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We study experimentally, numerically, and theoretically the dynamics of a one dimensional array of

repelling magnets. We demonstrate that such systems support solitary waves with a profile and

propagation speed that depend on the amplitude. The system belongs to the kind of nonlinear lattices

studied in [Friesecke and Matthies, Physica D 171, 211–220 (2002)] and exhibits a sech2 profile in

the low energy regime and atomic scale localization in the high energy regime. Such systems may

find potential applications in the design of novel devices for shock absorption, energy localization

and focusing. Furthermore, due to the similarity of the magnetic potential with the potentials

governing atomic forces, the system could be used for a better understanding of important problems

in physics and chemistry. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4872252]

I. INTRODUCTION

Since the pioneering works of Fermi, Pasta, and Ulam1

and of Zabusky and Kruskal2 the dynamics of nonlinear latti-

ces (NLs) has received unceasing attention and has moti-

vated extensive research (see Refs. 3 and 4 for a review).

NLs are often represented by nonlinear mass-spring sys-

tems. In spite of its relative simplicity, such systems are of

great interest both from fundamental and practical points of

view. NLs are used to elucidate features of atomic and molec-

ular chains.5–7 They are also excellent testbeds in which fun-

damental aspects of nonlinear dynamics can be investigated,

such as second-harmonic generation,8,9 nonlinear resonances,8

chaos and bifurcations,10 as well as the formation of traveling

solitary waves and breathers.11–13 In the last decade, exploit-

ing the nonlinearities of such systems has led to the design of

materials with a tunable response and unprecedented proper-

ties. Granular chains, in which nonlinearity arises from the

tensionless Hertzian contact,14 are perhaps the best example.

Applications have been suggested in shock mitigation,15

energy localization,15,16 stress wave control,17 rectification,18

and in the design of nonlinear acoustic lenses19 among others.

The goal of the present work is to investigate experimen-

tally, numerically, and theoretically the nonlinear response of

a 1D NLs formed by identical repelling magnets (see Fig. 1),

in which the nonlinearity comes from the repulsive force

between magnets. Despite the vast amount of literature

appearing in recent decades on NLs, little attention has been

given to the dynamics of this system. A recent work by

Bernard et al.20 conducted a numerical study of a chain of

magnets and demonstrated the existence of band gaps in the

linear spectrum and chaotic behavior in the nonlinear regime.

The paper by Russel et al.21 studied the propagation of mov-

ing breathers in a chain of magnetically coupled pendula.

However, the propagation of solitary waves in a chain of

magnetic particles has not been studied to date.

The nonlinear magnetic potential between particles

shares some key characteristics with the potentials used to

describe atomic forces, e.g., the Toda and Lennard–Jones

potentials. Both systems present a blow up of the repulsive

force when the separation distance between particles tends to

zero. Such lattices have been studied theoretically by

Friesecke et al.22,23 who rigorously proved that they support

the propagation of solitary waves with a profile which

depends on the amplitude. In particular, the waves present a

sech2 profile in the low energy regime and feature atomic

scale localization in the high energy regime, i.e., the solitary

wave is localized in a single lattice spacing. This characteris-

tic could find potential applications in the design of devices

for energy trapping and localization and in the design of novel

acoustic lenses.19 Since this magnetic system is relatively

easy to build and measure, it could be instrumental as a

testbed to obtain experimental evidence of important prob-

lems in solid state physics.

The paper is organized as follows. Section II describes

the lattice and presents the numerical model used for the

study. The experimental setup is presented in Sec. III. In

Sec. IV, we derive experimentally the interaction potential

governing the lattice dynamics. This potential is examined in

Sec. V, where we give the theoretical profiles for the solitary

waves in the high and low energy regimes. The experimental

FIG. 1. The chain is composed of N identical magnets with mass m. The

length of the chain is denoted by L, d0¼L/(N � 1) denotes the initial spac-

ing between particles, and un is the displacement from the equilibrium

position.
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and numerical results are presented and discussed in Sec. VI

and we conclude the article in Sec. VII with a summary of

the results and directions for future work.

II. LATTICE DESCRIPTION AND NUMERICAL MODEL

We consider a 1D nonlinear lattice composed of N iden-

tical magnets with mass m, aligned along the x–axis such

that each magnet repels the adjacent neighbor (see Fig. 1).

