamics (CFD) or
can fully nonlinear potential flow theory still be applied to this prob-
lem? Of course, it depends on the Reynolds number. In Xie et al.,13 the
Reynolds number based on the wave speed and plate thickness is
approximately equal to 104, which justifies the use of CFD methods. In
the experiments of Wang et al.,14 the Reynolds number is one order of
magnitude larger (�105) because of a thicker plate and a larger water
depth.

In the present paper, we first describe the numerical method in
Sec. II. The laboratory experiment is reviewed in Sec. III. Numerical
results for the wave elevation, the vertical force, and the moment are
provided in Sec. IV. They are compared with experimental results.
Velocity fields are also shown. The effect of vortices that is neglected
in the numerical simulations is discussed. In Sec. V, we investigate the
influence of the thickness of the plate. Additional results are provided
as supplementary material.

II. NUMERICAL METHOD

The fully nonlinear potential flow model with a free surface is
used to solve the problem of a solitary wave impacting on a submerged
horizontal plate. The fluid domain is denoted by X, with boundary C.
The boundary includes the free surface, the wavemaker, the bottom,
the submerged plate, and a vertical wall far downstream of the plate.

A. Mathematical formulation

The velocity potential /ðx; tÞ, where x ¼ ðx; y; zÞ is the vector of
spatial coordinates with z the vertical coordinate and t is the time, is
used to represent inviscid irrotational flows. The continuity equation
in the fluid domain is Laplace’s equation for /,

r2/ ¼ 0: (1)

We follow the approach described in Grilli et al.15 The three-
dimensional free space Green’s function is defined as

Gðx; xlÞ ¼
1

4pr
;

@G

@n
ðx; xlÞ ¼ �

1

4p

r � n

r3
; (2)

where r ¼ x � xl with r ¼ jrj being the distance from the source
point x to the collocation point xl , and n representing the normal unit
vector pointing out of the domain at point x.

Green’s second identity transforms Laplace’s equation (1) into an
integral equation on the boundary,

aðxlÞ/ðxlÞ ¼

ð

C

@/

@n
ðxÞGðx; xlÞ � /ðxÞ

@G

@n
ðx; xlÞ

� �

dC; (3)

where aðxlÞ is proportional to the exterior solid angle made by the
boundary at the collocation point xl .

On the free surface, / satisfies the nonlinear kinematic and
dynamic boundary conditions, written in a mixed Eulerian–Lagrangian
form, with the material derivativeD=Dt � @=@t þr/ � r,

Dx

Dt
¼ r/; (4)

D/

Dt
¼ �gz þ

1

2
r/ � r/; (5)

where x is the position vector of a free-surface fluid particle and g the
acceleration due to gravity. The atmospheric pressure has been set
equal to 0. In the case of wave generation by a wavemaker moving
with velocity U, the normal velocity is continuous over the surface of
the wavemaker,

@/

@n
¼ U � n: (6)

At the bottom CbðtÞ and along other fixed parts of the boundary, the
no-flow condition @/=@n ¼ 0 is prescribed.

B. Time integration

Following the method implemented in Grilli et al.’s16 3D model,
second-order explicit Taylor series expansions are used to express
both the new position and potential on the free surface. First-order
coefficients are given by boundary conditions (4) and (5). The pairs
@/=@t; @2/=@t@n that are needed to obtain second-order coefficients
are computed by solving another integral equation similar to equation
(3). For the evaluation of the tangential derivatives, a fourth-order
interpolation scheme is employed.

The time step is adapted by finding the minimum distance
between two nodes on the free surface. Grilli et al.17 found an optimal
value for the constant Courant number C0 of roughly 0.4. In order to
maintain the stability when strong nonlinear free surface deformations
occur, an equally spaced regridding method is adopted every 10 time
steps, starting when the crest of the solitary wave arrives at the front
edge of the plate. Lagrangian points would otherwise concentrate and
eventually lead to a crash of the computations. In the literature,
researchers use similar smoothing techniques to remove instabilities.
For instance, Longuet-Higgins et al.18 used a filter every 5, 10, or 20
time-steps. Xue et al.19 applied a similar technique every Ns (Ns typi-
cally 3 or 6) steps. Grilli et al.16 and Fochesato and Dias20 also used a
free surface node regridding method.

