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1 Solitary Waves in Fluids

Ever since Russell's historic observation of a solitary wave in a Scottish canal, the notion that

fluid motion often organizes itself into coherent structures has increasingly permeated modem

fluid dynamics. Such localized objects appear in laminar flows and persist in turbulent states;

from the water on windows on rainy days, to the circulations in planetary atmospheres.

This review concerns solitary waves in fluids. More specifieaUy, it centres around the

mathematical description of solitary waves in a single spatial dimension. Moreover, it con-

centrates on strongly dissipative dynamics, rather than integrable systems like the KdV

equation. This divorces it from the theory of solitons, which develops analytically around

the inverse scattering transform (e.g. Ablowitz and Segur 1981).

One-dimensional solitary waves, or pulses and fronts (kinks) as they are also called,

are the simplest kinds of coherent structure (at least from a geometrical point of view).

Nevertheless, their dynamics can be rich and complicated. In some circumstances this leads

to the formation of spatio-temporal chaos in the systems giving birth to the solitary waves,

and understanding that phenomenon is one of the major goals of the theory outlined in this

review. Unfortunately, such a goal is far from achieved to date, and we assess its current

status and incompleteness.
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As experimel_ral analogues of the pulse or frontal dynamics we explore, one can draw

on recent experiments with real fluids. Closest to what we describe (in the sense that the

equations we use as illustration were once derived as a relevant model) are experiments on

falling fluid films. There, as one can often observe on rainy windows and in gutters, waves

moving down an incline steepen into propagating pulses (Alekseekno et al. 1985, Liu et al.

1993). Eventually they are deformed in a second dimension by secondary instabilities, but

for a substantial fraction of their evolution, the fluid generates a sequence of essentially one-

dimensional pulses, i.e. a pulse train. Properties of such patterns of propagating pulses are

reviewed by Chang (1994).

Another experimental scenario in which pulses are created involves the convection of a

binary fluid, like a mixture of water and ethanol (Anderson and Behringer 1990; Bensimon

et al. 1990; Moses et al. 1987; Niemela et al. 1991). When enclosed in a slender geometry

like a thin annulus, this fluid can convect heat within localized packets of travelling cells.

The manner in which such convective pulses drift, interact and generally evolve provides

a powerful visualization of pulse dynamics (Kolodner 1991a, 1991b). Analogous states of

excitat,_on exist in liquid crystals (J0ets and Ribotta 1988) and in fluids subject to Faraday

instability (Wu et al. 1984). Various other kinds of solitary waves in interfacial experiments

are reviewed by Flesselles et al. (1991).

In Sec. 2, we give a brief account of why, theoretically, we might expect many systems

to generate solitary waves; we derive the complex Ginzburg-Landau equation for a spatially

extended system near a Hopf bifurcation. This suggests that one of the ramifications of

overstability is frequently pulse and front generation. It also introduces the notion of spatio-

temporal complexity. In Secs. 3 and 4, we turn to the heart of the review; a discussion of the

theory of solitary-wave equilibria and dynamics within a framework of asymptotic analysis

and dynamical systems theory. In the final section we tie up some loose ends, and briefly

mention the standing of the theory with regard to real physical situations.



2 Preliminaries: The Complex Ginzburg-Landau

Equation

As a convenient example we take the partial differential equation (PDE),

OtU if" UOxU "Jr Ox2U nt- _0xSu -J- OQ=4U -J- O_U -- 0 , (2.1)

where # and c_ are parameters. This model equation, for c_ = 0, was derived by Benney

(1966) to describe instabilities in falling fluid films; u is the surface displacement about the

uniformly thick state. Over a wide range in values of the parameters, this equation possesses

solutions that take the form of patterns of pulses (Kawahara and Toh 1987; Elphick et al.

1991a; Chang et al. 1993a, 1993b).

2.1 Hopf bifurcation in an extended system

The solitary structures observed in systems like binary-fluid convection in annuli occur near

the Hopf bifurcation of a spatially extended (one-dimensional) system. In this circumstance,

the equations governing the fluid can be asymptotically reduced to a _complex Ginzburg-

Landau equation governing the spatio-temporal evolution of the envelope of a wave (e.g.

Manneville 1990). The thin-film Eq. (2.1) admits a spatially uniform equilibrium solution,

u = 0, which undergoes such a bifurcation when we continuously vary c_ through positive

values. Hence it provides a simple illustration of the derivation of the complex Ginzburg-

Landau equation.

The bifurcation to instability occurs as a is decreased through 1/4. Infinitesimal pertur-

bations about this state have the dependence exp[i(kx + wt) + rit], where

= #k a and r] = 1/4 - a - (k 2 - 1/2) 2 . (2.2)

Just below the critical point c_ = 0.25, a band of wavenumbers surrounding k = k¢ = I/vf2

become marginally unstable. Here, we set c_ = 0.25 - e2a2, where 6 is a small parameter
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(quantifying "just below") and a2 is order unity. Near the maximally unstable wavenumber,

kc, the dispersion relation reduces to

3 - (2.3)a_ -_ wc + _ _#K and rl -_ ¢2(a2 K 2) ,

where wc = #/2V_ is the corresponding frequency and k - kc = eK.

In a spatially extended domain, we see that a packet of linearly unstable waves develops

through instability over a distance of order e -1, and on a timescale of order e -2. Frequency

corrections occur on the shorter timescale e -I, however, and their dependence on K implies

a drift in the envelope of the wave pattern, or ,_ group velocity, ecg, with Cg= 3#/2. This

observation motivates our asymptotic scaling of Lq. (2.1) in developing a weakly nonlinear

theory for the evolution of the envelope of a wave pattern at finite amplitude. In particular,

we seek a solution,

u ... e [A(ex, et, e2t)e '(k°x+_°O+ A*(Ex, et, e2t) e -'(k°x+_°0] , (2.4)

where • means complex conjugate, and the amplitude A(ex, et, e2t) describes the modulation

of the wave pattern.

We now introduce the stretched timescales, I- = et and T = e2t, and the long length

scale, X = ex, so the temporal and spatial derivatives become,& _ 0t + e0r + e20T and

c_x_ 0_ + cox. We further pose the asymptotic expansion,

u = eUl + e2u2 + eZu3+... (2.5)

of which the first term is given by the right-hand side of Eq. (2.4). At subsequent orders we

derive equations for u2, u3 and so on. As is typical in asymptotic expansions of this kind

(Manneville 1990), these relation take the form of inhomogeneous linear equations. Requiring

the corrections to be bounded enforces certain solvability conditions. In the example at hand,

the first condition is

O_.A+ cgOxA = 0, (2.6)
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which has solution A = A(X -cgl", T); as advertised, the envelope of the wave pattern moves

with the group velocity cy. A modulation equation for A actually emerges from solvability

at order _z. It is,

0TA = c_2A + (4 - 3i#v/2)Ox2A - (10 + 7i#v/2) 2A
(50 + 49# 2) IA[ , (2.7)

which is a particular case of the complex Ginzburg-Landau equation.

In this illustrative problem, the sign of the nonlinear term ensures that spatially homoge-

neous patterns emerge from equilibrium beyond a supercritical bifurcation. In other systems,

the bifurcation of such patterns may be subcritical, as it is, for example, in binary fluid con-

vection (Thual and Fauve 1988). In these cases the equation requires further regularization

if the amplitude is not to grow without bound.

2.2 Real Ginzburg-Landau equations

The complex Ginzburg-Landau equation simplifies substantially if all of the coefficients are

real (so # = 0). After suitably rescaling, we then have
."

• .

where a is the real part of A. This real Ginzburg-Landau equation has been extensively

studied in problems of phase separation in condensed matter physics. It has the spatially

homogeneous solutions, a = 0 and a = + v/'_2. For a2 > 0, the equilibrium a = 0 is unstable,

but the finite amplitude states are stable.