Since the interaction force is purely repulsive, it is neces-

sary to fix the position of the magnets on the extremities to

obtain a stable state of the system, otherwise the chain would

ideally expand to infinity. If the distance between the first and

last element of the chain (measured from center to center) is

fixed to L then the separation distance at equilibrium between

adjacent magnets is d0¼L/(N � 1). The initial positions of

the particle centers are then xn¼ (n � 1)d0, n ¼ 1; 2;…;N.

Here, we consider only motion along the x–direction and

restrict rotation. Thus, the dynamics of the lattice is fully

described in terms of the longitudinal displacements un(t).
From un we also define the relative displacement between ad-

jacent particles rn(t) as

rnðtÞ ¼ unþ1ðtÞ � unðtÞ: (1)

The nonlinear interaction potential between particles is

denoted by V(rn) and the interaction force by F(rn). These

two quantities are related by

FðrnÞ ¼ �
dVðrnÞ

drn
¼ �V0ðrnÞ: (2)

Only nearest neighbor interactions are considered. This

assumption is justified by the rapid decay of the repulsive

force with the distance (see Sec. IV). Thus, the forces acting

on particle n are the repulsive forces exerted by the left and

right adjacent particles, respectively, V0ðun � un�1Þ and

V0ðunþ1 � unÞ, and the friction force, that is modeled as vis-

cous damping. From these considerations, the equation of

motion of magnet n takes the form of a Fermi–Pasta–Ulam

problem1

m€un ¼ V0ðunþ1 � unÞ � V0ðun � un�1Þ � a _un: (3)

Here, €un; _un, and a denote acceleration, velocity, and damp-

ing coefficient, respectively. The form of the magnetic

potential V is specified later in Sec. IV.

III. EXPERIMENTAL SETUP

The lattice is assembled using N¼ 26 identical NdFeB

ring magnets, type R-19-09-06-N from Supermagnete.

Magnets are axially magnetized with magnetization grade

N42. They have a manufacturer specified mass m¼ 10.5 g,

inner diameter 9.5 mm, outer diameter 19.1 mm, and height

6.4 mm. To maintain the magnetic particle alignment along

the x–axis and properly oriented (NS-SN), as in Fig. 1, they

are placed around a circular rod. Notice that in the absence of

the rod the magnets would tend to re-organize forming a

chain NS-NS-NS-NS-. The chosen rod diameter was 9.4 mm:

large enough to prevent rotations yet sufficiently small to

allow the magnets to move freely along the rod axis. The rod

is fixed at the extremities and supported by two thin plates in

the middle of the chain to prevent bending due to its own

weight. The rod was made of polyoxymethylene (POM),

which offers a combination of low friction and a reasonably

high stiffness compared to other non-metals.

Magnets 1 and 26 are fixed at distance of L¼ 1.25 m,

which generates an initial spacing between particles

d0¼ 5 cm. To excite the chain, we give an initial displacement

u0 to magnet 1, while magnet 2 is held fixed with a movable

plate, see Fig. 2. By moving up the plate, magnet 2 starts

moving to the right, thus introducing a compression wave in

the chain. The possible excitation range is a priori

u0 2 ð0; d0 � hÞ, with h¼ 6.4 mm the magnets thickness.

However, due to friction losses, it was necessary to excite the

system with relatively high amplitude in order for the gener-

ated waves to measurably traverse the chain. For this reason,

the experimental study is limited to high amplitude excita-

tions. In particular, we have considered three amplitudes

u0¼ 3 cm, u0¼ 3.5 cm, and u0¼ 4 cm.

The motion was measured using a Digital Image

Correlation (DIC) System from Correlated Solutions. We

use a high speed camera model Phantom from Vision

Research to record the motion of particles 13 to 17 with a

frame rate of 9000 fps. To help the system track the particle

motion, it was necessary to glue speckle patterns to the mag-

nets, as shown in Fig. 2. The video files were post-processed

with the VIC software to extract the displacement and parti-

cle velocities. The DIC technique is not intrusive and it ena-

bles us to simultaneously measure a large region of the

chain. Furthermore, the large displacements of the particles

(of the order of centimeters) make this technique particularly

well suited for the study.