C. Spatial discretization

In this subsection, we follow closely Fochesato and Dias.20 The
boundary is discretized into N collocation nodes and M high-order
elements are used to interpolate in between q of these nodes. Within
each element, the boundary geometry and the field variables are
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discretized using polynomial shape functions Njðn; gÞ, where n

denotes the intrinsic coordinates of the reference element,

xðn; gÞ ¼
X

q

j¼1

Njðn; gÞxj; (7)

/ðn; gÞ ¼
X

q

j¼1

Njðn; gÞ/j;
@/

@n
ðn; gÞ ¼

X

q

j¼1

Njðn; gÞ
@/

@nj
; (8)

where the indices j ¼ 1;…; q locally number the nodes within each
element. We choose cubic reference elements (q¼ 16), which provides
C2 continuity in between elements.

The integral equation (3) is transformed into a sum of integrals
over the boundary elements, each one being calculated on the refer-
ence element. The change of variables is described by the Jacobian of
the transformation J i for the ith element. Thus, the discretized form of
the integrals can be written as

ð

C

@/

@n
ðxÞGðx; xlÞdC

¼
X

M

i¼1

ð

Cn;g

X

q

j¼1

@/

@n
ðxjÞNjðn; gÞGðxðn; gÞ; xlÞjJ

iðn; gÞjdn dg

8

<

:

9

=

;

;

(9)

ð

C

/ðxÞ
@G

@n
ðx;xlÞdC

¼
X

M

i¼1

ð

Cn;g

X

q

j¼1

/ðxjÞNjðn;gÞ
@G

@n
ðxðn;gÞ;xlÞjJ

iðn;gÞjdndg

8

<

:

9

=

;

:

(10)

The associated discretized boundary integral equation leads to a sum
on the N boundary nodes,

aðxlÞ/ðxlÞ ¼
X

N

j¼1

KD
lj

@/

@n
ðxjÞ � KN

lj /ðxjÞ

� �

; (11)

where l ¼ 1;…;N and KD
lj are Dirichlet, Neumann, and global matri-

ces, respectively.
When the collocation node l does not belong to the integrated

element, a standard Gauss-Legendre quadrature is used. When it does
belong to the element, r becomes zero at one of the nodes and a self-

FIG. 1. Illustration of the new scheme implemented in the numerical code. The
interface is the common surface shared by adjacent subdomains. Double nodes
are applied on the intersection line between the interface and the free surface.
Hollow circles denote the nodes on the free surface and filled circles represent the
nodes on the interface. Here, a Dirichlet boundary condition is applied on the inter-
face. Therefore, the double nodes on both surfaces have the same Dirichlet bound-
ary condition, which leads to a singularity. The new scheme resolves this issue by
imposing a Neumann boundary condition on the double nodes on the free surface,
using the values from the previous time step.

TABLE I. Cores information and CPU time related to the domain decomposition
method.

Cores 20 30 40 50 60

Time(s) 66957 30075 18649 12921 9791

Speedup 1 2.22 3.59 5.18 6.83

FIG. 2. Speed up of the domain decomposition method. A linear speed up is indi-
cated for comparison.

FIG. 3. Overview of the wave flume and
plate used for the laboratory experiments.
A solitary wave is generated by the wave-
maker. It then propagates along the flume
and passes the plate.
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adaptive singular quadrature21 is implemented to handle the presence
of the singularity on the boundary.

Instead of computing the diagonal coefficient of the Neumann
matrix KN

ll , the rigid mode technique is used,

aðxlÞ þ KN
ll ¼ �

X

N

j¼1ð6¼lÞ

KN
lj ; l ¼ 1;…;N; (12)

which provides the diagonal term of a row by minus the sum of its off-
diagonal coefficients. In terms of the intersecting parts of different
boundaries, such as between the free surface and the lateral bound-
aries, the boundary conditions and the normal directions are generally
different. Therefore, double-nodes are used to represent these corners
and the continuity of the potential is imposed.

D. Domain decomposition

In order for the simulations to mimic as closely as possible the
experiments, domain decomposition22–24 is used to boost the effi-
ciency. The fundamental idea of domain decomposition is to divide
the computational region into two or more subdomains. The bound-
ary integral equation is solved independently in each subdomain. One
major issue in domain decomposition is to satisfy continuity between
adjacent subdomains.

Following the so-called D/D-N/N scheme introduced by De
Haas et al.,23 the computational domain is decomposed into the sub-
domains X1 and X2 which are separated by an interface C. On the
interface, the potential and its derivative are unknown, and an initial
guess needs to be imposed. An iterative procedure is then used to get
the exact potential or its derivative on the interface. The properties of
Laplace’s equation lead to continuous potential values and of their
derivatives on the interface. The scheme can be extended straightfor-
wardly to the case of more subdomains.

