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Abstract
This paper proposes a finite difference scheme with a three-level time and a five-point stencil in space to solve an initial 
boundary value problem for the MRLW equation. The scheme is shown to be marginally stable and convergent with a 
fourth-order convergence in the space direction and a second-order convergence in the time variable direction with 
regard to the maximum norm. The conservation properties of the proposed scheme are assessed using the three motion 
invariants for mass, momentum, and energy. To validate the theoretical results, numerical experiments are given for both 
single and interaction of two and three solitary waves.
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1 Introduction

Solitary waves, or solitons as they are also known, are 
nonlinear waves that have the ability to propagate 
through media over a prolonged period while 
maintaining key properties; for example, velocity and 
shape [1]. As solitons remain stable when they collide with 
other solitons, they have found widespread application in 
a range of areas including optics, fluid mechanics, finance, 
biology, physics, engineering sciences, and neuroscience. 
Nonlinear partial differential equations are used to model 
solitons. For example, the regularized long wave (RLW) 
equation, which was originally presented by Peregrine [2] 
and Benjamin et al. [3], is as follows:

where � and � are positive constants. It is considered with 
the homogeneous Dirichlet boundary conditions u → 0  
as x → ±∞.

The RLW equation is particular case of the generalized 
long wave (GRLW) equation which has the form

where p is a positive integer by setting p = 1 . In our paper, 
we consider another particular case of the GRLW equation 
called the modified regularized long wave (MRLW) 
equation when p = 2 and is given by

The GRLW equation and its particulars cases: RLW equation  
and MRLW equation were initially suggested as a means of (1)ut + ux + �uux − �uxxt = 0, x ∈ ℜ, 0 ≤ t ≤ T ,

(2)ut + ux + �upux − �uxxt = 0,

(3)ut + ux + �u2ux − �uxxt = 0.
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modeling phenomena that exhibited dispersion waves in 
combination with weak nonlinearity; for example, pressure 
waves in a liquid gas bubble mixture, ion-acoustic and 
magnetohydrodynamic waves in plasma, phonon packets 
in nonlinear crystals, and nonlinear transverse waves in 
shallow water. The analytical solution that underpins the 
MRLW equation is limited to single solitary waves under 
the restricted initial and boundary conditions. Scholars 
have yet to develop formulae for other cases, for example, 
within the context of the Maxwellian initial condition and 
situations involving the interaction of more than one 
soliton. As such, the development of accurate numerical 
approximations remains critical such as finite difference 
methods [4–9], finite element method [10–13], mixed finite 
element method [14, 15], collocation method [16–18], 
spectral method [19, 20] and Adomian decomposition 
method [21, 22].

Numerous finite difference schemes for the MRLW prob-
lem have been documented in the extant literature, with 
many scholars placing a specific focus on the finite differ-
ence methods and the MRLW equation. The MRLW prob-
lem, for instance, was solved using the finite difference 
approach by Khalifa et al. [6], who also investigated other 
aspects of the MRLW equation, including the interaction 
of solitary waves. Additionally, Fourier analysis was per-
formed to demonstrate the stability of the scheme. The 
truncation error was also well controlled.

The generalized regularised long wave (GRLW) problem 
was solved by Akbari and Mokhtari using a new compact 
finite difference method (CFDM) [23]. The stability analy-
sis of the energy method was explored, and an error esti-
mate was presented. The method was validated using two 
solitary waves interaction and the propagation of single 
solitons. To ascertain the method conservation properties, 
three motion invariants were assessed.

A fully implicit finite difference technique for the 
numerical solution of the MRLW equation was presented 
by Inan and Bahadir [24]. The validity of the approach was 
tested using several MRLW equation examples. A com-
parison of the results with analytical and other numerical 
invariants demonstrated the accuracy and dependability 
of the outcomes achieved utilizing the fully implicit finite 
difference scheme.

In the current study, we suggest a finite difference 
approach to solve the MRLW equation that has three lev-
els in time and a five-point stencil in space. The stabil-
ity of the Fourier analysis-based method is considered, 
and the accuracy of the convergence rate of O(h4 + k2) 
is also proved. The remainder of this paper is structured 
as follows. The analytical solution of the MRLW equation 

and its conservative laws are reviewed in Sect. 2. The 
creation of the suggested scheme is the focus of Sect. 3. 
The stability and convergence rates of the scheme are 
examined in Sect. 4. To validate our theoretical findings, 
Sect. 5 presents various numerical experiments for sin-
gle and interaction of solitons. Finally, our concluding 
remarks are contained in Sect. 6.

