Solitary Waves for Nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell Equations

Teresa D'Aprile* \quad Dimitri Mugnai ${ }^{\dagger}$

March 5, 2004

Abstract

In this paper we study the existence of radially symmetric solitary waves for nonlinear Klein-Gordon equations and nonlinear Schrödinger equations coupled with Maxwell equations. The method relies on a variational approach and the solutions are obtained as mountain-pass critical points for the associated energy functional.

1 Introduction

This paper has been motivated by the search of nontrivial solutions for the following nonlinear equations of the Klein-Gordon type:

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial t^{2}}-\Delta \psi+m^{2} \psi-|\psi|^{p-2} \psi=0, \quad x \in \mathbb{R}^{3} \tag{1.1}
\end{equation*}
$$

or of the Schrödinger type:

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \Delta \psi-|\psi|^{p-2} \psi, \quad x \in \mathbb{R}^{3} \tag{1.2}
\end{equation*}
$$

where $\hbar>0, m>0, p>2, \psi: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{C}$.
In recent years many papers have been devoted to find standing waves of (1.1) or (1.2), i.e. solutions of the form

$$
\psi(x, t)=e^{i \omega t} u(x), \quad \omega \in \mathbb{R}
$$

[^0]With this Ansatz the nonlinear Klein-Gordon equation, as well as the nonlinear Schrödinger equation, is reduced to a semilinear elliptic equation and existence theorems have been established whether u is radially symmetric and real (see [8], [9]), or u is non-radially symmetric and complex (see [13], [16]). In this paper we want to investigate the existence of nonlinear KleinGordon or Schrödinger fields interacting with an electromagnetic field $\mathbf{E}-\mathbf{H}$; such a problem has been extensively pursued in the case of assigned electromagnetic fields (see [3], [4], [12]). Following the ideas already introduced in $[5],[6],[7],[10],[11],[14],[15]$, we do not assume that the electromagnetic field is assigned. Then we have to study a system of equations whose unknowns are the wave function $\psi=\psi(x, t)$ and the gauge potentials \mathbf{A}, Φ,

$$
\mathbf{A}: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}^{3}, \quad \Phi: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}
$$

which are related to $\mathbf{E}-\mathbf{H}$ by the Maxwell equations

$$
\begin{aligned}
\mathbf{E} & =-\left(\nabla \Phi+\frac{\partial \mathbf{A}}{\partial t}\right) \\
\mathbf{H} & =\nabla \times \mathbf{A}
\end{aligned}
$$

Let us first consider equation (1.1). The Lagrangian density related to (1.1) is given by

$$
\mathcal{L}_{K G}=\frac{1}{2}\left[\left|\frac{\partial \psi}{\partial t}\right|^{2}-|\nabla \psi|^{2}-m^{2}|\psi|^{2}\right]+\frac{1}{p}|\psi|^{p}
$$

The interaction of ψ with the electromagnetic field is described by the minimal coupling rule, that is the formal substitution

$$
\frac{\partial}{\partial t} \longmapsto \frac{\partial}{\partial t}+i e \Phi, \quad \nabla \longmapsto \nabla-i e \mathbf{A}
$$

where e is the electric charge. Then the Lagrangian density becomes:

$$
\mathcal{L}_{K G M}=\frac{1}{2}\left[\left|\frac{\partial \psi}{\partial t}+i e \psi \Phi\right|^{2}-|\nabla \psi-i e \mathbf{A} \psi|^{2}-m^{2}|\psi|^{2}\right]+\frac{1}{p}|\psi|^{p}
$$

If we set

$$
\psi(x, t)=u(x, t) e^{i S(x, t)}
$$

where $u, S: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}$, the Lagrangian density takes the form

$$
\mathcal{L}_{K G M}=\frac{1}{2}\left\{u_{t}^{2}-|\nabla u|^{2}-\left[|\nabla S-e \mathbf{A}|^{2}-\left(S_{t}+e \Phi\right)^{2}+m^{2}\right] u^{2}\right\}+\frac{1}{p}|u|^{p}
$$

Now consider the Lagrangian density of the electromagnetic field $\mathbf{E}-\mathbf{H}$,

$$
\begin{equation*}
\mathcal{L}_{0}=\frac{1}{2}\left(|\mathbf{E}|^{2}-|\mathbf{H}|^{2}\right)=\frac{1}{2}\left|\mathbf{A}_{t}+\nabla \Phi\right|^{2}-\frac{1}{2}|\nabla \times \mathbf{A}|^{2} \tag{1.3}
\end{equation*}
$$

Therefore, the total action is given by

$$
\mathcal{S}=\iint \mathcal{L}_{K G M}+\mathcal{L}_{0}
$$

Making the variation of \mathcal{S} with respect to u, S, Φ and \mathbf{A} respectively, we get

$$
\begin{gather*}
u_{t t}-\Delta u+\left[|\nabla S-e \mathbf{A}|^{2}-\left(S_{t}+e \Phi\right)^{2}+m^{2}\right] u-|u|^{p-2} u=0 \tag{1.4}\\
\frac{\partial}{\partial t}\left[\left(S_{t}+e \Phi\right) u^{2}\right]-\operatorname{div}\left[(\nabla S-e \mathbf{A}) u^{2}\right]=0 \tag{1.5}\\
\operatorname{div}\left(\mathbf{A}_{t}+\nabla \Phi\right)=e\left(S_{t}+e \Phi\right) u^{2} \tag{1.6}\\
\nabla \times(\nabla \times \mathbf{A})+\frac{\partial}{\partial t}\left(\mathbf{A}_{t}+\nabla \Phi\right)=e(\nabla S-e \mathbf{A}) u^{2} \tag{1.7}
\end{gather*}
$$

We are interested in finding standing (or solitary) waves of (1.4)-(1.7), that is solutions having the form

$$
u=u(x), \quad S=\omega t, \quad \mathbf{A}=0, \quad \Phi=\Phi(x), \quad \omega \in \mathbb{R}
$$

Then the equations (1.5) and (1.7) are identically satisfied, while (1.4) and (1.6) become

$$
\begin{gather*}
-\Delta u+\left[m^{2}-(\omega+e \Phi)^{2}\right] u-|u|^{p-2} u=0 \tag{1.8}\\
-\Delta \Phi+e^{2} u^{2} \Phi=-e \omega u^{2} \tag{1.9}
\end{gather*}
$$

In [6] the authors proved the existence of infinitely many symmetric solutions $\left(u_{n}, \Phi_{n}\right)$ of (1.8)-(1.9) under the assumption $4<p<6$, by using an equivariant version of the mountain pass theorem (see [1], [2]).