The real Ginzburg-Landau equation is of interest because it possesses solutions which take

the form of fronts or kinks connecting the various homogeneous phases. The zero-amplitude

equilibrium, for example, rapidly evaporates through the propagation of fronts into it which

transform it to one of the stable phases (e.g. Ben-Jacob et al. 1985; van Saarloos 1989). An

example of one of these fronts is shown in Fig. l(a). Of more interest are the stationary
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kink solutions, a = K(X), that connect the two stable phases:

K(X) = v_2 tanh(X_) (2.9)

(see Fig. l(b)). The reversed solutions, -K(X), are "anti-kinks." These kinks and anti-

kinks persist for much longer periods of time than the "evaporation fronts" which disappear

after the rapid disintegration of the unstable phase. In Benney's Eq. (2.1), they describe

phase defects in the wave patterns (see Fig. l(b)), and are the central objects of the theory

of defect dynamics (e.g. Coullet and Elphick 1989).

The real Ginzburg-Landau equation emerged from theory of superconductivity and phase

transitions. It has the form of a nonlinear diffusion equation,

d V(a) Y(a) = 1 2
OTa -- Cgx2a-- da ' -_a (a2 - 2c_2) . (2.10)

On multiplying by OTa and integrating over X, we observe,

- f(Oa)dX -
d

dT _'' (2.11)

with

Since _" is also bounded from below, it can be identified as a Lyaptmov F_mtional for the

problem, and is commonly interpreted physically as a free energy.

Depending upon boundary conditions, the existence of _" implies that the asymptotic

state of the system is typically one of the homogeneous, stable phases. This suggests that

the equation is not interesting from the point of view of spatio-temporal complexity, which

is not actually true. What often happens is that the evolution proceeds rapidly from some

initial state as the unstable phase evaporates. This drives the system locally towards one of

the two stable phases and leaves a meta-stable state consisting of multiple, phase-separated

layers partitioned by a sequence of alternating kinks and antikinks. This eventually relaxes
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to the asymptotic state, but in the interim, a complicated, slowly evolving pattern attains

through a form of kink or frontal dynamics. Moreover, slight perturbations can sustain

kink-antikink patterns indefinitely. We return to this in Sec. 4.

2.3 The cubic Schrtidinger equation

In the limit of large dispersion, the Ginzburg-Landau Eq. (2.7) reduces to another well-known

equation. In this limit, the large-amplitude solutions satisfy the cubic SchrSdinger equation,

iOTA = Ox2A + 21AI2A (2.13)

(again after rescaling). This equation has the soliton solution,

A - ike -_(_-¢°) sech k(X- VT + Xo) , (2.14)

where the phase,

= -_VX + - k2 T, (2.15)

whichindicatesthat(2.14)isactuallya two-parameterfamilyofsolitonswithscalek and

speed V, centered at X0 with characteristic phase _0 (e.g, Kivshar and Malomed 1989). One

such soliton is shown in Fig. 2; it describes a localized pazJcet or pulse of travelling waves.

The cubic SchrSdinger equation is an integrable system and its soliton solutions can be

studied using inverse scattering techniques (Ablowitz and Segur 1981). This allows us to

generate multiple solitary-wave equilibria and consider soliton dynamics within the frame-

work of an exact theory. In the following sections we detail an approximate method dealing

with just these issues for general, dissipative PDEs. More along those lines, one can use

inverse scattering theory to deal perturbatively with weakly non-integrable generalizations

of (2.13). In particular, the physics of instability and dissipation appear as small forcing

terms in (2.13) in the limit of large, but not infinite #. Under such perturbations, inverse

scattering theory leads to ODEs governing the evolution of the soliton's intrinsic parameters,



i.e. its position Xo, phase (I)0,scale k and speed V (Karpman and Maslov 1977; Kaup 1976;

Kivshar and Malomed I _9).

}',

2.4 Spatio-temporal chaos in complex Ginzburg-Landau

For less specific choices of the coefficients, the complex Ginzburg-Landau equation displays

a wide variety of behaviors involving coherent structures. In particular, it has become fairly

important as an equation modelling spatio-temporal chaos (e.g. Moon et al. 1983; Sirovich

1989). The phenomenon is characterized by at least two regimes (Shraiman et al. 1992; Chat6

1994). Near the real Ginzburg-Landau limit, "phase turbulence" obtains. This appears to

be a state of weak disorder reflected in the phase of A. It is closely connected to spatio-

temporal chaos in the Kuramoto-Sivashinsky equation (Kuramoto 1984), which was derived

as a phase-evolution equation for complex Ginzburg-Landau under certain conditions. The

Kuramoto-Sivashinsky equation is the dispersionless special case of Benney's Eq. (2.1) and

we consider it again in Sec. 4. In fact, in a more appropriate, moving reference frame, the

phase evolution equation for complex Ginzburg-Landau turns out to be precisely Benney's

equation but with an additional higher:order nonlinear term (Janiaud et al. 1992). Phase

turbulence seems to be associated with propagating shocks or fronts in A, pulses in the

gradient of its phase.

Near the highly dispersive limit, the characteristics of spatio-temporal chaos have been

labelled "dispersive chaos" (Kolodner et al. 1990; ShSpf and Kramer 1991) or "defect tur-

bulence" (Shraiman et al. 1992). The main features associated with such a state appear to

be pulses which are briefly coherent in space and time. They arise through intense "self-

focusing" by dispersion and subsequent breaking by dissipation (Bretherton and Spiegel

1983). In the nonlinear SchrSdinger limit, these pulses probably become the solitons (2.14).

Under suitable forcing, the weakly nonintegrable dynamics of these solitons do indeed show

chaotic characteristics resembling the dispersive ci ,s of the complex Ginzburg-Landau



equation (Nozaki and Bekki 1986).

Pulses, fronts and related complex solutions are also commonly encountered in studying

generalizations of the complex Ginzburg-Landau appropriate to subcritical Hopf bifurcations.

A more complete survey of pulses and fronts in this kind of equation is given by van Saarloos

and Hohenberg (1993). They derive families of frontal and pulse solutions in parameter space

and present numerical solutions for the dynamical evolution of such objects.

3 Pulse-Train Equilibria

3.1 Pulse trains and timing maps

The arguments of the previous section concerning the common kinds of solutions to the

complex Ginzburg-Landau equation suggest that Hopf bifurcations (whether subcritical or

supercritical) often lead to the formation of propagating, coherent structures in spatially

extended systems. Furthermore, complexity of a variety of kinds is associated with them.

We now journey into theory of the patterns created by sequences of a whole ensemble of such

objects, and we focus our attention upon Pulses rather than kinks (minor modifications are

required to treat the latter). We outline a singular perturbation theory to derive multiple

solitary-wave trains, or bound states of pulses (an alternative procedure is the variational

technique discussed by Kath et al. 1989; see also Ward 1992). We leave the question of

stability until Secs. 4 and 5.

Rather than develop theory around the complex Ginzburg-Landau equation, we go back

to the original model Eq. (2.1), for instabilities of a falling film. This directly illustrates how

the techniques can, in principle, be used to study general partial differential systems in a

single spatial dimension, not just the complex Ginzburg-Landau equation, which is strictly

valid only in some region near criticality. For (2.1) with a = 0, the spatially extended

state bifurcates to instability with zero frequency. Overstability can set in, however, for

spatially periodic systems as the domain size increases through a critical value (Elphick
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et al. 1991a). Unstable mode_ _aturate supercritically as nonlinear waves; they develop into

solitary structures on increasing the domain size further, and this is the regime in which we

operate.

When we introduce a travelling-wave coordinate _ = x- ct into (2.1) and integrate once,

we find the ODE, ::

+. + =0,

for the steady pulse train solutions, where --(_) = u(x, t).

The singular perturbation expansion centres around the idea that trains consist of widely

separated pulses. The component pulses are weakly distorted versions of the true solitary

waves. Single-pulse solutions centered at various positions within the train can therefore be

used as a leading-order approximation to the pattern's structure (cf. McLaughlin and Scott

1978; Gorshkov and Ostrovsky 1982; Kawasaki and Ohta 1982; Gold'shtik and Shtern 1981;

Coullet and Elphick 1989).