The only issue in this iterative scheme is to deal with the case
when the interface has a Dirichlet boundary. Because the double nodes
share the same geometry and boundary condition between the free
surface and the interface, their coefficients in the matrix will be exactly
the same resulting in singular algebraic equations. To deal with this
difficulty, the so-called semidiscontinuous elements were proposed in
Ref. 24. The idea is to use different geometrical points to do the inte-
gration based on a discontinuity coefficient c. It brings extra error in
the simulation. As stated in Ref. 24, this method provides slightly
better-conditioned matrix equations, but the convergence is still slow
when using an iterative solver. Here, we propose another way to
resolve this difficulty.

The singularity occurs because the double nodes share the same
Dirichlet boundary condition. Thus if we can somehow change one of
the double nodes into a Neumann boundary condition, then the conti-
nuity of potential can be imposed again. Although the normal deriva-
tives are unknown on the free surface, in the iterative procedure, we
can always get an inaccurate solution from the previous step.
Therefore, when the interface is of Dirichlet boundary type, we can
change one of the double nodes on the free surface into a Neumann
boundary condition using the normal derivative from the previous
step. This slightly modified scheme has been satisfactorily imple-
mented in the numerical code.

In order to illustrate this new scheme, we first recapitulate the
original algorithm as follows:24

(0) Choose an initial guess /k on the interface C, (k¼ 0);
(i) Solve Laplace’s equation in each sub-domain to get @/k

1=@n1 and
@/k

2=@n2 on C;
(ii) Take an average of the solutions (the normal vectors n1 and n2 are

opposite):

FIG. 4. Side view of the wave flume and plate used for the laboratory experiments.
The plate is 200 cm long, 78 cm wide, and 10 cm thick. The parameters that can be
adjusted in the experiments are the wave height H, the water depth h, the distance
from the bottom to the lower surface of the plate B and the depth of submergence
of the plate G.

FIG. 5. Top view of the wave flume and plate used for the laboratory experiments
(all distances are in cm). The locations of the twenty wave gauges, labeled 1 to 20,
are shown. They lie along four lines in the direction of the wave (I, II, III, IV) and
five lines across the wave flume (1, 2, 3, 4, 5).

TABLE II. Coordinates of the twenty wave gauges (in cm). The coordinates (0, 0) correspond to the center of the plate.

WG1 (–145,–95) WG5 (–105,–95) WG9 (0,–95) WG13 (105,–95) WG17 (145,–95)

WG2 (–145,–45) WG6 (–105,–45) WG10 (0,–45) WG14 (105,–45) WG18 (145,–45)

WG3 (–145,0) WG7 (–105,0) WG11 (0,0) WG15 (105,0) WG19 (145,0)

WG4 (–145,45) WG8 (–105,45) WG12 (0,45) WG16 (105,45) WG20 (145,45)
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@/kþ1

@n
¼

1

2

@/k
1

@n1
�
@/k

2

@n2

 !

; (13)

(iii) Solve Laplace’s equation with Neumann boundary condition on
the interface to get /kþ1

1 and /kþ1
2 ;

(iv) Take an average of the solutions:

/kþ2 ¼
1

2
/kþ1
1 þ /kþ1

2

� �

; (14)

(v) Calculate the maximum error �kþ2 on C:

�kþ2 ¼ maxj/kþ1
1 � /kþ1

2 j; (15)

(vi) If �kþ2 satisfies a prescribed criterion, then exit the iteration.
Otherwise, go to step (1) and repeat with k ¼ kþ 2.

The problem mentioned above occurs at step (i) since the interface
and the free surface both share Dirichlet boundary conditions. As
shown in Fig. 1, double nodes are used on the intersection of the free
surface and the interface. We can change those double nodes on the free
surface into a Neumann boundary condition. In the initial step (0), the
normal derivative we need can be obtained from the solution of the pre-
vious time step. In step (iii), when we solve Laplace’s equation with a
Neumann boundary condition on the interface, we get normal deriva-
tives on the free surface. Those values can be used during the iteration.

The main advantage of this domain decomposition method is
that it is superlinear – see Table I and Fig. 2. The reason is that the
assembly of the full matrix is OðN2Þ and here we use a direct solver
which is OðN3Þ. We need to mention that in this scheme a few extra
nodes are added on the interface.