The object of the first part of this paper is to extend this result as follows.

Theorem 1.1. Assume that one of the following two hypotheses hold: either
a) $m>\omega>0$ and $4 \leq p<6$,
or
b) $m \sqrt{p-2}>\sqrt{2} \omega>0$ and $2<p<4$.

Then the system (1.8) - (1.9) has infinitely many radially symmetric solutions $\left(u_{n}, \Phi_{n}\right), u_{n} \not \equiv 0$ and $\Phi_{n} \not \equiv 0$, with $u_{n} \in H^{1}\left(\mathbb{R}^{3}\right), \Phi_{n} \in L^{6}\left(\mathbb{R}^{3}\right)$ and $\left|\nabla \Phi_{n}\right| \in L^{2}\left(\mathbb{R}^{3}\right)$.

In the second part of the paper we study the Schrödinger equation for a particle in a electromagnetic field.

Consider the Lagrangian associated to (1.2):

$$
\mathcal{L}_{S}=\frac{1}{2}\left[i \hbar \frac{\partial \psi}{\partial t} \bar{\psi}-\frac{\hbar^{2}}{2 m}|\nabla \psi|^{2}\right]+\frac{1}{p}|\psi|^{p}
$$

By using the formal substitution

$$
\frac{\partial}{\partial t} \longmapsto \frac{\partial}{\partial t}+i \frac{e}{\hbar} \Phi, \quad \nabla \longmapsto \nabla-i \frac{e}{\hbar} \mathbf{A}
$$

we obtain

$$
\mathcal{L}_{S M}=\frac{1}{2}\left[i \hbar \frac{\partial \psi}{\partial t} \bar{\psi}-e \Phi|\psi|^{2}-\frac{\hbar^{2}}{2 m}\left|\nabla \psi-i \frac{e}{\hbar} \mathbf{A} \psi\right|^{2}\right]+\frac{1}{p}|\psi|^{p}
$$

Now take

$$
\psi(x, t)=u(x, t) e^{i S(x, t) / \hbar}
$$

With this Ansatz the Lagrangian $\mathcal{L}_{S M}$ becomes

$$
\mathcal{L}_{S M}=\frac{1}{2}\left[i \hbar u u_{t}-\frac{\hbar^{2}}{2 m}|\nabla u|^{2}-\left(S_{t}+e \Phi+\frac{1}{2 m}|\nabla S-e \mathbf{A}|^{2}\right) u^{2}\right]+\frac{1}{p}|\psi|^{p} .
$$

Proceeding as in [5], we consider the total action $\mathcal{S}=\iint\left[\mathcal{L}_{S M}+\frac{1}{8 \pi}\left(|\mathbf{E}|^{2}-\right.\right.$ $\left.\left.|\mathbf{H}|^{2}\right)\right]$ of the system "particle-electromagnetic field". Then the Euler-Lagrange equations associated to the functional $\mathcal{S}=\mathcal{S}(u, S, \Phi, \mathbf{A})$ give rise to the following system of equations:

$$
\begin{gather*}
-\frac{\hbar^{2}}{2 m} \Delta u+\left(S_{t}+e \Phi+\frac{1}{2 m}|\nabla S-e \mathbf{A}|^{2}\right) u-|u|^{p-2} u=0 \tag{1.10}\\
\frac{\partial}{\partial t} u^{2}+\frac{1}{m} \operatorname{div}\left[(\nabla S-e \mathbf{A}) u^{2}\right]=0 \tag{1.11}\\
e u^{2}=-\frac{1}{4 \pi} \operatorname{div}\left(\frac{\partial \mathbf{A}}{\partial t}+\nabla \Phi\right) \tag{1.12}\\
\frac{e}{2 m}(\nabla S-e \mathbf{A}) u^{2}=\frac{1}{4 \pi}\left[\frac{\partial}{\partial t}\left(\frac{\partial \mathbf{A}}{\partial t}+\nabla \Phi\right)+\nabla \times(\nabla \times \mathbf{A})\right] \tag{1.13}
\end{gather*}
$$

If we look for solitary wave solutions in the electrostatic case, i.e.

$$
u=u(x), \quad S=\omega t, \quad \Phi=\Phi(x), \quad \mathbf{A}=0, \quad \omega \in \mathbb{R}
$$

then (1.11) and (1.13) are identically satisfied, while (1.10) and (1.12) become

$$
\begin{gather*}
-\frac{\hbar^{2}}{2 m} \Delta u+e \Phi u-|u|^{p-2} u+\omega u=0 \tag{1.14}\\
-\Delta \Phi=4 \pi e u^{2} \tag{1.15}
\end{gather*}
$$

The existence of solutions of (1.14)-(1.15) was already studied for $4<$ $p<6$: in [5] existence of infinitely many radial solutions was proved, while in [13] existence of a non radially symmetric solution was established. In the second part of the paper we prove the following result.

Theorem 1.2. Let $\omega>0$ and $4 \leq p<6$. Then the system (1.14) - (1.15) has at least a radially symmetric solution $(u, \Phi), u \neq 0$ and $\Phi \neq 0$, with $u \in H^{1}\left(\mathbb{R}^{3}\right), \Phi \in L^{6}\left(\mathbb{R}^{3}\right)$ and $|\nabla \Phi| \in L^{2}\left(\mathbb{R}^{3}\right)$.

2 Nonlinear Klein-Gordon Equations coupled with Maxwell Equations

In this section we will prove Theorem 1.1. For sake of simplicity, assume $e=1$ so that (1.8)-(1.9) give rise to the following system in \mathbb{R}^{3} :

$$
\begin{gather*}
-\Delta u+\left[m^{2}-(\omega+\Phi)^{2}\right] u-|u|^{p-2} u=0 \tag{2.16}\\
-\Delta \Phi+u^{2} \Phi=-\omega u^{2} \tag{2.17}
\end{gather*}
$$

Assume that one of the following hypotheses hold: either
a) $m>\omega>0,4 \leq p<6$,
or
b) $m \sqrt{p-2}>\sqrt{2} \omega>0,2<p<4$.