We let the single-pulse solution be denoted by H(_), and choose origin so that H(_) has its

principal peak at _ = 0. Away from the main peak, the pulse amplitude falls approximately

exponentially. At the position of the preceding and following pulses, we assume that the

amplitude is of order c. This means that the overlap of neighboring pulses is 0(6), and so

the intrinsic structure of each pulse is H(_) + O(e). We illustrate this in Fig. 3, and write

the ansatz,

E(_) = _] g(_ - _k) + _R + O(e2) , (3.2)
k

where {k denotes the positions of the pulses and eR is the error in the basic assumption

that the train is a superposition of single-pulse solutions. Were they in isolation, the pulses

would move at a _peed Co. However, through interaction between the component pulses, the

pattern translates differently, and c :fl co, but the disparity is small and c = co + _cl + O(e2),

where c, is order unity.
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We now introduce the expansion (3.2) into the basic Eq. (3.1) and divide that equation

into relations of distinct orders in 6. The leading-order equation is just that for the various

single-pulse solutions. The equation at next order is a linear inhomogeneous equation for R.

It has secularly divergent particular solutions unless we enforce a solvability condition upon

the positions of the pulses. This condition is

cl = F({k- _k-1) -t-F(_k- _k+l) , (3.3)

where

1FF(A) = e'[ N({')H(_')H(_' + A)cl_' , (3.4)

N(_) is an adjoint null vector related to H({), and

/?I = N(_')H({')d_' (3.5)

(e.g. Elphick, Meron and Spiegel 1990). In deriving this equation, we have tacitly assumed

that the rate of decay of the pulse amplitude both fore and aft is approximately the same.

The quantites z_k - _k - _k-1 and Ak+l =--{k+l -- _kare just an adjacent pair of pulse

spacings, and so

F(Ak) + F(-Ak+l) = cl , (3.6)

determines the separations of the pulses as a map of the interval of A to itself. This is the

timing map from which we can build a pulse train. Before considering this map any further

we briefly digress into the geometrical aspects of the pulse-train solution in the phase space

of the dynamical system described by (3.1).

3.2 Pulse trains as dynamical systems

In order to apply the theory described above, we need to know the various kinds of single-

pulse solutions, H(_), that can arise. To find these we must study the ODE (3.1) in a little

more detail.
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In the phase _ :e, U = (E, E',-"), Eq. (3.1) describes a velocity field, V = U' (where

indicates differe_ _ation with respect to argument). The divergence of the velocity field

is just -# indicating that, for # > 0, the flow is volume contracting; as time proceeds, an

arbitrary set of initial points in phase space gradaally condenses into a region of zero voltune.

The geometry restricts that region to be either a point, a curve or some surface. In other

words, the system asymptotically heads towards an attractor, which could be a fixed point,

a ueriodic orbit or a strange attractor (speaking loosely .... this object is really a surface

cross a Cantor set).

The attractors of the system are dependent upon the parameters of Eq. (3.1). In the

context of this ODE, the parameters are # and c (for the PDE, c is the pattern speed and

only # is a parameter). These form a two-dimensional parameter space in which the various

attractors reside. They are destroyed or created at certain junctions or bifurcations, and

the possibilities admitted by (3.1) are complicated (Arneodo ct al. 1985b; Glendining and

Sparrow 1984).

A sample sequence of bifurcations is shown in Fig. 4, which shows the succession of states

that are realized as c is varied for # = 0.7. Initially the system contains two fixed points.

That at the origin, E = 0, is a saddle, and the nontrivial fixed point, E = 2c, is a stable focus.

Increasing c eventually destabilizes the focus, and it sheds a limit cycle (panel (a)). This

cycle then bifurcates to a second cycle with twice its frequency (panel (b)) and there follows

a period-doubling cascade leading to a strange attractor (panels (c) and (d)). The attractor

develops as we raise c again, eventually colliding with the origin (panel (e)). Shortly after

this point (panel (f)), the trajectories beginning from points in the half-space E > 0 can find

their way along a chaotic trajectory into -- < 0, and diverge to --. = -oo since the nonlinear

term E_-cannot then saturate growth in amplitude.

In this fashion, the various attractors of the system and their bifurcations can be cata-

logued to visualize the kinds of propagating patterns which solve (3.1). Of primary interest
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in the current context are the solutions that describe localized structures like pulses and

kinks. These solutions necessarily approach constant amplitude as _ _ 4-00, and so they

must asymptote to the fixed points. The solutions that connect a fixed point to itself are the

"homoclinic" orbits of the system. In real space and time, these define propagating pulses.

The "heteroclinic" orbits connect different fixed points and represent kinks. Some examples

are shown in Fig. 5.

The homoclinic trajectory shown in Fig. 5 connects the origin to itself. It can therefore

be created by a bifurcation in which a periodic orbit collides with the origin. The details of

this bifurcation are uncovered using Shil'nikov theory as we elaborate soon, but it is already

clear from the sequence shown in Fig. 4 where in parameter space one might find these orbits.

The strange attractor shown in Figs. 4(d) and 4(e) is densely filled with unstable periodic

orbits. When it collides with the origin these periodic orbits begin connecting .--.= 0 and

consequently become homoclinic. For any one periodic orbit, the point of bifurcation in c.

typically defines a unique point at fixed # in parameter space; this is simply the solitary-wave

speed, co. For varying #, we expect a curve on the parameter plane,' co(/_).
•

3.3 Homoclinic dynamics

Except for a relatively short interval of time, the homoclinic solution shown in Fig. 5, H(_),

is contained within the neighborhood of the origin. Here, Eq. (3.1) can be approximately

replaced by its linearization and we find the solution

F.,_ ae "_ + be-'_ cos(w_ + ¢) , (3.7)

where a and -7 4- iw are the eigenvalues of the flow, and a, b and ¢ are constants. The

homoclinic connection emerges from the origin O at _ = -oo, escapes the vicinity of the

origin, but rapidly returns and spirals back into O at _ = oo. Thus

aoea_ _ ---,-oo (3.8)H(_) = boe-'re cos(ca_ + ¢0) _ _ oo "
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The two sections of the solution for H correspond to two invariant manifolds intersecting O;

a one-dimensional unstable manifold and a stable two-dimensional manifold. The homoclinic

orbit is the connection of these two manifolds.

Nearly homoclinic trajectories typically get caught near the invar:ant manifolds, and

consequently they "skirt" H(_) during any excursion away from O. But since they generally

do not re-enter the vicinity of the origin with a - 0 identically, the trajcctnries do not fall into

E = 0. Instead they become thrown out from the origin's vicinity along the unstable manifold

after spending a lengthy period there. However, the reinjection process is relatively rapid,

and so the solution E(_) takes on the appearance of a train of widely separated pulses. This

kind of behavior is illustrated in Fig. 6. Two trajectories begin on the unstable manifold. One

defines the homoclinic connection. In the second that connection is broken with c -- Co+ 6cl,

and the trajectory proceeds into further pulses after the first.

" The nearly-homoclinic solutions spend long durations circulating near the origin, and

the main peak of the pulse shadows the homoclinic's loop. This suggests that the solution

can be approximately described by analytical means in the two representative regions. Near

the origin we have solution (3.7), and away from it, -Z(_)'-. H(_). In this approximation

the outer part of the path is insensitive to the details of the solution, and so the flow near

- 0 controls the dynamics. This idea is entirely equivalent to supposing the pulse train

is approximately composed of single-pulse solutions, and the spacings of the pulse train are

determined by the nonlocal interactions between pulses occurring in their exponentially small

tails. Not surprisingly, the geometrically motivated analysis, what we call Shil'nikov theory

(Shil'nikov 1965, 1970; Tresser 1984a), provides a parallel description of the pulse train.

3.4 Shil'nikov theory

The flow portrayed in Fig. 6 surrounds the unstable manifold emerging from the origin.

In the homoclinic condition, this manifold connects to the stable manifold. In the nearly
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homoclinic conditions in which we operate, the two manifolds do not meet, but twist around

one another in a complicated geometrical way. The details of this complex topology are very

difficult to unravel and the dynamics of the flow is usually extracted by other means. In

Shil'nikov theory, we place a surface through the phase space and determine the succession

of intersections of a trajectory with it. This surface is an example of a Poincar6 section.

Moreover, the relation between the coordinates of successive intersections is a rett_rn map

which completely characterizes the flow.