III. DESCRIPTION OF THE EXPERIMENT

A. Experimental setup

The experiments were conducted in the Tsunami Basin for
Offshore Regions in Shanghai Jiao Tong University.14 The wave flume
is 42 m long and 4 m wide with a piston type wavemaker installed at
one end. The plate-type structure is made of organic glass. It is 200 cm
long, 78 cm wide, 10 cm thick and mounted on the bottom in the

FIG. 6. Convergence tests for the mesh
size along the plate when B¼ 40 cm,
h¼ 60 cm, H=h ¼ 0:3. The horizontal
force Fx is compared for three sets of
mesh sizes (an enlargement of the first
peak of the left plot is shown in the right
plot).

TABLE III. List of the 41 cases investigated experimentally. They correspond to vari-
ous combinations of water depth h, submerged depth B, and dimensionless wave
height H/h. All dimensional quantities are expressed in cm.

B (cm) h (cm) H/h

20 35 0.1, 0.2, 0.3, 0.4, 0.5 (break)

40 0.1, 0.2, 0.3, 0.4, 0.5

50 0.1, 0.2, 0.3, 0.4, 0.5

60 0.1, 0.2, 0.3, 0.4

30 45 0.1, 0.2, 0.3 (break), 0.4 (break), 0.5 (break)

50 0.1, 0.2, 0.3, 0.4, 0.5

60 0.1, 0.2, 0.3, 0.4

40 55 0.1, 0.2, 0.3 (break), 0.4 (break)

60 0.1, 0.2, 0.3, 0.4

FIG. 7. Comparison of the free-surface elevation at 15 selected wave gauges when B¼ 30 cm, h¼ 50 cm, H=h ¼ 0:5 (solid line: numerical results, dashed line: experimental
results).
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middle region of the flume (Figs. 3 and 4). Four piezoelectric force bal-
ance units are installed inside the plate. A dynamometric system is
used to measure wave loads on the structure. The constant water depth
is denoted by h.

The free-surface elevation is measured by resistance-type wave
gauges. Twenty wave gauges are spread around the plate. Their exact
locations and labels are shown in Fig. 5. Taking the center of the plate
as the origin (0,0) of the ðx; yÞ� plane, we list the ðx; yÞ� coordinates
of all the wave gauges (WG) in Table II.

B. Wave generation

Solitary waves are generated by a piston-type wavemaker on the
left side of the wave tank. A third-order solitary wave profile25 is
defined by (note that the wave profile is uniform across the flume, so it
is given as a function of x only)

gðx; tÞ ¼ H sech2 1�
3

4
a tanh2þa2

5

8
tanh2 �

101

80
sech2 tanh2

� �� 	

;

(16)

k ¼

ffiffiffiffiffiffiffi

3a

4h2

r

1�
5

8
aþ

71

128
a2

� �

; (17)

c ¼
ffiffiffiffiffi

gh
p

1þ
a

2
�

3

20
a2 þ

3

56
a3

� �

; (18)

where g is the wave elevation, H the wave height, h the still water
depth, a ¼ H=h, g the acceleration due to gravity and c the wave celer-
ity. The symbols sech, respectively, tanh, denote sech ðkðct � xÞÞ,
respectively tanh ðkðct � xÞÞ.

In reference to the improved Goring et al.26 wave generation
method introduced by Malek-Mohammadi et al.,27 the horizontal
velocity of the piston is determined by

Uðx; tÞ ¼
cwgðx; tÞ

hþ gðx; tÞ
; (19)

where cw ¼
ffiffiffiffiffi

gh
p

½1þ 1
2
ðg=hÞ � 3

20
ðg=hÞ2 þ 3

56
ðg=hÞ3�. This wave

generation method combined with the third-order solitary wave pro-
file has the capability of generating steady solitary waves of dimension-
less wave amplitude up to H=h ¼ 0:5.28 It is implemented in the
numerical code.

IV. RESULTS

The size of the computational domain is exactly the same as that
of the wave flume: 42 m long and 4 m wide with a moving boundary
condition at the left end. At the bottom and along other fixed bound-
aries, the impermeable condition is applied. The right end is far way
from the plate so that the reflected wave has no influence. The discreti-
zation used in the simulations is 300� 30� 10 elements on the tank
boundaries and 25� 10� 5 on the plate boundaries along the x, y,
and z directions, respectively (i.e., 25,450 elements and 26,982 nodes).
The numbers of elements on the tank boundaries are chosen based on
the finest mesh used in Ref. 16. Additional convergence tests, shown
in Fig. 6, have been performed to check the level of refinement needed
along the plate. As can be seen, refining the mesh further has a negligi-
ble effect on the hydrodynamic load. In Xie et al.,13 where a CFD code
was used, the computational domain is discretized by a uniform mesh
1600� 96� 160.