We note that $q=6$ is the critical exponent for the Sobolev embedding $H^{1}\left(\mathbb{R}^{3}\right) \subset L^{q}\left(\mathbb{R}^{3}\right)$.

It is clear that (2.16)-(2.17) are the Euler-Lagrange equations of the functional $F: H^{1} \times D^{1,2} \rightarrow \mathbb{R}$ defined as

$$
F(u, \Phi)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}-|\nabla \Phi|^{2}+\left[m^{2}-(\omega+\Phi)^{2}\right] u^{2}\right) d x-\frac{1}{p} \int_{\mathbb{R}^{3}}|u|^{p} d x
$$

Here $H^{1} \equiv H^{1}\left(\mathbb{R}^{3}\right)$ denotes the usual Sobolev space endowed with the norm

$$
\begin{equation*}
\|u\|_{H^{1}} \equiv\left(\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+|u|^{2}\right) d x\right)^{1 / 2} \tag{2.18}
\end{equation*}
$$

and $D^{1,2} \equiv D^{1,2}\left(\mathbb{R}^{3}\right)$ is the completion of $C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ with respect to the norm

$$
\begin{equation*}
\|u\|_{D^{1,2}} \equiv\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2} d x\right)^{1 / 2} \tag{2.19}
\end{equation*}
$$

The following two propositions hold.
Proposition 2.1. The functional F belongs to $C^{1}\left(H^{1} \times D^{1,2}, \mathbb{R}\right)$ and its critical points are the solutions of (2.16) - (2.17).
(For the proof we refer to [6]).
Proposition 2.2. For every $u \in H^{1}$, there exists a unique $\Phi=\Phi[u] \in D^{1,2}$ which solves (2.17). Furthermore
(i) $\Phi[u] \leq 0$;
(ii) $\Phi[u] \geq-\omega$ in the set $\{x \mid u(x) \neq 0\}$;
(iii) if u is radially symmetric, then $\Phi[u]$ is radial, too.

Proof. Fixed $u \in H^{1}$, consider the following bilinear form on $D^{1,2}$:

$$
a(\phi, \psi)=\int_{\mathbb{R}^{3}}\left(\nabla \psi \nabla \psi+u^{2} \phi \psi\right) d x
$$

Obviously $a(\phi, \phi) \geq\|\phi\|_{D^{1,2}}^{2}$. Observe that, since $H^{1}\left(\mathbb{R}^{3}\right) \subset L^{3}\left(\mathbb{R}^{3}\right)$, then $u^{2} \in L^{3 / 2}\left(\mathbb{R}^{3}\right)$. On the other hand $D^{1,2}$ is continuously embedded in $L^{6}\left(\mathbb{R}^{3}\right)$, hence, by Hölder's inequality,
$a(\phi, \psi) \leq\|\phi\|_{D^{1,2}}\|\psi\|_{D^{1,2}}+\left\|u^{2}\right\|_{L^{3 / 2}}\|\phi\|_{L^{6}}\|\psi\|_{L^{6}} \leq\left(1+C\|u\|_{L^{3}}^{2}\right)\|\phi\|_{D^{1,2}}\|\psi\|_{D^{1,2}}$
for some positive constant C, given by Sobolev inequality (see [20]). Therefore a defines an inner product, equivalent to the standard inner product in $D^{1,2}$.

Moreover $H^{1}\left(\mathbb{R}^{3}\right) \subset L^{12 / 5}\left(\mathbb{R}^{3}\right)$, and then

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{3}} u^{2} \psi d x\right| \leq\left\|u^{2}\right\|_{L^{6 / 5}}\|\psi\|_{L^{6}} \leq c\|u\|_{L^{12 / 5}}^{2}\|\psi\|_{D^{1,2}} \tag{2.20}
\end{equation*}
$$

Therefore the linear map $\psi \in D^{1,2} \mapsto \int_{\mathbb{R}^{3}} u^{2} \psi d x$ is continuous. By LaxMilgram Lemma we get the existence of a unique $\Phi \in D^{1,2}$ such that

$$
\int_{\mathbb{R}^{3}}\left(\nabla \Phi \nabla \psi+u^{2} \Phi \psi\right) d x=-\omega \int_{\mathbb{R}^{3}} u^{2} \psi d x \quad \forall \psi \in D^{1,2}
$$

i.e. Φ is the unique solution of (2.17). Furthermore Φ achieves the minimum

$$
\begin{aligned}
& \inf _{\phi \in D^{1,2}} \int_{\mathbb{R}^{3}}\left(\frac{1}{2}\left(|\nabla \phi|^{2}+u^{2}|\phi|^{2}\right)+\omega u^{2} \phi\right) d x \\
& =\int_{\mathbb{R}^{3}}\left(\frac{1}{2}\left(|\nabla \Phi|^{2}+u^{2}|\Phi|^{2}\right)+\omega u^{2} \Phi\right) d x
\end{aligned}
$$

Note that also $-|\Phi|$ achieves such a minimum; then, by uniqueness, $\Phi=$ $-|\Phi| \leq 0$. Now let $O(3)$ denote the group of rotations in \mathbb{R}^{3}. Then for every $g \in O(3)$ and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, set $T_{g}(f)(x)=f(g x)$. Note that T_{g} does not change the norms in $H^{1}, D^{1,2}$ and L^{p}. In Lemma 4.2 of [6] it was proved that $T_{g} \Phi[u]=\Phi\left[T_{g} u\right]$. In this way, if u is radial, we get $T_{g} \Phi[u]=\Phi[u]$.