Within the cylindrical region C, the flow is dictated by the linear system,

_cl = -axl + _x2 , (3.9)

Jc2= -ax2 - _xl (3.10)

and

xs = _/xs , (3.11)

with a, w and _/real and positive. There is a linear transformation between the two sets

of coordinates, U and (x,,x2, xs). In this wayi the coordinate axes of x are the invariant

manifolds of the flow within C. In particular the homoclinic orbit departs C along the

x3-axis, then returns and spirals back into O in the x, - x2 plane. Likewise, the flow leaves

C through its top surface, shadows the homoclinic orbit, and then re-enters the vicinity of

the origin through the lateral surface of C.

The central domain C is bounded by the surfaces, x_ + x_ = ¢2r2 and xs = cZ0. Within

it, the flow geometry is given by,

Xl = _re -_(_-_k) sin[w(_ - _k) + _0k], (3.12a)

x2 = ere -_(_-¢_) cos[w(_ - _k) + _0_] (3.125)

and

x3 = ¢ZA:e"y(_-_) , (3.12c)
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for some constants _k and Zk. _-krecords the "time" of re-injection into C, the instant

when the trajectory :_tersects the curved surface. This surface acts as ottr Poincar_ section,

and the remaining two "constants", Zk and _k, are the section's (cylindrical) coordinates

which become known iteratively through a map of the plane.

Trajectories exit C at the top surface and the interval in _ spent within C is given by

Tk -- 1 log(Zk/Zo) . (3.13)
7

It now remains to connect the values of _k and Zk with their subsequent values. In Shil'nikov

theory, one normally makes some simplifying assumptions regarding the flow outside C. This

amounts to linearly relating the coordinates on the upper surface of C to _k+l and Zk+_ (e.g.

Arneodo et aL 1985b), and leads to,

_k+l = _o + qe -_Tk sin(wTk + _k + 4,) (3.14)

and

-o'Tk °
Zk+l = _C + Qe .sm(wTk + _k + _2), (3.15)

where q, Q, @1 and @_ are four new constants. These two equations constitute a map of the

Poincar6 section into itself; the advertized return map. Because of the simplifications, the

constants must be treated as parameters.

3.5 Return maps versus timing maps

Although we suggested earlier that the two ways to analyse pulse train equilibria ran parallel,

the timing map (3.6) is quite clearly not equivalent to the two-dimensional return map (3.14)-

(3.15). The reason for this is that the Shil'nikov theory is not strictly consistent in retaining

terms of similar asymptotic order. In order for the pulses to be widely separated, the interval

in _ spent within C must be longer than the traversal time outside it. This means that Tk is

relatively long, and so the exponentials, exp(-aTk) are small, in fact of order E. Gl_mcing
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back at Eq. (3.14) for the phase coordinate _k+l reveals that, to this order, _k "" _o, and so,

Zk+l - 6C + Qe -_T_ sin(u_T_ + _a) , (3.16)

where ta = _0 + _ and T_ is given by (3.13). Thus the Shil'nikov return map reduces to a

map of the interval. This reflects what amounts to a local, strong "contraction" of nearby

points in phase space towards the curve _ak= _0 on the Poincar6 section.

The interval spent outside C is essentially a constant, _n, and so the "flight time" between

the successive intersections with the Poincar6 section is Ak = Tk + {n. With this quantity as

map variable, we find,

dte -_A_+' + d2e -_a_ cos(wAk + ¢) = ¢C , (3.17)

for constants dl, d2 and ¢. If we introduce the asymptotic forms given by Eq. (3.8) into

F(A), just this equation follows, with cl = ¢C.

In the limit of widely separated pulses, the two approaches therefore lead to similar

results. The singular perturbation theory is more powerful than conventional Shil'nikov

theory in that one can compute the function F(A) without any free parameters (though in

principal we could extend Shil'nikov's theory). Shil'nikov analysis reveals that the underlying

map describing the flow is truly two-dimensional, and it is only through strong contraction

that it appears one-dimensional. As a consequence, the timing maps which one extracts

from numerical solution of an ODE like (3.1) appear one-dimensional only to leading order

in _. Magnifying a piece of such an "empirical map" reveals hidden fractal structure which

is the signature of higher dimension (Balmforth et al. 1994).

3.6 Bifurcation theory

The one-dimensional return map (3.16) is often called Shil'nikov's map. We write it more

explicitly as

Zk+l = C + BZ_sin(121ogZk + _) - f(Zk) , (3.18)
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where B and @ are constants, and _ = "fla and _ = w/_. The map is illustrated in Fig. 7

for C = 0 in the two cases 6 > 1 and _ < 1.

Using the map (3.26) we can also predict the bifurcation sequence that creates the homo-

clinic orbit (Glendinning and Sparrow 1984). The homoclinic connection is achieved when a

periodic orbit collides with the origin. Since a periodic orbit intersects the Poincar_ section

only a limited number of times, the orbit occurs as a recurrent iteration in the map, with

the number of intersections giving the number of distinct iterations. The fixed points of the

map, Z = Zk = Zk+l = f(Z), correspond to the lowest-order periodic orbits of (3.1). Such

an orbit hits the Poincar_ section at a single point, and its period is H = _R- log(Z/Zo)/"f.

If we view C as a bifurcation parameter, then (3.26) predicts the behavior of the periodic

orbit as C scans through the homoclinic value (insets of Fig. 7).

When 6 > 1, Z monotonically approaches 0 as C decreases to homoclinicity. The orbital

period H simultaneously diverges (inset of Fig. 7a). In other words, the homoclinic connection

is created by a single periodic orbit colliding with the origin and annihilating.

For 6 < 1, there are an infinite number of fixed points in the map at C = 0, and one of
•

these periodic orbits winds into homoclinicity (inset of Fig. 7b). The winding locus of the

periodic orbit represents an infinite sequence of saddle-node bifurcations and this creates the

infinite number of fixed points in the map at C - 0. The stability of these orbits is dictated

by the slope of the map. From f_(Z), we observe that at each saddle-node bifurcations,

every orbit is stable. Shortly beyond these points along the locus, the orbit loses stability in

a period-doubling cascade.

Precisely at C = 0, this sequence of bifurcation leads to infinitely many unstable periodic

orbits. In the vicinity of the homoclinic connection, we therefore predict the existence of

a chaotic, dense set (i.e. the union of the unstable periodic orbits). This is the essence

of Shil'nikov's theorem r _ < 1 (Shil'nikov 1965, 1970; Tresser 1984a). In this region

of parameter space we icipate chaos, although the long-term stability of the set is not
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determined by the _heorem and we cannot claim the existence of a strange attractor. If such

an object nevertheless exists, we find "Shil'nikov" or "homoclinic chaos." It is observed as

a train of irregularly spaced pulses; steadily propagating, spatially chaotic patterns in the

PDE.

3.7 Sample timing maps

Homoclinic chaos has been observed in numerous dynamical systems. Arneodo, Coullet and

Tresser (1981) found "spiral" strange attractors in piecewise linear differential systems, and

later in nonlinear ODEs (Ameodo, Coullet and Tresser, 1982; Arneodo et al. 1985b). Here

the description, "spiral," refers to the geometrical action of the mapping (3.14)-(3.15) which

twists lines of constant _k on the Poincar_ section into spirals. The attractors were further

explored by Glendinning and Sparrow (1984) and Gaspard and Nicolis (1984).

Although we have approached the problem from the physical point of view of spatial com-

plexity in solitary wave patterns, homoclinic chaos is relevant also to systems that can be

described simply by ODEs. For example, in fluid physics, Arneodo e_ al. (1985a) explored

thephenomenon in a simplified model Of rotating, thermohaline convection (see also Ar-

neodo and Thual, 1985). Likewise, Knobloch and Weiss (1983) found homoclinic chaos in a

reduced model of magnetoconvection. Further examples, and even experimental indications,

of homoclinic chaos are described in a recent conference proceedings (Physica 62D).

In the context of our current example, the ODE (3.1), it is actually fairly difficult to

find strange attractors near the homoclinic bifurcation. A sample pulse train is shown in

Fig. 8; the time series and timing map are shown. The asymptotic timing map agrees with

the numerically determined spacings, and both terminate after a short sequence of pulses.

The train terminates because the trajectory of the solution finds a way around the stable

manifold at the origin and then diverges to E _ -c_. On the map, the final iteration reaches

negative values for Z, implying that the trajectory exits the domain C of Fig. 6 through its
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lower surface and fails to return. Such divergence leads to the gaps that are evident in the

timing map of Fig. 8(b).