FIG. 8. Comparison of the free-surface elevation at wave gauge WG11 (solid line: numerical, dashed line: experimental).
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As shown in Fig. 4, G is the submerged depth and B the distance
from the bottom to the lower surface of the plate. For the comparison
between experiments and numerical simulations, 41 cases have been
investigated. They correspond to various combinations of water depth,
wave height, and submerged depth that are listed in Table III. In five of
these combinations, breaking waves were observed in the experiments.

We first compare the numerical results for the surface elevations,
horizontal and vertical forces, and pitching moments with the experi-
mental results. Then we present results for the velocity fields. Finally,
the basic hydrodynamic loading process that occurs when the solitary
wave propagates past the plate is analyzed. Numerical results for all
cases can be found in the supplementary material.

A. Surface elevation

From the top view of the numerical channel shown in Fig. 5
together with the locations of the wave gauges, it is seen that the

wave gauges WG3, 7, 11, 15, and 19 lie on the middle line of the
plate. The wave gauges WG2, 6, 10, 14, 18 and WG4, 8, 12, 16, 20
are symmetrically located on both sides of the plate. The wave
gauges WG1, 5, 9, 13, and 17 lie further away from the plate.
Although there are small discrepancies, the results of WG4, 8, 12,
16, and 20 are close to those of WG2, 6, 10, 14, and 18. Therefore,
they are not shown here.

To show all the cases at all the wave gauges would take too much
space. Instead, we decided to show first the differences between the
wave gauges for a given experimental setup—see Fig. 7—and then
the differences between the various cases at a given wave gauge—see
Fig. 8. Throughout the discussion, the numerical and experimental
results are synchronized using the data from WG3, which is located
on the middle line upstream of the plate.

The experimental case we selected for the comparison at all wave
gauges has the following characteristics: B¼ 30 cm, h¼ 50 cm,
H=h ¼ 0:5. It corresponds to a large amplitude nonbreaking wave

FIG. 9. Deformation of the free surface (from 10.6 to 13.4 s—the interval is 0.2 s—left to right and top to bottom) when B¼ 40 cm, h¼ 60 cm and H=h ¼ 0:3.
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(H=h ¼ 0:5) with a plate, which is relatively close to the free surface
(G¼ 10 cm). Overall, the numerical results shown in Fig. 7 compare
well with the experimental data, both for the peak and for the oscilla-
tions that follow (the oscillations are clearly visible at WG11, for exam-
ple). The wave height increases from the lateral side to the middle line.
The highest peak occurs at WG15 when the solitary wave leaves the
plate. This is due to wave shoaling.

By looking at the first three wave gauges WG1, WG2, and WG3,
we notice that the wave reflected by the leading edge of the plate is
quite small compared to the large deformations at WG11 and WG15.
This is different from what happens in 2D experiments,8 where the
reflected wave is clearly observed.

Checking the three wave gauges WG7, WG10, and WG15 that
surround WG11 in Fig. 7, it can be seen that the oscillations are

noticeable at all three gauges. This indicates that the large deformation
above the plate propagates in all directions.

Figure 8 shows the free surface elevation for all selected cases
at WG11, which is above the center of the plate. It can be seen that
when the plate is closer to the free surface, the free surface deforms
more. For example, after the solitary wave passes over the plate,
the oscillations that appear are larger when B¼ 40 cm than when
B¼ 20 cm.

Generally speaking, as the wave amplitude becomes larger, the
agreement between experimental and numerical results becomes bet-
ter. This is partly due to the electrical noise in the experiments. For
large amplitude waves, the influence of electrical noise becomes negli-
gible. For small amplitude waves, the numerical peak is smaller than
the experimental peak.

FIG. 10. Horizontal force Fx, vertical force
Fz and pitching moment My for two differ-
ent runs with h¼ 60 cm, H=h ¼ 0:4; left:
B¼ 20 cm, right: B¼ 40 cm.
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Figure 9 shows the overall free-surface deformation above the
plate for the case B¼ 40 cm, h¼ 60 cm, and H=h ¼ 0:3. As the soli-
tary wave passes above the plate, the wave amplitude becomes larger
due to shoaling. Once the large amplitude wave reaches its maximum
amplitude, it propagates in all directions, causing reflection from the
trailing edge. Meanwhile, the reflection also occurs at the leading edge.
These two effects compete simultaneously and leave a pitfall just above
the plate. The large amplitude wave keeps radiating and overcomes
the pitfall leaving a bulge above the plate.