Finally, following the same idea of [17], fixed $u \in H^{1}$, if we multiply (2.17) by $(\omega+\Phi[u])^{-} \equiv-\min \{\omega+\Phi[u], 0\}$, which is an admissible test function, since $\omega>0$, we get

$$
-\int_{\Phi[u]<-\omega}|D \Phi[u]|^{2} d x-\int_{\Phi[u]<-\omega}(\omega+\Phi[u])^{2} u^{2} d x=0
$$

so that $\Phi[u] \geq-\omega$ where $u \neq 0$.
Remark 2.3. The result (ii) of Proposition 2.2 can be strengthened in some cases. Indeed, take \bar{u} in $H^{1}\left(\mathbb{R}^{3}\right) \cap C^{\infty}$ radially symmetric such that

$$
\bar{u}>0 \text { in } B(0, R), \bar{u} \equiv 0 \text { in } \mathbb{R}^{3} \backslash B(0, R)
$$

for some $R>0$. Then there results

$$
-\omega \leq \Phi[\bar{u}](x) \leq 0 \quad \forall x \in \mathbb{R}^{3}
$$

In fact, since $\Phi[\bar{u}]$ solves (2.17), by standard regularity results for elliptic equations, $\bar{u} \in C^{\infty}$ implies $\Phi[\bar{u}] \in C^{\infty}$. By Proposition $2.2, \Phi[\bar{u}]$ is radial; moreover $\Phi[\bar{u}]$ is harmonic outside $B(0, R)$. Since $\Phi[\bar{u}] \in D^{1,2}$, then

$$
\Phi[\bar{u}](x)=-\frac{c}{|x|}, \quad|x| \geq R
$$

for some $c>0$. Setting $\tilde{\Phi}(r)=\Phi[\bar{u}](x)$ for $|x|=r$, it results $\tilde{\Phi}^{\prime}(R)>0$ and $\tilde{\Phi}(r)>\tilde{\Phi}(R)$ for every $r>R$. Therefore the minimum of $\Phi[\bar{u}]$ is achieved in $B(0, R)$. Let \bar{x} be a minimum point for $\Phi[\bar{u}]$. Then (2.17) implies

$$
\Phi[\bar{u}](\bar{x})=\frac{-\omega \bar{u}^{2}(\bar{x})+\Delta \Phi[\bar{u}](\bar{x})}{\bar{u}^{2}(\bar{x})} \geq-\omega .
$$

In view of proposition 2.2 , we can define the map

$$
\Phi: H^{1} \longrightarrow D^{1,2}
$$

which maps each $u \in H^{1}$ in the unique solution of (2.17). From standard arguments it results $\Phi \in C^{1}\left(H^{1}, D^{1,2}\right)$ and from the very definition of Φ we get

$$
\begin{equation*}
F_{\phi}^{\prime}(u, \Phi[u])=0 \quad \forall u \in H^{1} \tag{2.21}
\end{equation*}
$$

Now let us consider the functional

$$
J: H^{1} \longrightarrow \mathbb{R}, \quad J(u):=F(u, \Phi[u])
$$

By proposition 2.1, $J \in C^{1}\left(H^{1}, \mathbb{R}\right)$ and, by (2.21),

$$
J^{\prime}(u)=F_{u}^{\prime}(u, \Phi[u])
$$

By definition of F, we obtain

$$
\begin{gathered}
J(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}-|\nabla \Phi[u]|^{2}+\left[m^{2}-\omega^{2}\right] u^{2}-u^{2} \Phi[u]^{2}\right) d x \\
-\omega \int_{\mathbb{R}^{3}} u^{2} \Phi[u]-\frac{1}{p} \int_{\mathbb{R}^{3}}|u|^{p} d x
\end{gathered}
$$

Multiplying both members of (2.17) by $\Phi[u]$ and integrating by parts, we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}|\nabla \Phi[u]|^{2} d x+\int_{\mathbb{R}^{3}}|u|^{2}|\Phi[u]|^{2} d x=-\omega \int_{\mathbb{R}^{3}}|u|^{2} \Phi[u] d x \tag{2.22}
\end{equation*}
$$

Using (2.22), the functional J may be written as

$$
\begin{equation*}
J(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+\left[m^{2}-\omega^{2}\right] u^{2}-\omega u^{2} \Phi[u]\right) d x-\frac{1}{p} \int_{\mathbb{R}^{3}}|u|^{p} d x \tag{2.23}
\end{equation*}
$$

The next lemma states a relationship between the critical points of the functionals F and J (the proof can be found in [6]).

Lemma 2.4. The following statements are equivalent:
i) $(u, \Phi) \in H^{1} \times D^{1,2}$ is a critical point of F,
ii) u is a critical point of J and $\Phi=\Phi[u]$.

Then, in order to get solutions of (2.16)-(2.17), we look for critical points of J.

Theorem 2.5. Assume hypotheses a) and b). Then the functional J has infinitely many critical points $u_{n} \in H^{1}$ having a radial symmetry.

Proof. Our aim is to apply the equavariant version of the Mountain-Pass Theorem (see [1], Theorem 2.13, or [18], Theorem 9.12). Since J is invariant under the group of translations, there is clearly a lack of compactness. In order to overcome this difficulty, we consider radially symmetric functions. More precisely we introduce the subspace

$$
H_{r}^{1}=\left\{u \in H^{1} \mid u(x)=u(|x|)\right\}
$$

We divide the remaining part of the proof in three steps.
Step 1. Any critical point $u \in H_{r}^{1}$ of $J_{H_{r}^{1}}$ is also a critical point of J.
The proof can be found in [6].
Step 2. The functional $J_{H_{r}^{1}}$ satisfies the Palais-Smale condition, i.e.
any sequence $\left\{u_{n}\right\}_{n} \subset H_{r}^{1}$ such that $J\left(u_{n}\right)$ is bounded and $J_{\mid H_{r}^{1}}^{\prime}\left(u_{n}\right) \rightarrow 0$ contains a convergent subsequence.