Although the generic behavior of the pulse train is to terminate, by judiciously using the

map, one can nevertheless find strange attractors within the flow. This amounts to locating

intervals in Z or A which remain invariant under the action of the map (e.g. Fig. 9). Pulse

trains with these spacings continue indefinitely, but they constitute a tiny part of the phase

space and their basins of attraction are small.

The divergent behavior associated with (3.1) can be avoided if we choose a different

nonlinear term. In particular, if we replace .-_2with a cubic nonlinearity, the equation

gains the symmetry -: _ --- (and was considered by Arneodo et al. 1985a). Then the

homoclinic orbit H(_) has a mirror image, -H(_), lying predominantly in the half-space

-- < 0. Traversal of the stable manifold now leads to an "anti-pulse" rather than divergence,

and the prospect of finding global strange attractors is more promising. A symmetrical

strange attractor is shown in Fig. 10, generated from (3.1) with cubic nonlinearity. (The

unmodified timing map containsno gaps, but is double-valued, although the Z-map is not

Clendinning 1984; Balmforth, Ierley and Spiegel 1994.) This cubic ODE describes the

steady try: _ling wave solutions of a modified Benney equation, a model which arises in other

physical c, _exts (Tilley et al. 1992).

The existence of the anti-pulse in the symmetrical version of (3.1) amounts to the presence

of a mechanism that reinjects trajectories back into the vicinity of the origin on either side

of the stable manifold. The reinjection process need not be nearly homoclinic, nor does it

guarantee the asymptotic stability of the homoclinic strange set.

3.8 Variations

In the example we have considered so far, we ha '_' the image of Fig. 6; the homoclinic orbit

ascends fr, the origin along the one-dimension, unstable manifold, and then returns in a
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decaying spiral within the two-dimensional stable manifold. A somewhat different picture

emerges when the homoclinic trajectory winds out of the origin and descends monotonically

back in. The pulse is a reversed version of our original image, and we refer to it as an "in-

verse Shil'nikov" orbit. A chaotic solution beginning near such an object is shown in Fig. 11

(generated from a piecewise linear equation of Tresser, 1981). The trajectory occasionally

approaches the homoclinic orbit in this example, but more often than not, it wanders well

away from it. As a result, the solution does not resemble a train of widely separated pulses

and is difficult to analyze with singular perturbation theory. Argoul et al. (1987) have fol-

lowed through Shil'nikov theory for these reversed orbits; complications lead to a somewhat

different return map. They further announce the observation of "inverse" Shil'nikov chaos

in a chemical reaction.

Pulses also need not possess oscillatory tails to either the fore or aft if the system is to

admit potentially chaotic solutions. In particular, monotonically decaying homoclinic orbits

are frequently encountered in systems like the Lorenz equations (e.g. Sparrow 1982). There:

the counterpart of Shil'nikov theory has been widely adapted to understand some of the

bifurcations leading to the Lorenz and related attractors (although typically those attractors

themselves are far from being in a homoclinic condition). Tresser (1984b) summarizes the

various kinds of homoclinic situations for flows in three dimensions.

Shil'nikov theory can also be adapted to study higher-dimensional systems. In four di-

mensions one anticipates homoclinic orbits with two-dimensional stable and unstable mani-

folds. These orbits are of special interest since potentially associated with them is a strange

attractor with two positive Lyapunov exponents (Glendinning and Tresser 1985), or "hyper-

chaos" (a term coined by Rossler 1979). Fowler and Sparrow (1991) have derived return

maps expected in the case when the pulses wind both in and out of the origin, although the

added complexity probably ensures that the map is reducible only to a map of the plane. If

we follow singular perturbation theory, it is not immediately clear how we can account for
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this, since the analysis proceeds without any explicit statement regarding dimension, and so

the theory predicts the one-dimensional timing map (3.6) even for bifocal homoclinic orbits.

There is currently little work on these higher dimensional pulses, at least in dissipative sys-

tems; certain Ham21tonian systems have recently been found to possess solutions composing

families of infinitely many bifocal homoclinic orbits, (Champneys and Toland, 1993).

A different step up in complexity is provided by bifurcation off the homoclinic orbit

itself. Under suitable conditions, the homoclinically connected origin can lose stability even

in the stable manifold. If this occurs through a Hopf bifurcation, then the origin can shed

a limit cycle. As _ _ c_, the homoclinic trajectory now spirals onto this limit cycle. The

"Shil'nikov-Hopf" homoclinic orbit therefore connects this limit cycle to itself (e.g. Gaspard

and Wang 1987). Hirschberg and Knobloch (1993) derive return maps for flows in the vicinity

of these connections.

At this point we begin to draw parallels with theories of intermittency. The saddle point

or the limit cycle lying at the heart of the homoclinic connections are simple examples of an

invariant object within the phase space. The homoclinic trajectory is a pathway, that leaves

and returns to this object. Nearly homoclinic solutions typically spend extended periods of

time near the invariant object (quiescent phases) with sporadic, rapid excursions away from

it (bursts). This picture bears much in common with views about intermittency, although

in typical intermittent situations the invariant object can be more complicated or even not

strictly invariant. In the original example of Manneville and Pomeau (1980), the invariant

object was a periodic orbit in the Lorenz system, whilst Platt et al. (1993) invoke the Lorenz

attractor itself as chaotic invariant subspace. Along a similar vein, Wang (1993) interprets

irregular bursting in a model of a neuron.

Finally, we briefly consider heteroclinic orbits. Just as we derived timing maps and

reviewed Shil'nikov theory for pulses, we can follow analogous paths for fronts, kinks and

shocks. Under suitable conditions we then predict "heteroclinic chaos," again with reserva-
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tions concerning asymptotic stability. Along these lines, Howard and Krishnamurti (1986)

found strange attractors related to heteroclinic connections (and also homoclinic orbits)

within several regimes in the parameter space of a six-dimensional model of shearing con-

vection. One such attractor and its timing map are shown in Fig. 12. In the context of the

Lorenz system, Glendinning and Sparrow (1986) used Shil'nikov theory to explore hetero-

clinic bifurcations. For a PDE modelling a reaction-diffusion system, Koppell and Howard

(1981) considered the consequences of Shil'nikov's theorem for shock-wave patterns.

4 Pulse Dynamics

4.1 Pulse interactions

In the previous section we began discussing the possible equilibria of steadily propagating

pulse trains. We then digressed substantially into theory of homoclinic orbits. Now we

return to more physical aspects of pulses, and consider the dynamical evolution of patterns

of pulses by extending the methods of the last section.

In order to make the problem tractable from an analyticalpoint of view, we restrict

ourselves to consider only certain kinds of pulse dynamics. In what follows, we envision an

ensemble of pulses which are nearly locked into a steadily propagating pattern. However,

through an initial perturbation, or perhaps an intrinsic instability, we imagine that the pulses

within the pattern are in a state of dynamical adjustment. This might preclude the kinds

of dynamics familiar in integrable systems, like soliton collisions. Just as importantly, we

also cannot cope with pulse creation and destruction (the former of which is critical to the

pulses of Benney's equation, as we shortly indicate). But to take these effects into account,

we need another theory, and one is not yet available. An alternative way around this is to

"patch" numerical solutions into the asymptotic theory, should they prove necessary. In this

way Ward (1994) treated front collisions by substituting a numerical solution whenever the

fronts approached another too closely.
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The assumption of weak adjustment means that the pulses of the pattern are all travelling

at roughly the same speed. Consequently, they all possess approximately the same shape,

and are weak distortions of a homoclinic orbit. Thus we can once more apply singular

perturbation theory to determine the positions of the pulses. However, rather than a map of

equilibrium pulse spacings, we now derive a set of coupled ODEs describing the evolution of

the pulse's positions (McLaughlin and Scott 1978; Gorshkov and Ostrovsky 1982; Kawasaki

and Ohta 1982; Coullet and Elphick 1989; Ohta and Mimura 1990; an alternative variational

technique is used by Morrison et al. 1984).