IV. INTERACTION POTENTIAL

It is usual to approximate the repelling force FR between

two magnets by modeling the magnets as magnetic

FIG. 2. Schematics of the experimental setup. The chain is formed by 26

ring magnets placed around a plastic rod. To excite the system we give an

initial displacement u0 to magnet 1. A high speed camera records the motion

of magnets 13 to 17 and DIC is used to extract the displacement and velocity

of the particles. The lower picture shows a snapshot of the system at rest.
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dipoles.20,21 For identical magnets with magnetic moment M
the dipole-dipole repulsive force is given by24

FRðdÞ ¼
3l0M2

2pd4
; (4)

where d is the separation distance and l0 is the magnetic

constant. However, such assumption is only valid when the

separation distance is large compared to the size of the mag-

nets. Since experiments in the present work consider separa-

tion distances of the same order as the magnet dimensions, it

is more appropriate to estimate FR based on experimental

measurements in this range. This force was measured using a

simple but effective experiment. Placing the rod vertically, a

magnet was fixed to the ground and a second magnet was

suspended above the first one. Then 12 different masses

where placed on the second magnet, and by measuring the

separation distances, we obtained the FR vs d relationship.

The measured values are represented by circles in Fig. 3. We

assumed that this relationship has a general form similar to

Eq. (4)

FRðdÞ ¼ Adp; (5)

with A> 0 and p< 0. The experimental data were plotted in

logarithmic scale and fitted linearly to calculate A and m [see

the inset in Fig. 3(a)], obtaining A¼ 6.25� 10�5 and

p¼�2.73. As a comparison, we show in Fig. 3(a) the

dipole-dipole interaction force [Eq. (4)], with M¼ 1.29 J/T

derived from the magnetic properties given by the manufac-

turer (dashed line). The figure shows that the fitted relation-

ship (solid line) represents very well the behavior observed

experimentally, while the dipole-dipole interaction law

clearly fails for d< 2.5 cm. Thus, only the experimental re-

pulsive force [Eq. (5)] will be considered in the remainder of

this work.

The total interaction force F can be written in terms of

the relative displacement rn as

FðrnÞ ¼ Aðd0 þ rnÞp � F0 (6)

with d0þ rn¼ d and F0¼FR(d¼ d0) the force necessary to

maintain the system at equilibrium. The potential V(rn) is

obtained from Eqs. (2) and (6) as

VðrnÞ ¼ �
Aðd0 þ rnÞpþ1

pþ 1
þ F0rn: (7)

V(rn) is represented in Fig. 3(b). The potential has a mini-

mum at rn¼ 0 (equilibrium position) and a vertical asymp-

tote at rn¼�d0.

V. THEORETICAL WAVE PROFILES

As we will demonstrate in the following section (Sec.

VI), the magnetic chain exhibits a similar behavior to the

generic nonlinear lattices described in Refs. 22 and 23, sup-

porting solitary waves with a profile and wave speed that

depend on the amplitude. The key physical requirements

cited in Refs. 22 and 23 are (i) that the potential is minimized

when neighboring particles are at some equilibrium distance

and (ii) the potential tends to infinity as the distance between

particles tends to zero. Mathematically this is satisfied by the

following three conditions:23

(c1) minimum at zero, V � 0; V0ð0Þ ¼ 0; V00ð0Þ > 0,

(c2) growth, VðrnÞ � aðd0 þ rnÞ�1
for some a> 0 and all r

close to �d0,

(c3) hardening, V000ðrnÞ < 0 in (�d0, d0).

A simple analysis demonstrates that the potential given

by Eq. (7) fulfills the above conditions. Other examples of

potentials verifying these properties are the Lennard–Jones

potential, the Toda potential or, as recently shown, the poten-

tial governing the dynamics of tensegrity lattices.25

In the low energy regime Friesecke and Pego22 proved

that the continuous limit of the relative displacement profile

rðnÞ tends monotonically to rðnÞ ¼ raðnÞ þ Oðe4Þ, with

raðnÞ ¼
V00ð0Þ
V000ð0Þ

e
2

sech
en
2

� �� �2

: (8)

In Eq. (8), n is the propagation coordinate centered at the

maximum of ra, e ¼ ð24ðc� csÞ=csÞ1=2
is a small parameter,

c is the solitary wave speed, and cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V00ð0Þ=m

p
is the max-

imum group velocity of the linear waves, also called the

sound speed. More precisely raðnÞ is the solution of a KdV

equation with derivatives of the potential as coefficients.22

In the high energy regime Friesecke and Matthies23

demonstrated that the profile of the solitary wave is concen-

trated within a single lattice spacing (only one particle is

moving) and has the following form:

FIG. 3. Magnetic repulsive force law. (a) Measured (circles) and fitted (solid

line) repulsive force FR as a function of the distance between magnets d.