For the sake of simplicity, from now on we set $\Omega=m^{2}-\omega^{2}>0$. Let $\left\{u_{n}\right\}_{n} \subset H_{r}^{1}$ be such that

$$
\left|J\left(u_{n}\right)\right| \leq M, \quad J_{\mid H_{r}^{1}}^{\prime}\left(u_{n}\right) \rightarrow 0
$$

for some constant $M>0$. Then, using the form of J given in (2.23),

$$
\begin{gather*}
p J\left(u_{n}\right)-J^{\prime}\left(u_{n}\right) u_{n}=\left(\frac{p}{2}-1\right) \int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2}+\Omega\left|u_{n}\right|^{2}\right) d x \\
-\omega\left(\frac{p}{2}-2\right) \int_{\mathbb{R}^{3}} u_{n}^{2} \Phi\left[u_{n}\right] d x+\int_{\mathbb{R}^{3}} u_{n}^{2}\left(\Phi\left[u_{n}\right]\right)^{2} d x \\
\geq\left(\frac{p}{2}-1\right) \int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2}+\Omega\left|u_{n}\right|^{2}\right) d x-\omega\left(\frac{p}{2}-2\right) \int_{\mathbb{R}^{3}} u_{n}^{2} \Phi\left[u_{n}\right] d x . \tag{2.24}
\end{gather*}
$$

We distinguish two cases: either $p \geq 4$ or $2<p<4$.
If $p \geq 4$, by (2.24), using Proposition 2.2 , we immediately deduce

$$
\begin{equation*}
p J\left(u_{n}\right)-J^{\prime}\left(u_{n}\right) u_{n} \geq\left(\frac{p}{2}-1\right) \int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2}+\Omega\left|u_{n}\right|^{2}\right) d x . \tag{2.25}
\end{equation*}
$$

Moreover, by hypothesis a)

$$
\begin{equation*}
\left(\frac{p}{2}-1\right) \int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2}+\Omega\left|u_{n}\right|^{2}\right) d x \geq c_{1}\left\|u_{n}\right\|^{2} \tag{2.26}
\end{equation*}
$$

and by assumption

$$
\begin{equation*}
p J\left(u_{n}\right)-J^{\prime}\left(u_{n}\right) u_{n} \leq p M+c_{2}\left\|u_{n}\right\| \tag{2.27}
\end{equation*}
$$

for some positive constants c_{1} and c_{2}.
Combining (2.25), (2.26), (2.27), we deduce that $\left\{u_{n}\right\}_{n}$ is bounded in H_{r}^{1}.

If $2<p<4$, by Proposition 2.2 and (2.24) we get

$$
\begin{gathered}
p J\left(u_{n}\right)-J^{\prime}\left(u_{n}\right) u_{n} \geq\left(\frac{p}{2}-1\right) \int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2}+\Omega\left|u_{n}\right|^{2}\right) d x-\omega^{2}\left(2-\frac{p}{2}\right) \int_{\mathbb{R}^{3}} u_{n}^{2} d x \\
=\left(\frac{p}{2}-1\right) \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}+\left(\frac{m^{2}(p-2)-2 \omega^{2}}{2}\right) \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{2} d x .
\end{gathered}
$$

By hypothesis b) $m^{2}(p-2)-2 \omega^{2}>0$, then we repeat the same argument as for $p \geq 4$ and obtain the bounedness of $\left\{u_{n}\right\}_{n}$ in H_{r}^{1}.

On the other hand, using equation (2.17), and proceeding as in (2.20), we get

$$
\begin{gathered}
\left.\int_{\mathbb{R}^{3}} \nabla \Phi\left[u_{n}\right]\right|^{2} d x \leq \int_{\mathbb{R}^{3}}\left|\nabla \Phi\left[u_{n}\right]\right|^{2} d x+\int_{\mathbb{R}^{3}}\left|u_{n}\right|^{2}\left|\Phi\left[u_{n}\right]\right|^{2} d x=-\omega \int_{\mathbb{R}^{3}} u_{n}^{2} \Phi\left[u_{n}\right] d x \\
\leq c \omega\left\|u_{n}\right\|_{L^{12 / 5}}^{2}\left\|\Phi\left[u_{n}\right]\right\|_{D^{1,2}}
\end{gathered}
$$

which implies that $\left\{\Phi\left[u_{n}\right]\right\}_{n}$ is bounded in $D^{1,2}$.
Then, up to a subsequence,

$$
\begin{array}{cl}
u_{n} \rightharpoonup u & \text { in } H_{r}^{1} \\
\Phi\left[u_{n}\right] \rightharpoonup \phi & \text { in } D^{1,2}
\end{array}
$$

If $L: H_{r}^{1} \rightarrow\left(H_{r}^{1}\right)^{\prime}$ is defined as

$$
L(u)=-\Delta u+\Omega u
$$

then

$$
L\left(u_{n}\right)=\omega u_{n} \Phi\left[u_{n}\right]+\left|u_{n}\right|^{p-2} u_{n}+\varepsilon_{n}
$$

where $\varepsilon_{n} \rightarrow 0$ in $\left(H_{r}^{1}\right)^{\prime}$, that is

$$
u_{n}=L^{-1}\left(\omega u_{n} \Phi\left[u_{n}\right]\right)+L^{-1}\left(\left|u_{n}\right|^{p-2} u_{n}\right)+L^{-1}\left(\varepsilon_{n}\right)
$$

Now note that $\left\{u_{n} \Phi\left[u_{n}\right]\right\}$ is bounded in $L_{r}^{3 / 2}$; in fact, by Hölder's inequality,

$$
\left\|u_{n} \Phi\left[u_{n}\right]\right\|_{L_{r}^{3 / 2}} \leq\left\|u_{n}\right\|_{L_{r}^{2}}\left\|\Phi\left[u_{n}\right]\right\|_{L_{r}^{6}} \leq c\left\|u_{n}\right\|_{L_{r}^{2}}\left\|\Phi\left[u_{n}\right]\right\|_{D^{1,2}} .
$$

Moreover $\left\{\left|u_{n}\right|^{p-2} u_{n}\right\}$ is bounded in $L_{r}^{p^{\prime}}\left(\right.$ where $\left.\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$. The immersions $H_{r}^{1} \hookrightarrow L_{r}^{3}$ and $H_{r}^{1} \hookrightarrow L_{r}^{p}$ are compact (see [8] or [19]) and thus, by duality, $L_{r}^{3 / 2}$ and $L_{r}^{p^{\prime}}$ are compactly embedded in $\left(H_{r}^{1}\right)^{\prime}$. Then by standard arguments $L^{-1}\left(\omega u_{n} \Phi\left[u_{n}\right]\right)$ and $L^{-1}\left(\left|u_{n}\right|^{p-2} u_{n}\right)$ strongly converge in H_{r}^{1}. Then we conclude

$$
u_{n} \rightarrow u \quad \text { in } H_{r}^{1}
$$

Step 3. The functional $J_{\left.\right|_{r} ^{1}}$ satisfies the geometrical hypothesis of the equivariant version of the Mountain Pass Theorem.