The original ansatz that we wrote down for the pulse-train equilibria consisted of a

superposition of homoclinic solutions, H(_ - _k), and a residual, eR, Eq. (3.2). The wave

speed in the travelling-wave coordinate, _ = x-ct, emerged as the translation velocity of the

pulse pattern, and this was O(e) different from the speed of an isolated pulse, co. Now, since

the pattern itself is not steady, there is no unique pattern speed and so we set c - Co. If the

pulses do settle into a fixed pattern, then this must emerge as a solution to the asymptotic

e.quations. In order to derive these equations, we introduce a slow timescale, _"- e't, upon

which the pulse readjustments occur. This timescale is slow because it occurs as a result of

long-range pulse interactions. We then let the pulse position depend weakly on time through

r, and writ_ _k = _k(r).

To leading order we have insisted that every pulse in the pattern travels with speed co,

and so the solution depends upon the timescale t only in the travelling-wave combination, _.

As a result, when we introduce the asymptotic expansion into the governing PDE, we can

integrate the PDE once again and apply a solvability condition on the O(e) terms. The only

difference with the steady state theory is the replacement of the velocity correction term,

eclHk, with _kHk, and so that condition can be written as,

_ = F(Ak)+ F(-Ak+,) , (4.1)
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which is the equation of motion of the k th pulse.

4.2 Sample pattern dynamics

Some examples of pulse evolution are shown in Figs. 13 and 14. The first figure shows

an example of twelve pulses adjusting from a set of arbitrary initial positions. The initial

separations cover a moderate range and the pulses s!owly lock into a steady pattern after a

phase of adjustment. In the second figure, the pulses begin with a somewhat larger spread in

initial spacings. This time, the pulses first lock into three distinct, quasi-steady subgroups.

The subgroups then interact much more weakly; eventually they approach one another and

merge into a single 3teady formation.

The evolution illustrated by the second example proceeds with two disjoint time and

length scales (c.f. ShSpf and Kramer 1991). This arises from the exponential form of the

interaction, and suggests that patterns of very many pulses can evolve on a whole spectrum

of scales, and creates spatio-temporal complexity (Elphick et al. 1989).

A typical feature of evolution under the system (4.1) is gradual locking into a steady
• ,

pattern: This is only possible if such patterns exist as equilibria, and therefore if F(Ak) +

F(-Ak+l) = constant has nontrivial solutions. In our current example this is guaranteed

by the oscillatory tail of the homoclinic pulse, and the patterns shown are just two of a

multitude of existing equilibria.

The examples shown in Figs. 13 and 14 follow the adjustments of an isolated group

of twelve pulses. The steady patterns to which the pulses evolve are constrained by the

termination of the pattern to the left and right. This ensures that the spacings of the

equilibrium pattern are mostly uniform. Different patterns result if the pulses do not compose

an isolated group, for example, if the pulses are arrayed periodically (Elphick e$ al. 1989).

A related problem is when pulses are sequentially generated at a fixed location. This case

was studied by Elphick et al. (1991b) in a pacemaker model of pulse propagation in a nerve-
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fibre equation, and by Chang et _l. (1993a) who compared the predictions of (4.1) with

measurem_mts of a pattern of soli: ,ry waves on a falling fluid film (Alekseenko et al. 1985).

4.3 An example of frontal dynamics

An alternative kind of example is shown in Fig. 15. This follows the evolution of an ensemble

of kinks and antikinks for a real Ginzburg-Landan equation (Sec. 2.2; Elphick et al. 1991c).

The heteroclinic orbits corresponding to those kinks and antikinks monotonically decay into

the fixed points. Consequently. the interaction potentials represented by F(A) contain no

minima and so the forces between kinks and antikinks are always attractive. As a result, the

kinks and antikinks drift slowly towards one another under mutual interaction. This creates

slowly evolving meta-stable states. Inevitably, each state terminates in the catastrophic

collision of a kink-antikink pair. This marks a violent event which cannot be captured by

the asymptotic method. In Fig. 15, the collisions have been crudely treated by assuming a

smooth collision of the front positions.

The collision destroys one of the layers and a new meta-stable state then begins. The

succession continues until as many annihilations as possible have occurred, all internal layers

have vanished and the asymptotic state attains. More mathematical aspects of the problem

are discussed by Fusco and Hale (1989) and Carr and Pego (1989). Some of its statistics

were _tudied by Nagai and Kawahara (1983).

The long-lived process illustrated in Fig. 15 was derived for pattern evolution in a ther-

mally relaxing medium (Elphick, Regev and Spiegel 1991c). Relaxation proceeds through

fairly simple, frontal dynamics which engenders the rundown of complexity. The introduction

of forcing can halt such a rundown. For example, Thual and Fanve (1988) and Malomed and

Neponyaschy (1990) create kink-antikink bound states by introducing small dispersive terms

into the equation. Elphick, Regev and Spiegel (1991c) generate complicated steady patterns

through spatially periodic forcing. In either case, we add driving terms to the equations of
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motion (4.1) which change its steady solutions (the equilibrium patterns).

4.4 Spacing limitation and some setbacks

We have used the PDE (2.1) as an example throughout this review to illustrate the the-

ory of equilibrium states and dynamics of propagating pulses. This PDE is a particularly

good example because the dynamics embodied in (4.1) fails completely to describe the so-

lution if the pulse spacings become too large. This regime is precisely where one would

expect the asymptotic theory to be most accurate, and the failure illustrates some of the

pitfalls one could fall into by blindly applying the asymptotic machinery. A second common

pitfall concerns additional invariances in the governing equation. These lead to extra free

parameters in the theory that, in principle, one should fix by singular perturbation theory

along with the pulse positions which represent translational invariance. For example, (2.1)

also possesses Galilean invariance, although this does not appear to modify the dynamics

unless the pattern is spatially extended. In contrast, the scale invariances of the nonlin-

ear SchrSdinger equation must be taken into account in any singular perturb.ation theory
..

(Keener and McLaughlin 1978; Bretherton and Spiegel 1983). Otherwise the dynamics of

the solitons are of an artificially low order.

To return to our example, the dynamical theory fails because a train of widely separated

pulses contains extensive regions in which the amplitude of u is essentially vanishingly small.

Linear theory, however, tells us that this vacuum state is unstable to waves. In other words,

if the pulse separations are too large, the remnant instability of the vacuum state comes into

play (Toh and Kawahara 1985; Chang et al. 1993b). The instability generates waves that

are not accounted for by weak pulse interactions, and so (4.1) fails entirely to describe the

dominant dynamics.

In such situations, waves bifurcate to instability and the state resembles a mixture of

pulses and "radiation modes." For large dispersion, this Hopf bifurcation is subcritical and
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rapidly amplif _ _g packets of radiation destroy the pulse conFiguration. The outcome is the

violent creatioi_ of new pulses (Toh and Kawahara 1985; Toh 1987; Elphick et al. 1991a).

The new state consists of a denser train of pulses, and radiation then damps out. This leaves

an equilibrium state that can be described by the asymptotic theory.

Separation-limiting instabilities therefore seem critical only at large spacings. This calls

into question solutions like that shown in Fig. 14, which are unstable, and so pulse dynamics

cannot generate spatio-temporal complexity of this kind on the liquid film. But for alterna-

tive PDEs, like those describing excitable medium (e.g. Ohta and Mimura 1990; Meron 1993)

for which the vacuum state is stable, there are no limits on separation and spatio-temporal

complexity can be attained.

4.5 Radiation and chaos in the KS limit

For smaller dispersions, the bifurcation of separation-limiting radiation can be supercritical.

Then we can find equilibrated states consisting of co-existing pulses and finite-amplitude

wave packets. One such state is shown in Fig. 16. The radiation saturates at low amplitude,

but it is sufficient to affect the tail of the pulsei This "shakes" the pulse just as the tails Of

neighboring pulses affect its position in a pattern. Forced oscillations of coherent structures

have also been observed for fronts in reaction-diffusion systems (Nishiura and Fuji 1987;

Nishiura and Mimura 1989; Elezgaray and Arneodo 1991; Ikeda and Mimura 1993; Hapsburg

and Meron 1994). In that case the underlying mode which bifurcates supercritically to finite

amplitude has a different physical origin than the radiation mode.