Dashed lines represent the dipole-dipole repulsive force, given by Eq. (4).

(b) Potential as a function of the relative displacement rn, given by Eq. (7).
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rbðnÞ ¼
jnj � d0; if jnj < d0

0; elsewhere:

(
(9)

Moreover, it was shown that the velocity of the solitary

wave tends to the sound speed in the low energy limit

limrn!0c ¼ cs; (10)

and that it grows unboundedly in the high energy limit

limrn!�d0
c ¼ 1: (11)

It is worth mentioning that the latter limit is not reachable in

practice due to the finite size of the magnets.

VI. EXPERIMENTAL AND NUMERICAL RESULTS

A. Generation of solitary waves in the lattice

To have a global picture of the lattice behavior, Fig. 4

represents the velocity of each particle vn ¼ _un as a function

of time. The geometrical parameters for the simulation are

those of the experimental setup. The figure corresponds to

the excitation u0¼ 3.5 cm, but it can be used to describe the

lattice behavior for any excitation amplitude, although the

exact pulse width and wave speed will vary. The excitation

of the lattice generates a solitary wave traveling at speed c.

The wave is followed by a low amplitude oscillatory tail

traveling at speed cs. The origin of this tail is the excitation

of the linear part of the system. The velocity of the tail was

calculated from the time taken to cross the lattice. It was

found to be cs¼ 1.62 m/s, which is very close to the theoreti-

cal value cs¼ 1.64 m/s (see Sec. V). Such small deviation

can be attributed to numerical errors and to the finite size of

the system. It was also observed that cs was independent

from the excitation amplitude, proving its linear nature.

Figure 5 shows the displacements (top panels) and veloc-

ities (bottom panels) of particles 13 to 17 for u0¼ 4 cm [Figs.

5(a) and 5(d)], u0¼ 3.5 cm [Figs. 5(b) and 5(e)], and

u0¼ 3 cm [Figs. 5(c) and 5(f)]. Solid, dashed, and dotted lines

represent experimental results, numerical results with damp-

ing, and numerical results without damping, respectively.

The effects of attenuation are evident if one compares

experiments and simulations without damping. The ampli-

tudes in experiments are significantly lower, further decreas-

ing with the particle number. To take into account the losses

in the system we adjusted the damping coefficient to

a¼ 0.024. This value was chosen such that the maximum

wave velocity of particle 13 coincided with the one observed

experimentally. With the addition of dissipation in the simu-

lations, the agreement with the experimental results, for both

displacements and particle velocities, is remarkably good for

u0¼ 4 cm, and is also very good for u0¼ 3.5 cm. As the exci-

tation amplitude decreases, we began to notice differences in

the wave profiles between experiments and numerical simu-

lations, as seen in the displacements profiles for u0¼ 3 cm.

The observed discrepancies can be attributed to the choice of

FIG. 4. Particle velocity in the chain at different time steps.

FIG. 5. (a)–(c) are the displacements for u0¼ 4 cm, u0¼ 3.5 cm, and u0¼ 3 cm, respectively. (d)–(f) are the particle velocities for u0¼ 4 cm, u0¼ 3.5 cm, and

u0¼ 3 cm, respectively. Solid, dashed, and dotted lines represent experimental data, simulations with damping, and simulations without damping, respectively.

The experimental time axis was shifted so the arrival time of the wave at sensor 13 coincided in experiments and numerical simulations with dissipation.
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damping model. Unlike the model we used here, friction

losses are most likely nonlinearly dependent on the particle

velocity, with more significant effects on small amplitude

waves.26 Namely, friction is usually accompanied by stiction,

defined as the static friction force that the particles need to

overcome to be able to move. This phenomenon is visible in

Fig. 5(c) where it is observed that particles stop moving sud-

denly (un remains constant) after the solitary wave has passed.