First of all we observe that $J(0)=0$. Moreover, by Proposition 2.2 and (2.23),

$$
J(u) \geq \frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x+\frac{\Omega}{2} \int_{\mathbb{R}^{3}}|u|^{2} d x-\frac{1}{p} \int_{\mathbb{R}^{3}}|u|^{p} d x
$$

The hypothesis $2<p<6$ and the continuous embedding $H^{1} \subset L^{p}$ imply that there exists $\rho>0$ small enough such that

$$
\inf _{\|u\|_{H^{1}}=\rho} J(u)>0
$$

Since J is even, the thesis of step 3 will follow if we prove that for every finite dimensional subset V of H_{r}^{1} it results

$$
\begin{equation*}
\lim _{\substack{u \in V,\|u\|_{H^{1}} \rightarrow+\infty}} J(u)=-\infty . \tag{2.28}
\end{equation*}
$$

Let V be an m-dimensional subspace of H_{r}^{1} and let $u \in V$. By Proposition $2.2 \Phi[u] \geq-\omega$ where $u \neq 0$, so that

$$
J(u) \leq \frac{1}{2} \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+\Omega|u|^{2}+\omega^{2} u^{2}\right) d x-\frac{1}{p} \int_{\mathbb{R}^{3}}|u|^{p} \leq c\|u\|_{H^{1}}^{2}-\frac{1}{p}\|u\|_{L^{p}}^{p}
$$

and (2.28) follows, since all norms in V are equivalent.
Proof of Theorem 1.1. Lemma $2.4+$ Theorem 2.5.
Remark 2.6. In view of Remark 2.3 the existence of one nontrivial critical point for the functional J follows from the classical mountain pass theorem: more precisely, taken $\bar{u} \in H_{r}^{1} \cap C^{\infty}$ as in Remark 2.3, since $\|\Phi[\bar{u}]\|_{\infty} \leq \omega$, there results
$J(t \bar{u}) \leq \frac{t^{2}}{2} \int_{\mathbb{R}^{3}}\left(|\nabla \bar{u}|^{2}+\Omega|\bar{u}|^{2}+\omega^{2} \bar{u}^{2}\right) d x-\frac{t^{p}}{p} \int_{\mathbb{R}^{3}}|\bar{u}|^{p} \rightarrow-\infty$ as $t \rightarrow+\infty$.

3 Nonlinear Schrödinger Equations coupled with Maxwell Equations

For sake of simplicity assume $\hbar=m=e=1$ in (1.14)-(1.15). Then we are reduced to study the following system in \mathbb{R}^{3} :

$$
\begin{gather*}
-\frac{1}{2} \Delta u+\Phi u+\omega u-|u|^{p-2} u=0 \tag{3.29}\\
-\Delta \Phi=4 \pi u^{2} \tag{3.30}
\end{gather*}
$$

We will assume
a') $\omega>0$
b') $4 \leq p<6$.

Of course, (3.29)-(3.30) are the Euler-Lagrange equations of the functional $\mathcal{F}: H^{1} \times D^{1,2} \rightarrow \mathbb{R}$ defined as

$$
\begin{aligned}
\mathcal{F}(u, \Phi)=\frac{1}{4} \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x- & \frac{1}{16 \pi} \int_{\mathbb{R}^{3}}|\nabla \Phi|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{3}}\left(\Phi u^{2}+\omega u^{2}\right) d x \\
& -\frac{1}{p} \int_{\mathbb{R}^{3}}|u|^{p} d x
\end{aligned}
$$

where H^{1} and $D^{1,2}$ are defined as in the previous section.
It is easy to prove the analogous of Proposition 2.1, i.e. that $\mathcal{F} \in$ $C^{1}\left(H^{1} \times D^{1,2}, \mathbb{R}\right)$ and that its critical points are solutions of (3.29)-(3.30).

Moreover we have the following proposition.
Proposition 3.1. For every $u \in H^{1}$ there exists a unique solution $\Phi=$ $\Phi[u] \in D^{1,2}$ of (3.30), such that

- $\Phi[u] \geq 0 ;$
- $\Phi[t u]=t^{2} \Phi[u]$ for every $u \in H^{1}$ and $t \in \mathbb{R}$.

Proof. Let us consider the linear map $\phi \in D^{1,2} \mapsto \int_{\mathbb{R}^{3}} u^{2} \phi d x$, which is continuous by (2.20). By Lax-Milgram's Lemma we get the existence of a unique $\Phi \in D^{1,2}$ such that

$$
\int_{\mathbb{R}^{3}} \nabla \Phi \nabla \phi d x=4 \pi \int_{\mathbb{R}^{3}} u^{2} \phi d x \quad \forall \phi \in D^{1,2}
$$

i.e. Φ is the unique solution of (3.30). Furthermore Φ achieves the minimum

$$
\inf _{\phi \in D^{1,2}}\left\{\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla \phi|^{2}-4 \pi \int_{\mathbb{R}^{3}} u^{2} \phi d x\right\}=\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla \Phi|^{2} d x-4 \pi \int_{\mathbb{R}^{3}} u^{2} \Phi d x
$$

Note that also $|\Phi|$ achieves such minimum; then, by uniqueness, $\Phi=|\Phi| \geq 0$.
Finally,

$$
-\Delta \Phi[t u]=4 \pi t^{2} u^{2}=-t^{2} \Delta \Phi[u]=-\Delta\left(t^{2} \Phi[u]\right)
$$

thus, by uniqueness, $\Phi[t u]=t^{2} \Phi[u]$.
Proceeding as in the previous section we can define the map

$$
\Phi: H^{1} \rightarrow D^{1,2}
$$

which maps each $u \in H^{1}$ in the unique solution of (3.30). As before, $\Phi \in$ $C^{1}\left(H^{1}, D^{1,2}\right)$ and

$$
\mathcal{F}_{\Phi}^{\prime}(u, \Phi[u])=0 \quad \forall u \in H^{1}
$$

Now consider the functional $\mathcal{J}: H^{1} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{J}(u)=\mathcal{F}(u, \Phi[u])
$$