A feature of the PDE (2.1) is that the separation-limiting Hopf bifurcations occur at

smaller spacings at smaller dispersion. By the time dispersion disappears (the Kuramoto-

Sivashinsky or KS limit), even moderately spaced pulses a,_e unstable. Unfortunately, in

this physical regime, the characteristic rates of amplitude decay away from the centre of a

pulses, a and 7, become increasingly disparate. At # = 0, their ratio is 1/2, and pulses
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are too asymmetrical to be described by unmodified perturbation theory (Balmforth et al.

1994). The limit is consequently far from accessibility by the present prescription of pulse

dynamics.

The inability of our theory to describe pulse dynamics in the KS limit is particularly

unsatisfying because here one typically finds spatio-temporal chaos (e.g. Hyman et al. 1986;

Pumir 1985); incoherent interactions between pulses and a bath of radiation may be respon-

sible for producing such a state (Toh 1987; Elphick et al. 1991a). A chaotic state consisting

of two pulses and three unstable (and numerous stable) radiation modes is shown in Fig. 17.

In the circumstance in which spatio-temporal chaos arises from the incoherent interac-

tion between a set of pulses and low-level radiation, one can study the power spectrum of

the state at least partly analytically. By posing an ansatz like (3.2) and assuming some

statistical distribution for pulse separations, one can compute spectral characteristics that

reproduce features of spectra extracted from numerical experiments. In this fashion, spectral

characteristics of the KS equation were studied by Toh (1987), and similar work has been

done on the complex Ginzburg-Landau equation (Kishiba et al. 1991) and plasma turbu-

lencemodels (Shen and Nicholson 1987; Qian et al. 1989). This type of analysis need not be

used for PDEs alone; the power spectra of homoclinic strange attractors can also be derived

(Gold'shtik and Shtern 1981; Brunsden and Holmes 1987; Brunsden et al. 1989).

The bifurcation structure of the Kuramoto-Sivashinsky equation and its chaotic states are

varied and complicated (Hyman et al. 1986). Our view of KS chaos as interacting pulses and

radiation is excessively simplistic. For example, it is not always possible to unambiguously

distinguish moving pulses from the radiation. We also cannot ignore the fact that pulses

are occasionally destroyed and nucleated as a result of hard collision and violent instability

(Sekimoto et al. 1987; Toh, 1987). Moreover, in addition to pulses like that shown in Fig. 5,

there are other, multiply peaked pulses and shock solutions (Balmforth et al. 1994; Chang

et al. 1993b; Hooper and Grimshaw, 1988; Kent and Elgin, 1992; Michelson, 1986) which
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may also !ay a role in the full dynamics.

In or¢_cr to understand the form of spatio-temporal chaos in the Kuramoto-Sivashinsky

equation (and also in the complex Ginzburg-Landau equation in the phase-turbulent regime)

it would clearly be desirable to have a useful theory of radiative pulse and frontal dynamics in

the dispersionless limit. By contrast, in soliton dynamics, perturbation theory surrounding

tile inverse scattering transform is much more successful in accounting for the interaction

between radiation and solitons (Kivshar and Malomed 1991).

In seemingly less chaotic regimes, Glazier and Kolodner (1993) have experimentally stud-

ied the interactions between wave packets and pulses in binary fluid convection. In field the-

ory, radiation or phonons often play significant roles in kink dynamics (e.g. Campbell et al.

1986; Fei et al. 1993). Lately, "radiative solitons" have been found in generalizations of the

Kortweg de Vries and nonlinear SchrSdinger equations (Pomeau et al. 1988; Karpman 1993a,

b). These are localized structures that are structurally intertwined with far-field radiation,

and perhaps are related to Shil'nikov-Hopf orbits.

• 5 Some Loose Ends and Outlook

In this final section we mention some related issues to the main discussion. Our survey is

not meant to be a complete one, and we only summarise some topics of particular interest.

After that, we remark on the relevance of the theory to the real world.

5.1 Issues of stability

In discussing either pulses and their interactions or dynamics near homoclinic orbits within

the framework of asymptotic theory, we have implicitly made an assumption regarding the

stability of these special types of solutions. One circumstance in which this assumption

breaks down is radiative instability, but there are other cases.

In the context of ODEs, for nearly homoclinic dynamics, there is an intrinsic notion
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that trajectories in phase space hug the homoclinic orbit as they traverse the main peaks

of the pulses. Then, in the geometrical vision of Shil'nikov theory, the trajectory does

not deviate too wildly from H(_) as it circulates outside of the region C shown in Fig. 6. In

singular perturbation theory, there is no such assumption, but there is also no guarantee that

the approximate solutions characterized by the timing map possess any degree of stability

whatsoever. In other words, for either visualization, in order for the homoclinic solutions

to be interesting, they must possess a degree of both stability and instability. Without the

former, no trajectory ever remains nearly homoclinic, but without the latter, the solutions

are not chaotic.

For three-dimensional homoclinics, the necessary stability is assured when the orbit pos-

sesses a large and negative Floquet exponent. When the flow in phase space contracts

volumes sufficiently strongly (i.e. when # is sufficiently large), one exponent is likely to be

of this form. For chaos, the other nontrivial Floquet exponent should be small but positive,

and Shil'nikov theory tells us that this transpires for _ >_ 1.

Stability of a pulse in the PDE is not the same as the stability of H(_) in the phase space

of the associated dynamical system. For pulse solutions Of a PDE, the question of stability

constitutes a slightly more delicate issue. Radiative instability highlights the possibility that

the pulse may be a stable homoclinic orbit in the ODE, but it does not evolve accordingly.

In fact, there is no reason to suppose that, in general, the pulse train is remotely stable. In

Benney's equation, the supercritical bifurcation of the periodic vacuum state is partly the

reason why the pulse solutions are stable at short spacing. Were that bifurcation subcritical,

the train would be substantially more unstable and immediately collapse or explode.

Pulse stability is resolvable with numerical techniques. An alternative, mathematically

formal procedure was described by Evans (1972, 1973a, 1973b, 1975), and has been employed

in a number of model equations (e.g. Evans and Feroe, 1975; Swinton and Elgin 1990). In the

Fitz-Hugh/Nagumo equation (e.g. Meron 1993), it has been established that pulses are often
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stable. Interestingly, these correspond to strongly unstable homoclinic orbits, in contrast to

the solitary waves of Benney's equation. Therefore, even though the nerve equation admits

spatially irregular patterns of pulses (Elphick et al. 199 lb), one cannot find strange attractors

in the associated ODE (oddly enough, aside from several critical signs, that ODE closely

resembles one derived as a model of convection by Moore and Spiegel (1964), which can be

chaotic).

5.2 Hamiltonian dynamics and Melnikov theory

In this review we have been concerned primarily with dissipative systems. Equally well,

however, we could have specialized to Hamiltonian homoclinic dynamics. The parallel

of Shil'nikov theory for Hamiltonian systems is Melnikov theory (Melnikov 1963). Like

Shil'nikov theory, this is a geometrically based approach to uncovering the dynamics in

the vicinity of a broken homoclinic connection. The ideas are most simply illustrated for a

Harniltonian system with a single degree of freedom under periodic perturbation (e.g. Drazin

1993). If the unperturbed system admits a homoclinic solution, then under perturbation,

the connection of the stable and unstable manifolds is broken; Melnikov theory amounts to

determining the distance between the two manifolds, as measured along an axis normal to

the original homoclinic orbit.

The key ingredient in Melnikov's analysis is an integral M(to) which measures the break-

age of the manifolds (to parameterizes the unperturbed homoclinic orbit). This integral is

commonly called Melnikov's function. If it vanishes, then we infer that the manifolds cross.

Because the perturbation is also periodic, it further implies that M(to) is likewise periodic,

and so the manifolds intersect one another an infinite number of times. The entangling of

the manifolds (a "homoclinic tangle") signifies the existence of chaotic orbits, and is the ana-

logue of Shil'nikov's theorem. If the Melnikov function does not vanish, then the manifold

never intersect, and more global methods are needed to study the outcome.
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Melnikov theory is rather elegantly formulated in the framework of Hamiltonian dynam-

ics. But it need not be couched in those terms (Chow et al. 1980). In fact, as pointed out by

Coullet and Elphick (1987), the Melnikov method for dissipative systems is essentially the

same as singular perturbation theory. The Melnikov function in that context is simply the in-

tegral appearing in the solvability condition; the requirement that it vanish ensures bounded

solutions in the asymptotic calculation, which is equivalent to saying that the manifolds en-

tangle. But, just as Shil'nikov theory provides more geometrical information regarding the

dynamics around the homoclinic orbits than the timing map, so too does Melnikov theory.