B. Horizontal force, vertical force, andmoment

As anticipated because of the symmetries involved in the experi-
mental and numerical setups, it has been confirmed both by14 and in
the present work that the lateral force Fy, the yaw momentMz and the

roll momentMx are negligible. Therefore, we concentrate on the hori-
zontal force Fx, the vertical force Fz, and the (pitching) momentMy for
comparisons between the various cases. The basic behavior of Fx, Fz,
and My was explained in Ref. 14, where a six-stage process was intro-
duced to highlight the various peaks in the vertical force and moment.

As said above, we ran a lot of cases. In Fig. 10, we show the results
for two cases which we believe are representative of all cases. In these
two cases, all parameters are identical except the depth of submergence
of the plate. A third case is shown in Fig. 11. In terms of horizontal
and vertical forces, the numerical results agree well with the experi-
mental data, even if the first peak is systematically underpredicted by
the numerical code. The agreement for the moment is not as good:
after some time, the numerical values deviate from the experimental
values. The greater the free-surface deformation, the longer the
moment agrees (this is shown in the supplementary material). The

FIG. 11. Extreme value of the hydrody-
namic loads Fx, Fz and My when
h¼ 50 cm, H=h ¼ 0:5, B¼ 30 cm.

FIG. 12. h¼ 60 cm: Positive maximum
and negative minimum horizontal force as
a function of H/h for various values of B.
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FIG. 13. h¼ 60 cm: Positive maximum
and negative minimum vertical force as a
function of H/h for various values of B.

FIG. 14. h¼ 60 cm: Positive maximum
and negative moment as a function of H/h
for various values of B.
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moment is dominated by the pressure distribution on the upper and
lower surfaces of the plate. What is intriguing in the experimental data
is that the moment decreases first and then amplifies as seen for exam-
ple in Fig. 10. In the subplot at the lower left, the experimental

moment is very small for t between 12 and 14 s but oscillations of

increasing amplitude appear for t> 14 s. In the subplot at the lower

right, the experimental moment develops oscillations of increasing

amplitude for t> 15 s. The match between experimental and numeri-

cal values is poor and remains unexplained at this stage. For the hori-

zontal force, as observed in both cases, the plate first experiences a

positive force and then a negative force. This sequence occurs when

the solitary wave hits the leading edge and then leaves the trailing

edge. The basic structure of the vertical force has been explained in

Ref. 8. It is of interest to explore the oscillations observed in the hydro-

dynamic loads as well as in the wave gauge data. Their connection will

be explained in the next section.
As shown in Fig. 11, where results for a different set of parameter

values are presented, we can define the positive maximum horizontal
force as fxþ and the negative minimum force as fx–. The first peak val-
ues of the vertical force and moment are defined as fzþ1 andMyþ1 . The
second peaks are defined as fzþ2 and Myþ2 . The negative minima are
defined as fz� andMy–. As can be seen in Figs. 12–14, the discrepancy
between experimental and numerical values increases as the wave
amplitude increases. As explained in Refs. 8 and 29, the discrepancy is
most likely due to the presence of a boundary layer and vortex shed-
ding along the plate, which alter the pressure distribution on the plate.
In general, the numerical results capture the trend of these extreme
values. Note that the purpose of the experiments of Ref. 14 was not to

FIG. 15. Case h¼ 60 cm, H=h ¼ 0:3, B¼ 40 cm: Time history of the vertical force
and of the free-surface elevation at WG11. Four times A, B, C, and D have been
selected, corresponding, respectively, to the first peak fzþ1 , first trough fz

�
2 , second

peak fzþ3 , and second trough fz
�
4 of the vertical force.

FIG. 16. Case h¼ 60 cm, H=h ¼ 0:3, B¼ 40 cm: Two-dimensional free-surface elevation at the four times A, B, C, and D selected in Fig. 15.
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detect boundary layer effects. The flow near the four edges is obviously
more complicated than the rest of the flow. Strong vortices can form
near these edges.

In the following figures (Figs. 15 and 16), we show the 2D free-
surface elevation at four selected times. Figure 15, which corresponds
to the case h¼ 60 cm, H=h ¼ 0:3, B¼ 40 cm, shows the time evolu-
tion of the vertical force Fz and of the free-surface elevation at the cen-
ter of the plate. Four times labeled A, B, C, and D have been selected
for the snapshots of the 2D free surface shown in Fig. 16. The oscilla-
tions of the vertical force are strongly linked with the free-surface
deformation at the center of the plate. When the free surface reaches a
crest, the vertical force appears to reach a trough and vice versa.
Figures 17 and 18 show the pressure distribution on the upper and
lower surfaces of the plate, respectively at the four selected times A, B,
C, and D. As the solitary wave approaches the front edge of the plate,
at time A, the dynamic pressure near the front edge increases both on
the upper and lower surfaces. The pressure on the lower surface is
greater than that on the upper surface due to the channel flow effect
between the lower surface of the plate and the bottom and leads to the
first positive vertical force. The solitary wave keeps propagating and a

FIG. 17. Case h¼ 60 cm, H=h ¼ 0:3,
B¼ 40 cm: Spatial distributions of the
hydrodynamic pressure (isobars in Pa) on
the upper surface of the plate at the four
times A, B, C, and D selected in Fig. 15.