2  Analytical solution and conservation laws

The analytical solution of the MRLW equation Eq. (3) is 
given in the form [6]

where 
√

6c

�
 is the amplitude of the MRLW solitary wave. 

The solitary wave is initially centred at x0 and its speed and 
its width are represented by c and 

√
c

�(c+1)
 , respectively.

The validity of the numerical methods can be deter-
mined using the three invariants of the motion that the 
MRLW equation has; that is, the mass, momentum, and 
energy conservative laws given as [6, 25]:

and

The use of these invariants can be particularly pertinent 
in situations for which there are no analytic solutions or 
during soliton interactions [25].

3  Construction of the finite difference 
scheme

To construct the finite difference scheme of the MRLW 
equation Eq. (3) with a three-level scheme in time and 
a five-point stencil in space, the following notations for 
the derivatives are used:

(4)u(x, t) =

√
6c

�
sech

(√
c

�(c + 1)
(x − (c + 1)t − x0)

)
,

(5)I1 =∫
∞

−∞

u(x, t)dx,

(6)I2 =∫
∞

−∞

(u2 + �u2
x
)dx,

(7)I3 = ∫
∞

−∞

(u4 −
6�

�
u2
x
)dx.
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where k = Δt is the time step and h = Δx represents 
the spatial step size. The superscript n denotes a quan-
tity associated with time level tn and subscript j denotes 
a quantity associated with space mesh point xj . The 
grid points are tn = nk, n = 0, 1, 2,… ,N for time and 
xj = jh, j = 0, 1, 2,… ,M for space, where M and N are 
positive integers. The finite difference scheme therefore 
becomes

Then substituting Eq. (8) into Eq. (9) yields

(8)

(un
j
)t =

un+1
j

− un−1
j

2k

(un
j
)x =

−un
j+2

+ 8un
j+1

− 8un
j−1

+ un
j−2

12h

(un
j
)xxt =

−un+1
j+2

+ 16un+1
j+1

− 30un+1
j

+ 16un+1
j−1

− un+1
j−2

24kh2

+
un−1
j+2

− 16un−1
j+1

+ 30un−1
j

− 16un−1
j−1

+ un−1
j−2

24kh2
,

(9)(un
j
)t + (1 + �(un

j
)2)(un

j
)x − �(un

j
)xxt = 0.

where Qn
j
= kh(1 + �(un

j
)2) . The scheme (10) is a tridiagonal 

system that can be easily simulated using MATLAB plat-
form. From now in our work, we take � = 1.

4  Convergence and linear stability analysis

Lemma 1 The finite difference scheme (10) is marginally 
stable.

Proof In the case of applying the Von Neumann stability 
theory, the solution of Eq. (10) can be written as

where l is a mode number. Now, set

and then inserting Eqs. (11) and (12) into Eq. (10) yields

where g is the growth factor and

with assuming that (un
j
)2 in Eq. (10) is locally constant, and 

for simplicity, we write it as u2 . To verify Eq. (14), we must 
show that

To do this, we have

(10)

�un+1
j−2

− 16�un+1
j−1

+ (30� + 12h2)un+1
j

− 16�un+1
j+1

+ �un+1
j+2

= −Qn
j
un
j−2

+ 8Qn
j
un
j−1

− 8Qn
j
un
j+1

+ Qn
j
un
j+2

+ �un−1
j−2

− 16�un−1
j−1

+ (30� + 12h2)un−1
j

− 16�un−1
j+1

+ �un−1
j+2

,

(11)un
j
= �neilxj , i =

√
−1,

(12)�n+1 = g�n ⟹ �n+1 = g2�n−1,

(13)g2 − (2i sin �)g − 1 = 0,

(14)

sin � =
kh(1 + u2)(sin 2� − 8 sin�)

2� cos 2� − 32� cos� + 30� + 12h2
, � = lh,

||
kh(1 + u2)(sin 2� − 8 sin�)

2� cos 2� − 32� cos� + 30� + 12h2
|| ≤ 1.