5.3 Painlev6 analysis and pole expansion

Our approach to the problem of pulse dynamics has been founded on the idea that solitary

waves correspond to homoclinic orbits of the dynamical system associated to the governing

PDE. Save for some special cases, these orbits need to be determined numerically, at least

for most dissipative systems. This is not, however, the only approach one can take to the

problem. Exact, analytical solitary solutions can also be furnished by Painlev_ analysis

(Weiss et al. 1983). Though intimately connected with integrable systems, the Painlev_

method occasionally works for dissipative systems. The heteroclinic solution of the KS

equation which is pictured in Fig. 5 can be uncovered in this fashion (Conte and Musette

1989), as can several solitary-wave solutions of Benney's equation at particular values of the

dispersion parameter (Kudryashov 1990). The trouble with uncovering analytical solutions

in this way is that it is rarely possible, and certainly gives no indication of the wealth of

solutions possible. Yet when the analysis furnishes an analytical solution, it can be very

useful.

A somewhat related method for pulse dynamics is pole expansion. This was first applied

to derive soliton solutions for the KdV equation and some of its relatives (Kruskal 1975;

Airault et al. 1977; Birnir 1986). Unlike approximation by homoclinic orbits, the method
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centres around the idea that, by choosing an appropriate selection of rational functions, we

can obtain exact nonlinear solutions. This amounts to finding a finite set of movable sin-

gular or pole solutions that solve the PDE exactly, provided their positions satisfy certain

ODEs. Once again, this method only works under special circumstances, and is at least par-

tially connected to integrability (Birnir 1986). But unlike singular perturbation theory and

Eq. (4.1), the dynamical equations that one extracts with pole expansion are exact nonlinear

evolution equations for the pole positions, which may or may not resemble individual pulses.

In addition to the KdV equation, it has been employed to find solutions of the dissipative

Benjamin-Ono equation (Meiss 1980; Lee and Chen 1982; Qian et al. 1989) and a variation

of the Boussinesq equation (Qian and Spiegel 1994).

5.4 Something of the real world

What we have described in this review is a theory of the dynamics of homoclinic orbits in

an ODE, and of pulses in a PDE. In the real world, most systems have too many degrees of

freedom to be described by simple theory of this kind. For systems describable by ODEs,
• .

this is mainly the reason why there are very few examples of experimental timing maps like

those pictured here, even when the object under study bursts sporadically and would appear

to be close to being homoclinic (lasers dynamics has something of the flavor of homoclinic

theory- Arrechi et al. 1993; Papoff et al. 1991). One important difference is that there can

be intrinsic noise in experimental systems..This restricts the accessibility of phase space near

the stagnation point at the origin, with critical repercussions on the timing map; lengthy

spacings are prohibited and periodic orbits can change (Hughes and Proctor 1990; Stone and

Holmes 1991; Arrechi et al. 1993).

In asymptotic theory, noise can be added perturbatively. This influences the solvabil-

ity condition in a similar fashion to the perturbations of the Ginzburg-Landau equation
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mentioned in Sec. 4.3. The pattern equations become

F(z_k) + F(--Ak+l) = Cl + gk , (5.1)

where gk depends on the pulse positions for deterministic perturbations, and is a stochastic

variable in the case of noise. Accordingly, deterministic perturbations intrinsically change

the map; noise "jitters" the spacings of a pulse train. If perturbations are excessively large,

all signature of the underlying Shil'nikov map can be lost.

For a spatio-temporal system, noise can be added in a similar way. Then the equation

of motion of the pulse (4.1) becomes stochastically driven, an effect like Brownian motion.

This sort of phenomenon would be relevant to pulses immersed in a heat bath, a situation

that might be used to model multiple, excited radiative modes in a many-pulse system.

As regards experimental observations of pulse dynamics, the situation is again difficult

to compare with theory. Solitary waves on fluid films are subject to secondary instabilities

which typically wrecks the possibility of recording persistent one-dimensional interaction

(Chang et al. 1993a). In spite of this drawback, some of the results of Liu and Gollub

(1994) suggest that experimental analogues might be found for fluid films. In binary fluid

convection, it is invariably only a small number of pulses that emerge in the system, and it

does not seem currently possible to describe these with simple PDEs.

The theory we have described is most useful in pointing to a way of completely describing

spatio-temporal complexity in a simple system. Though real systems are generally substan-

tially more complicated, the understanding gained in such a simple situation will hopefully

provide invaluable insights into more physical cases. In higher dimension, things only become

worse and we open Pandora's box. Geometrically alone, pulses can take shapes of all kinds,

from disks and spheroids to spirals and scrolls. Weak interaction theory could provide in-

teraction potentials necessary for the dynamics of these coherent structures, if regardable as

point particles. Then many-body dynamics could be attempted. But even in one dimension,
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we have seen that this often is not enough.
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Figure Captions:

I.KinksolutionsoftherealGinzburg-Landauequation.Panel(a)showsan "evaporation

front"connectingtheunstableand stablephases.Panel(b)showsa kinkconnecting

thetwo stablephases.

2.SolitonsolutionofthenonlinearSchrSdingerequation.

3. Pulse train and ansatz (Hk = H(_- xik).)

4. Bifurcation sequence of Eq. (3.1) for # = 0.7 and six values of c. The six panels show

phase portraits projected onto a plane with coordinates (E, _ + ;h/4). The stars mark

the fixed points.

5. Homoclinic and heteroclinic solutions of (3.1). Panel (a) shows the homoclinic orbit

_md its pulse-like time trace. Panel (b) shows the heteroclinic orbit and its frontal time

trace. The orbits are shown projected onto the (E, _) plane. The stars show the fixed

points.

6. Homoclinic dynamics. Panel (a) shows the homoclinic orbit H(_) and a nearly ho-

moclinic trajectory E(_) beginning from the unstable manifold of the origin. The

cylindrical central region C is identified. Panel (b) shows a magnification of the region

surrounding C. Panel (c) compares the time traces of the two solutions.

7. Shil'nikov's map for (a) 6 = 2 and (b) 6 = 0.5. The inset panels indicate the behavior

of L qxed point of the map as C varies, and the distance to homoclinicity changes (so

illustrating the bifurcation sequence).

8. Sample pulse train plus maps. Panel (a) shows the pulse train. Panel (b) shows the

associated timing map. The curves indicate the asymptotic map, the stars and iteration

show the computed spacings.

9. An invariant set.

10. A cubic invariant set for Eq. (3.1), but with cubic nonlinearity. Panel (a) shows the

empirical (measured) timing map. Panel (b) shows the phas,_ portr.ait projected onto

the (E,_) plane. The stars indicate the fixed points. Panel (c) presents part of the

pulse-antipulse train.

49



11. The time trace of a chaotic solution in the vicinity of an inverse Shil'nikov homoclinic

orbit (adapted from Tresser 1981). Not shown is a nearly homoclinic precursor.

12. Heteroclinic chaos in the Howard-Krishnamurti model. Panel (a) shows a phase por-

trait projected onto the (A,B) plane. Panel (b) displays the time trace of A. Panel

(c) is the empirical (measured) timing map.

13. Evolution of twelve pulse. Panel (a) shows the evolution of the positions, panel (b) the

final pattern.

14. An example of the evolution of 12 pulses from arbitrary initial conditions. Initially,

the pulses lock into 3 almost steady subgroups (panel (a)). Then these subgroups

eventually collide into a single formation (panel (b)) with the pattern shown in (c). In

panel (b), a synchronized drift in the position of all of the pulses has been subtracted

out.

15. Frontal dynamics. Panel (a) shows the positions of the fronts as they initially evolve and

collide. Panel (b) shows the eventual evolution and annihilation of the remaining four

fronts after the intial phase. Panel (c) shows the initial kink-antikink conFiguration.

16. A pulse with a supercritically saturated radiative instability. Shown is a space-time

surface plot.

17. A two pulse chaotic state. Shown is a space-time surface plot. Time recedes into the

page; space increases to the right.
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