FIG. 18. Case h¼ 60 cm, H=h ¼ 0:3,
B¼ 40 cm: Spatial distributions of the
hydrodynamic pressure (isobars in Pa) on
the lower surface of the plate at the four
times A, B, C, and D selected in Fig. 15.

FIG. 19. Time evolution of the vertical force Fz on the plate with different widths of
the wave tank (in m). The other parameters are h¼ 60 cm, H=h ¼ 0:3, B¼ 40 cm.
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FIG. 20. Projection of the velocity field in the ðx; zÞ-plane corresponding to the middle plane of the wave tank (from 10 to 13.4 s—the interval is 0.2 s) when B¼ 40 cm,
h¼ 60 cm, and H=h ¼ 0:3. The blue lines show some streamlines that are representative of how the flow changes as the solitary wave progresses.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 037129 (2021); doi: 10.1063/5.0043912 33, 037129-13

VC Author(s) 2021

https://scitation.org/journal/phf


bulge forms above the plate due to shoaling, which generates great
dynamic pressure on the upper surface at time B and leads to the first
negative vertical force. Then at time C the solitary wave just passes
over the plate. The pressure at the trailing edge is larger than that at

the front edge. The large negative dynamic pressure on the upper sur-
face leads to the second positive vertical force. Finally, at time D, the
second bulge forms above the plate and generates positive dynamic
pressure on the upper surface. Though the dynamic pressure is now

FIG. 21. Velocity field in the transverse
middle section (from 10 to 13.4 s—the
interval is 0.2 s) when B¼ 40 cm,
h¼ 60 cm, and H=h ¼ 0:3.
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much smaller than that at time B, it still leads to the second negative
vertical force because the dynamic pressure on the lower surface
becomes negligible. A discussion on the pressure distribution on a
submerged circular plate due to a solitary wave can be found in
Wu et al.30

We have partially explained the process of oscillations in Sec.

IVA that covers the above figures. Another important factor for these

sustained oscillations is the reflection from the lateral walls. To explore
that, we changed the width of the wave tank. The results for the verti-

cal force are shown in Fig. 19. When the flume width is multiplied by

2, the oscillations have a smaller amplitude. It is surprising that the fre-

quency does not change much. With four times the width, a similar
structure persists up to the third peak of the vertical force. It looks like

the magnitude of the third peak is not affected by an even larger width,

since with doubling the width from 8m to 16m, the value only

decreases a little bit.

C. Velocity field

The numerical code used in the present study can also be used to
compute velocities inside the fluid domain. Figure 20 shows the veloc-
ity field in the middle line of the tank for the case h¼ 60 cm,
H=h ¼ 0:3, B¼ 40 cm. After the solitary wave passes over the plate,
two separate flows come from opposite directions and focus above the
plate. The flow from the left is due to the reflection from the upper
surface of the plate. Meanwhile, the flow from the right is caused by
the propagation of the bulge mentioned above. Once the focused wave
reaches its peak, it spreads again.

Figure 21 shows the velocity field in the transverse middle sec-
tion. The transverse flow along the plate and the reflection from the
lateral wall can be observed. Combined with what we find in Fig. 20,
the focused wave is caused by multiple factors, including the reflection
from the upper surface of the plate, shoaling, and the transverse slosh-
ing mode.

V. INFLUENCE OF THE THICKNESS OF THE PLATE

Having shown the validity of the numerical method, several
purely numerical experiments are conducted to study the effects of the
thickness of the plate. As shown in Fig. 4, once we change the thick-
ness we may also change G and B, which are the submerged depth and
the distance between the plate and the bottom, respectively. In the fol-
lowing discussion, we decided to fix the water depth once for all to
h¼ 60 cm and the dimensionless wave height to H=h ¼ 0:3. We first

take G¼ 20 cm and consider three different cases for the thickness:
d¼ 10 cm, d¼ 20 cm, and d¼ 30 cm.