Table 1  Invariants and errors 
for single solitary wave on 
[−40, 60] with h = 0.4 , k = 0.05 , 
c = 0.1

Time L∞-error L2-error I1 I2 I3

4 2.81713E − 05 6.40273E − 05 8.0708808 4.1005468 0.8683974
8 5.45539E − 05 1.26491E − 04 8.0708795 4.1005468 0.8683974
12 7.81422E − 05 1.85598E − 04 8.0708701 4.1005468 0.8683974
16 9.93777E − 05 2.41313E − 04 8.07084851 4.1005468 0.8683974
20 1.182044E − 04 2.93952E − 04 8.0707907 4.1005468 0.8683974

Fig. 1  Single solitary wave on [−40, 60] with 
h = 0.4, k = 0.05, c = 0.1 at times: T = 4, T = 8, T = 12, T = 16 and 
T = 20



224

Vol:.(1234567890)

Original Article J.Umm Al-Qura Univ. Appll. Sci. (2023) 9:221–229 | https://doi.org/10.1007/s43994-023-00036-7

1 3

Now, we set y = 1 − cos� and so sin� =
√
y(2 − y). Then 

we have

||
kh(1 + u2)(sin 2� − 8 sin�)

2� cos 2� − 32� cos� + 30� + 12h2
||

= ||
kh(1 + u2) sin�(cos� − 4)

16�(1 − cos�) − 2� sin
2
� + 6h2

||.

sup
∀�

k2h2(1 + u2)2 sin2 �(cos� − 4)2

(16�(1 − cos�) − 2� sin2 � + 6h2)2
= sup

0≤y≤2
k2h2(1 + u2)2y(2 − y)(3 + y)2

(16�y − 2�(y(2 − y)) + 6h2)2

=
16k2h2(1 + u2)2

(14� + 6h2)2
≤ 1,

for small spatial step size h and small time step k, and � is 
practically taken to be unity.

Now, Eq. (13) yields that g1 = −ei� and g2 = e−i� , which 
implies that ‖g1‖ = ‖g2‖ = 1 , and therefore the finite dif-
ference scheme (10) is marginally stable.   ◻

Lemma 2. If u(x, t) is smooth enough, then the local trunca-
tion error of finite difference scheme (10) is O(h4 + k2).

Proof Let vn
j
= v(xj , tn) represents the exact solution for the 

Eq. (3) with independent variables x and t. The local trunca-
tion error of Eq. (9) is thus as follows:

Now, using Tylor expansion, it is easily shown that Tn
j

 at the 
point (xj , tn) can be written as

and hence we have

  ◻

(15)Tn
j
= (vn

j
)t + (1 + (vn

j
)2)(vn

j
)x − �(vn

j
)xxt .

(16)
Tn
j
=[vt + (1 + (v)2)vx − �vxxt]‖(xj ,tn) +

k2

6
vttt‖(xj ,tn)

−
h4

30
[(1 + v2)vxxxxx]‖(xj ,tn) +⋯ ,

(17)Tn
j
= O(h4 + k2).

Table 2  Invariants and 
errors for single solitary 
wave on [−80, 120] with 
h = 0.4, k = 0.05, c = 0.03

Time L∞-error L2-error I1 I2 I3

4 4.11986E − 06 1.21516E − 05 7.8098623 2.1298427 0.1305175
8 8.40787E − 06 2.42824E − 05 7.8098546 2.1298427 0.1305175
12 1.26799E − 05 3.61161E − 05 7.8098476 2.1298427 0.1305175
16 1.66021E − 05 4.77528E − 05 7.8098409 2.1298427 0.1305175
20 2.09146E − 05 5.92125E − 05 7.8098325 2.1298427 0.1305175

Fig. 2  Single solitary wave on [−80, 120] with 
h = 0.4, k = 0.05, c = 0.03 at times: T = 4, T = 8, T = 12, T = 16 and 
T = 20

Table 3  Comparison of our 
results with some of recent 
results using maximum error 
( L∞ × 103 ) for single solitary 
wave on [0, 100] with h = 0.2 , 
k = 0.025,c = 1 , x0 = 40 and 
� = 6

Time Proposed method Conservative 
FDM [9]

Subdomain 
FEM [12]

Petrov Galerkin 
method [13]

Conservative 
linerized FDM 
[8]

2 0.507914 1.07385 1.1080 1.190456 0.50356
4 0.688228 2.03322 2.077 1.222450 0.82373
6 0.846081 2.97460 3.045 1.198936 1.13199
8 0.924369 3.91054 4.009 1.150862 1.43811
10 1.116198 4.84457 4.971 1.079686 1.64849
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5  Numerical experiments

In this section, we present some numerical experiments 
to verify our theoretical results obtained in the previous 
section. The accuracy of the proposed scheme is measured 
using the L∞ and L2 errors at t = tN that are approximated 
by

In addition, the invariants of mass, momentum, and 
energy for the MRLW equation are calculated for a single 
soliton and during the interaction of two and three soli-
tary waves to measure the conservation properties of the 
proposed scheme.