\mathcal{J} belongs to $C^{1}\left(H^{1}, \mathbb{R}\right)$ and satisfies $\mathcal{J}^{\prime}(u)=\mathcal{F}_{u}(u, \Phi[u])$. Using the definition of \mathcal{F} and equation (3.30), we obtain

$$
\mathcal{J}(u)=\frac{1}{4} \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x+\frac{\omega}{2} \int_{\mathbb{R}^{3}}|u|^{2} d x+\frac{1}{4} \int_{\mathbb{R}^{3}}|u|^{2} \Phi[u] d x-\frac{1}{p} \int_{\mathbb{R}^{3}}|u|^{p} d x
$$

As before, one can prove the following lemma.
Lemma 3.2. The following statements are equivalent:
i) $(u, \Phi) \in H^{1} \times D^{1,2}$ is a critical point of \mathcal{F},
ii) u is a critical point of \mathcal{J} and $\Phi=\Phi[u]$.

Now we are ready to prove the existence result for equations (3.29)(3.30).

Theorem 3.3. Assume hypotheses a^{\prime}) and b^{\prime}). Then the functional \mathcal{J} has a nontrivial critical point $u \in H^{1}$ having a radial symmetry.

Proof. Let H_{r}^{1} be defined as in theorem 2.5.
Step 1. Any critical point $u \in H_{r}^{1}$ of $\mathcal{J}_{\left.\right|_{r} ^{1}}$ is also a critical point of \mathcal{J}.
The proof is as in theorem 2.5.
Step 2. The functional $\mathcal{J}_{\left.\right|_{r} ^{1}}$ satisfies the Palais-Smale condition.
Let $\left\{u_{n}\right\}_{n} \subset H_{r}^{1}$ be such that

$$
\left|\mathcal{J}\left(u_{n}\right)\right| \leq M, \quad \mathcal{J}_{\mid H_{r}^{1}}^{\prime}\left(u_{n}\right) \rightarrow 0
$$

for some constant $M>0$. Then

$$
\begin{gathered}
p \mathcal{J}\left(u_{n}\right)-\mathcal{J}^{\prime}\left(u_{n}\right) u_{n} \\
=\left(\frac{p}{4}-\frac{1}{2}\right) \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}+\left(\frac{p}{4}-1\right) \int_{\mathbb{R}^{3}} \Phi\left[u_{n}\right] u_{n}^{2} d x+\left(\frac{p}{2}-1\right) \omega \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{2} d x \\
\geq\left(\frac{p}{4}-\frac{1}{2}\right) \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}+\left(\frac{p}{2}-1\right) \omega \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{2} d x
\end{gathered}
$$

by Proposition 3.1, since $p \geq 4$. Moreover

$$
\left(\frac{p}{4}-\frac{1}{2}\right) \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+\omega|u|^{2}\right) d x \geq c_{1}\left\|u_{n}\right\|^{2}
$$

and by assumption

$$
p \mathcal{J}\left(u_{n}\right)-\mathcal{J}^{\prime}\left(u_{n}\right) u_{n} \leq p M+c_{2}\left\|u_{n}\right\|_{H^{1}}
$$

for some positive constants c_{1} and c_{2}.
We have thus proved that $\left\{u_{n}\right\}_{n}$ is bounded in H_{r}^{1}.
On the other hand, $\left\|\Phi\left[u_{n}\right]\right\|_{D^{1,2}}^{2}=4 \pi \int_{\mathbb{R}^{3}} u^{2} \Phi\left[u_{n}\right] d x$, and then, using inequality (2.20), we easily deduce that $\left\{\Phi\left[u_{n}\right]\right\}_{n}$ is bounded in $D^{1,2}$.

The remaining part of the proof follows as in Step 2 of Theorem 2.5, after replacing L with $\mathcal{L}: H_{r}^{1} \rightarrow\left(H_{r}^{1}\right)^{\prime}$ defined as $\mathcal{L}(u)=-\frac{1}{2} \Delta u+\omega u$.

Step 3. The functional $\mathcal{J}_{H_{r}^{1}}$ satisfies the three geometrical hypothesis of the mountain pass theorem.

By Proposition 3.1 it results

$$
\mathcal{J}(u) \geq \frac{1}{4} \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x+\frac{\omega}{2} \int_{\mathbb{R}^{3}}|u|^{2} d x-\frac{1}{p} \int_{\mathbb{R}^{3}}|u|^{p} d x
$$

Then, using the continuous embedding $H^{1} \subset L^{p}$, we deduce that \mathcal{J} has a strict local minimum in 0 .

We introduce the following notation: if $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$, we set

$$
u_{\lambda, \alpha, \beta}(x)=\lambda^{\beta} u\left(\lambda^{\alpha} x\right), \quad \lambda>0, \alpha, \beta \in \mathbb{R}
$$

Now fix $u \in H_{r}^{1}$. We want to show that

$$
\begin{equation*}
\Phi\left[u_{\lambda, \alpha, \beta}\right]=(\Phi[u])_{\lambda, \alpha, 2(\beta-\alpha)} . \tag{3.31}
\end{equation*}
$$

In fact

$$
\begin{gathered}
-\Delta \Phi\left[u_{\lambda, \alpha, \beta}\right](x)=4 \pi u_{\lambda, \alpha, \beta}^{2}(x)=4 \pi \lambda^{2 \beta} u^{2}\left(\lambda^{\alpha} x\right) \\
=-\lambda^{2 \beta}(\Delta \Phi[u])\left(\lambda^{\alpha} x\right)=-\Delta\left((\Phi[u])_{\lambda, \alpha, 2(\beta-\alpha)}\right)(x)
\end{gathered}
$$

By uniqueness (see Proposition 3.1), (3.31) follows.
Now take $u \not \equiv 0$ in H_{r}^{1} and evaluate

$$
\mathcal{J}\left(u_{\lambda, \alpha, \beta}\right)=\frac{\lambda^{2 \beta-\alpha}}{4} \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x+\frac{\omega}{2} \lambda^{2 \beta-3 \alpha} \int_{\mathbb{R}^{3}} u^{2} d x
$$

$$
+\frac{\lambda^{4 \beta-5 \alpha}}{4} \int_{\mathbb{R}^{3}} u^{2} \Phi[u] d x-\frac{\lambda^{\beta p-3 \alpha}}{p} \int_{\mathbb{R}^{3}}|u|^{p} d x
$$

We want to prove that $\mathcal{J}\left(u_{\lambda, \alpha, \beta}\right)<\mathcal{J}(0)$ for some suitable choice of λ, α and β.