The horizontal and vertical forces are shown in Fig. 22. The verti-
cal force only increases slightly with the thickness. The horizontal force
increases with the thickness, which is not surprising. We can normal-
ize the horizontal force with the thickness as shown in Fig. 23. We also
checked that the free-surface elevations at three wave gauges along the
middle line are the same within graphical accuracy. Therefore, we can
conclude that under the same submerged depth G, the thickness of the
plate has negligible effects on both the hydrodynamic loads and the
free-surface elevation around the plate. For the latter one, Lo and Liu8

have shown that in the two-dimensional case varying the thickness
changes the shapes of both the reflected and transmitted waves.

After discussing the effects of the thickness with fixed G, we now
fix B¼ 20 cm and change the thickness in three different cases:
d¼ 10 cm, d¼ 20 cm, and d¼ 30 cm. In other words, the correspond-
ing depths of submergence are G¼ 30 cm, G¼ 20 cm, and G¼ 10 cm.
The horizontal, vertical, and normalized horizontal forces are shown
in Fig. 24. The wave elevations at three selected wave gauges are shown
in Fig. 25. They are substantially different in the three cases. To check
whether or not the differences are caused by the difference in thickness
or the difference in depth of submergence, we computed the vertical

FIG. 22. Horizontal and vertical force with
three different thicknesses when
G¼ 20 cm, h¼ 60 cm, and H=h ¼ 0:3.

FIG. 23. Horizontal force divided by the thickness with three different thicknesses
when G¼ 20 cm, h¼ 60 cm, and H=h ¼ 0:3.
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FIG. 24. Horizontal, vertical and normal-
ized horizontal forces with three different
thicknesses when B¼ 20 cm, h¼ 60 cm,
and H=h ¼ 0:3.

FIG. 25. Wave elevation at three wave
gauges along the middle line with three
different thicknesses when B¼ 20 cm,
h¼ 60 cm, and H=h ¼ 0:3.
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force with G¼ 10 cm, B¼ 40 cm, d¼ 10 cm and G¼ 10 cm,
B¼ 20 cm, d¼ 30 cm. We found that the main feature of the vertical
force is maintained with different thicknesses under the same depth of
submergence. Therefore, the characteristics of the hydrodynamic loads
and wave elevations around the plate are dominated by the depth of
submergence.

VI. CONCLUSION

The interaction between a solitary wave and a fully submerged
three-dimensional horizontal plate is investigated numerically and
the results are compared with those of three-dimensional laboratory
experiments described in Ref. 14. The wave focusing phenomenon
that was observed experimentally is also observed numerically. The
free-surface elevation increases gradually along the centerline of the
plate and exceeds the incoming wave amplitude. The presence of the
three-dimensional plate modifies the shape of the solitary wave. A
wave amplification is produced by the local shoaling effect of the
plate and the shoaling-induced wave refraction. A larger amplitude
of the solitary wave leads to a stronger focusing up to the end of the
plate.

The horizontal wave force is characterized by a peak followed by
a trough. The vertical wave force is characterized by a series of peaks
and troughs. The loading process is described based on the peaks of
the vertical force and the pitching moment. The process is linked with
the oscillations of the free-surface elevation. When the wave
approaches or leaves the plate, the channel flow under the plate con-
tributes to the positive peaks of the vertical force. As the wave crest
approaches the center of the plate, the negative force caused by the
dynamic pressure on the top side of the plate dominates. The strong
focusing of large-amplitude waves reduces the second positive peak.
The pitching moment is mainly generated by the vertical force, and
the observation of surface elevation indicates that the time for the peak
of pitching moment depends on the occurrence of the maximum sur-
face elevation.

Then the velocity field is illustrated. Unfortunately, there are no
experimental results to compare it with. Finally, the influence of the
plate thickness is found to be negligible.

In the introduction, we asked the question: can the problem of a
solitary wave impacting on a submerged horizontal plate only be
solved by Computational Fluid Dynamics (CFD) or can fully nonlin-
ear potential flow theory still be applied to this problem? In the experi-
ments of Wang et al.14 that we used for the comparisons, the Reynolds
number was of the order of 105. Overall, the potential flow model gives
good results. However, there are some discrepancies, especially for the
pitching moment. In the future, it is suggested to compare the experi-
mental results also with a Navier-Stokes solver, especially when break-
ing waves have been observed in the experiments. The present
problem could become an excellent benchmark to study the perfor-
mance of codes that can handle wave breaking.

SUPPLEMENTARY MATERIAL

See the supplementary material for results for all the cases.
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