5.1  Motion of single solitary waves

With h = 0.4 and k = 0.05 fixed, two experiments were 
performed to demonstrate the viability of our scheme in 
the situation of a single soliton motion. Calculations up 
to T = 20 were performed. In line with the work of [23], 
the model parameters were selected as x0 = 0 , c = 0.1 with 
range [−40, 60] for the first example and x0 = 0 , c = 0.03 
with range [−80, 120] for the second example. Tables 1 and 
2 show the values of L∞ and L2 errors and the invariants I1 , 
I2 , and I3 . The invariant I1 is changed by less than 10−5 in 
both circumstances, whilst the changes for the invariants 
I2 and I3 approach zero, demonstrating the reasonable 
conservatism of our proposed scheme. At T = 20 , the 
errors for the first example are reasonably minimal, at 
1.182044 × 10−4 for L∞ error and 2.93952 × 10−4 for L2 error. 
Given that our approach is highly accurate, similar results 
are obtained for the second example as 2.09146 × 10−5 for 
L∞ error and 5.92125 × 10−5 for L2 error. In Fig. 1 for the 
first example, the motion of the single wave is plotted at 
various time levels with an amplitude of 0.3, and in Fig. 2 
for the second case, with an amplitude of 0.17. The fact 

(18)L∞ = max
1≤j≤M ‖v(xj , tN) − u(xj , tN)‖,

(19)L2 =

√√√√h

M∑

j=1

(v(xj , tN) − u(xj , tN))
2.

that the waves at t = 16 and t = 20 adequately agree with 
those at t = 4 demonstrates the reliability and accuracy 
of our scheme.

Furthermore, we compare our results in terms of maxi-
mum errors with the obtained results in [8, 9, 12, 13] to 
examine the validity of our scheme. For the purpose of 
comparisons, the parameters are chosen as h = 0.2 , 
k = 0.025 , c = 1 , x0 = 40 , and � = 6 , with a range [0, 100]. 
The computations are performed up to T = 10 and are 
listed in Table  3. It is clearly observed that L∞-errors 
obtained by our scheme are marginally smaller than those 
obtained by others, indicating that our scheme is more 
accurate.

5.2  Convergence rate

To calculate the convergence rates in space and in time, 
we use the following formula [23]

for the convergence rate in space, and

Order = log2

(
L∞(h, k)

L∞(
h

2
,
k

4
)

)

Order = log2

(
L∞(h, k)

L∞(
h

4
,
k

2
)

)

Table 4  The convergence rates in space and maximum errors at 
T = 20 for single solitary wave of MRLW equation on [−40, 60] with 
c = 0.1 and x0 = 0

h k L∞-error Convergence rate

0.8 0.8 0.0704949
h

2

k

4
0.0037656 4.22658

h

4

k

16
0.0002348 4.00336

h

8

k

64
0.0000147 3.99398

Table 5  The convergence rates in time and maximum errors at 
T = 20 for single solitary wave of MRLW equation on [−40, 60] with 
c = 0.1 and x0 = 0

h k L∞-error Convergence rate

0.8 0.8 0.0704949
h

4

k

2
0.0160614 2.13392

h

16

k

4
0.0039098 2.03842

h

64

k

8
0.0009716 2.00863

Table 6  Invariants for interaction of two solitary waves on [0, 300] 
with h = 0.4, k = 0.05, c1 =

4

21
, c2 =

9

91

Time I1 I2 I3

0 16.4507739 10.2223550 3.5691135
40 16.4803713 10.2229476 3.5658059
80 16.4800934 10.2223531 3.5608808
120 16.4798642 10.2234672 3.5613810
160 16.4796309 10.2228295 3.5667504
200 16.4793775 10.2224818 3.5697989
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Fig. 3  a The L∞ errors with 
respect to h at time T = 20 
with parameters chosen as in 
Table 4. b The L∞ errors with 
respect to k at time T = 20 
with parameters chosen as in 
Table 5