For example assume

$$
\left\{\begin{array}{l}
\beta p-3 \alpha<0 \tag{3.32}\\
\beta p-3 \alpha<2 \beta-\alpha \\
\beta p-3 \alpha<2 \beta-3 \alpha \\
\beta p-3 \alpha<4 \beta-5 \alpha
\end{array}\right.
$$

then it is clear that $\mathcal{J}\left(u_{\lambda, \alpha, \beta}\right) \rightarrow-\infty$ as $\lambda \rightarrow 0$.
So we look for a couple (α, β) which satisfies (3.32). From the third inequality we get $\beta<0$. Combining the second and the fourth ones, we derive

$$
\begin{equation*}
4-p<\frac{2 \alpha}{\beta}<p-2 \tag{3.33}
\end{equation*}
$$

Such an inequality is satisfied by taking $\beta=2 \alpha$, which also satisfies the first inequality in (3.32).

In a similar way one can prove that if

$$
\left\{\begin{array}{l}
\beta p-3 \alpha>0 \tag{3.34}\\
\beta p-3 \alpha>2 \beta-\alpha \\
\beta p-3 \alpha>2 \beta-3 \alpha \\
\beta p-3 \alpha>4 \beta-5 \alpha
\end{array}\right.
$$

then $\mathcal{J}\left(u_{\lambda, \alpha, \beta}\right) \rightarrow-\infty$ as $\lambda \rightarrow+\infty$ with the same choice $\beta=2 \alpha$.
Remark 3.4. Notice that the systems (3.32) or (3.34) have a solution for every $p>3$. More precisely for every $p>3$ there is a couple (α, β) which satisfies the inequality (3.33) and, consequently, $\mathcal{J}\left(u_{\lambda, \alpha, \beta}\right) \rightarrow-\infty$. The restriction $p \geq 4$ appears in proving the Palais-Smale condition.

Proof of Theorem 1.2 Lemma 3.2 + Theorem 3.3.

References

[1] A. Ambrosetti, P.H. Rabinowitz. Dual variational methods in critical point theory and applications, J. Funct. Analysis 14 (1973), 349-381.
[2] P. Bartolo, V. Benci, D. Fortunato. Abstract critical point theorems and applications to some nonlinear problems with "strong" risonance at infinity, Nonlinear Analysis T.M.A. 7 (1983), 981-1012.
[3] J. Avron, I. Herbst, B. Simon. Schrödinger operators with electromagnetic fields I - General interaction, Duke Math. J. 45 (1978), 847-883.
[4] J. Avron, I. Herbst, B. Simon. Schrödinger operators with electromagnetic fields III - Atoms in homogeneous magnetic field, Comm. Math. Phys. 79 (1981), 529-572.
[5] V. Benci, D. Fortunato. An eigenvalue problem for the Schrödinger Maxwell equations, Top. Meth. Nonlinear Anal. 11 (1998), 283-293.
[6] V. Benci, D. Fortunato. Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys. 14 (2002), 409-420.
[7] V. Benci, D. Fortunato, A. Masiello, L. Pisani. Solitons and electromagnetic fields, Math. Z. 232 (1999), 73-102.
[8] H. Berestycki, P. L. Lions. Nonlinear scalar field equatios, I-Existence of a ground state, Arch. Rat. Mech. Anal. 82, n. 4 (1983), 313-345.
[9] H. Berestycki, P. L. Lions. Nonlinear scalar field equatios, II - Existence of infinitely many solutions, Arch. Rat. Mech. Anal. 82, n. 4 (1983), 347-375.
[10] G. M. Coclite. A multiplicity result for the nonlinear SchrödingerMaxwell equations, Comm. Applied Anal., to appear.
[11] G. M. Coclite, V. Georgiev. Solitary Waves for Maxwell-Schrödinger Equations, preprint.
[12] J. M. Combes, R. Schrader, R. Seiler. Classical bounds and limits for energy distributions of Hamiltonian operators in electromagnetic fields, Ann., Phys. 111 (1978), 1-18.
[13] P. D'Avenia. Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Studies 2 (2002), 177-192.
[14] P. D'Avenia, L. Pisani. Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations, Elect. J. Diff. Eqns. 2002, n. 26 (2002), 1-13.
[15] M. J. Esteban, V. Georgiev, E. Sere. Stationary waves of the MaxwellDirac and the Klein-Gordon-Dirac equations, Calc. Var. 4 (1996), 265281.
[16] P. L. Lions. Solutions complexes d'équations elliptiques semilinéaires dans \mathbb{R}^{N}, C.R. Acad. Sci., Paris, Sér. I 302 (1986), 673-676.
[17] D. Mugnai. Coupled Klein-Gordon and Born-Infeld type Equations: looking for solitons, submitted.
[18] P. H. Rabinowitz. Minimax methods in critical point theory with applications to partial differential equations, Reg. Conf. Ser. Math. 65, vii, 100 p.(1986).
[19] W. A. Strauss. Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162.
[20] G. Talenti. Best constant in Sobolev inequality, Ann. Mat. Pura Appl., IV. Ser. 110 (1976), 353-372.

[^0]: *Dipartimento Interuniversitario di Matematica, via E. Orabona 4, 70125 BARI (Italy), e-mail: daprile@dm.uniba.it
 ${ }^{\dagger}$ Dipartimento di Matematica e Informatica, via Vanvitelli 1, 06123 PERUGIA (Italy), e-mail: mugnai@dipmat.unipg.it