B. Analysis of the solitary waves

The wave speed c can be calculated numerically from the

time of flight of the solitary wave between two particles. Due

to the fact that the solitary wave needs a certain time to com-

pletely detach from the tail and to stabilize, see Fig. 4, we con-

sider a longer chain, composed of N¼ 500 magnets. c was

measured between particles 150 and 450. The lower site, 150,

was chosen to ensure that the soliton is totally detached from

the tail at the lowest amplitude excitation, that is, when c � cs.

No losses were considered in this case. The results are shown

in Fig. 6. The wave speed is plotted versus the maximal parti-

cle velocity vmax in the range vmax 2 ½0:16; 30�m=s. These val-

ues correspond to initial displacements u0 2 ½0:15; 4:85�cm.

At low amplitudes c tends to cs which is consistent with the

theoretical prediction, see Eq. (10). At high amplitudes,

the propagation speed grows very fast, also in agreement with

the theory, see Eq. (11). We notice that in the high energy limit

the velocity of the solitary waves coincide with the maximum

particle velocity ðc � vmaxÞ. This indicates that the energy is

being carried by a single particle in the chain, or in other

words, that the wave is localized in a single lattice spacing.

This will be seen more clearly in the following.

The dependence of the wave profile on the amplitude is

now analyzed. Fig. 7 shows the numerical and theoretical

relative displacements for excitation amplitudes ranging

from u0/d0¼ 0.2 [Fig. 7(a)] to u0/d0¼ 0.98 [Fig. 7(f)]. In

Figs. 7(c)–7(e), we also show the experimental profiles

extracted from Figs. 5(a)–5(c), respectively.

At low amplitudes [Figs. 7(a) and 7(b)], the numerical

profile is very well described by the theoretical profile ra

given by Eq. (8). The numerical and analytical profiles prac-

tically coincide in Fig. 7(a). With increasing amplitude

[Figs. 7(c) to 7(e)] ra is progressively no longer a good

approximation and the numerical solution tends to the high

energy analytical profile rb given by Eq. (9). The experimen-

tal results (triangles) are in good agreement with the numeri-

cal ones and corroborate the narrowing of the solitary wave

with the amplitude. We note nevertheless that due to the dis-

sipation, the experimental profiles have smaller amplitude

than the simulated ones. At very high amplitude [Fig. 7(f)],

the profile of the solitary wave is almost localized in a single

lattice spacing and is practically indistinguishable from the

theoretical profile [Eq. (9)].

VII. CONCLUSIONS AND FURTHER DIRECTIONS

We have investigated experimentally, numerically, and

theoretically the propagation of solitary waves in a 1D non-

linear lattice of repelling magnets. The system belongs to the

kind of nonlinear lattices described by Friesecke et al.22,23 In

the low energy regime ðc � csÞ, the profile of the solitary

wave is given by a KdV soliton with a sech2 shape. In the

FIG. 6. Velocity of the solitary wave c as a function of the maximum particle

velocity vmax. c is bounded by cs at low amplitudes and by vmax at high ampli-

tudes. Squares represent the wave speeds computed from numerical simulations.

FIG. 7. Relative displacements profiles for different excitations u0. (a)

u0/d0¼ 0.2, (b) u0/d0¼ 0.35, (c) u0/d0¼ 0.60, (d) u0/d0¼ 0.70, (e)

u0/d0¼ 0.80, (f) u0/d0¼ 0.98. Thick solid lines represent numerical profiles.

Thin solid lines represent the low energy theoretical profile given by Eq. (8).

Dashed lines represent the high energy theoretical profile given by Eq. (9).

Triangles in (c)–(e) are experimental data.
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high energy regime ðc� csÞ, the wavelength progressively

shrinks, with the limiting case ðc!1Þ being a hat function

with width equal to a single lattice period (atomic scale

localization). These two cases have been observed in the nu-

merical simulations. The system has been studied experi-

mentally using the DIC technique but, due to friction losses,

the experimental study has been limited to the high energy

regime. Experiments are in very good agreement with nu-

merical simulations and have permitted observation of the

shrinking width of the solitary wave with increasing ampli-

tude. In future studies, we plan to build alternative systems

in order to reduce friction losses and also to extend the study

to two-dimensions. In addition to their use as a toy model for

the study of fundamental nonlinear dynamical systems, such

systems could find potential applications in energy mitiga-

tion and localization or in the design of acoustic lenses capa-

ble of omitting very narrow pulses.
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