(a) (b)

Fig. 4  Interaction of two 
solitary waves on [0, 300] with 
h = 0.4, k = 0.05 at times: 
T = 0, T = 80, T = 160, T = 200

(a) (b)

(c) (d)
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for the convergence rate in time, with respect to the 
maximum norm errors. With the other parameters 
remaining the same as in Table  1, we started with 
h = k = 0.8 , and reduced the spatial and temporal 
variables by 2 and 4, respectively, to calculate the spatial 
convergence rates. The resultant L∞ errors and the 
corresponding convergence rates of our scheme are 
recorded in Table 4, which reveals that the fourth order of 
convergence in the spatial direction was achieved. Table 5, 
in contrast, displays the temporal convergence rates, as we 
first set h = k = 0.8 , then scaled them back by a factor of 2 
for k and 4 for h. Other parameters are chosen as in Table 1. 
Based on the proposed scheme, the accuracy of order 2 
in the temporal direction is obtained. These spatial and 

temporal rates are aligned with the theoretical conclusions 
in Lemma 2.

Additionally, the log-log scale depicted in Fig. 3. shows 
the resultant L∞ errors on the solitary wave solutions with 
regard to spatial variable h and temporal variable k. In 
Fig. 3a and b, lines of slope 4 and 2 are added as references. 
As can be observed in these figures, our scheme achieved 
an O(h4 + k2) accuracy, coinciding with the theoretical 
predictions.

5.3  Interaction of solitary waves

The interaction of two and three solitary waves travelling 
in the same direction is discussed in this section. The initial 
conditions in these scenarios can be described by a linear 
sum of two and three well-separated solitary waves of dif-
ferent amplitudes, as follows:

where p = 2 and p = 3 for the interaction of two and 
three solitary waves, respectively. We performed the 
simulations up to T = 200 and on the range [0, 300], with 
fixed h = 0.4 and k = 0.05 to enable the interaction to take 
place. Two solitary waves with c1 =

4

21
 , c2 =

9

91
 , x1 = 15 

and x2 = 35 interacted at various time levels, as shown 

(20)u(x, 0) =

p�

i=1

√
6cisech

��
ci

�(ci + 1)
(x − xi)

�
,

Table 7  Invariants for interaction of three solitary waves on [0, 300] 
with h = 0.4, k = 0.05, c1 =

4

21
, c2 =

9

91
, c3 =

15

301

Time I1 I2 I3

0 24.3354551 13.4330475 4.1523353
40 24.3652457 13.4340675 4.1466276
80 24.3648005 13.4350644 4.1384570
120 24.3645399 13.4356560 4.1336719
160 24.3642525 13.4354500 4.1353112
200 24.3612567 13.4346203 4.1420136

Fig. 5  Interaction of three 
solitary waves on [0, 300] with 
h = 0.4, k = 0.05 at times: 
T = 0, T = 80, T = 160, T = 200

(a) (b)

(c) (d)
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in Fig 4. Table 6 lists the outcomes of the conservation 
of three laws. Fig  5 presents a plot of the interaction 
of three solitons at various time levels, where c1 =

4

21
 , 

c2 =
9

91
 , c3 =

15

301
 , x1 = 15 , x2 = 35 and x3 = 55 . Table  7 

lists the three invariants for this case. The outputs of the 
experiments reveal that the three invariants held relatively 
steady throughout the interaction process. Our approach 
effectively maintains the soliton properties because the 
waves interact and maintain their shape.

6  Conclusion

In this paper, we described the use of a finite difference 
method based on a three-level temporal scheme and a 
five-point space stencil to solve the initial boundary-value 
problem for the MRLW equation. Based on the maximum 
norm, the scheme is shown to be marginally stable and 
convergent with second-order accuracy in time and 
fourth-order accuracy in space. In order to demonstrate 
the effectiveness and accuracy of the proposed method, 
numerical experiments using single and solitary waves 
interaction were described. Investigations into the conser-
vation quantities for mass, momentum, and energy were 
also conducted, and the results were deemed satisfactory. 
Comparisons with other previous results are given to show 
the accuracy and the efficiency of the proposed scheme.
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