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Solitary waves of generalized
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Universite Paris-Sud, 91405 Orsay, France

Ann. Inst. Henri Poincaré,

Vol. 14, n° 2, 1997, p. 211-236 Analyse non linéaire

ABSTRACT. - We classify the existence and non-existence cases for
localized solitary waves of generalized Kadomtsev-Petviashvili equations
according to the sign of the transverse dispersion coefficients and to the
nonlinearity. We also prove regularity properties of the solitary waves.

Key Kadomtsev-Petviashvili equations, solitary waves.

RESUME. - Nous classifions les cas d’existence et de non-existence
d’ondes solitaires localisees pour les equations de Kadomtsev-Petviashvili
generalisees selon le signe des coefficients de la dispersion transverse et la
puissance du terme non-lineaire. Nous montrons egalement des proprietes
de regularity de ces ondes solitaires.

1. INTRODUCTION

Kadomtsev-Petviashvili equations are "universal" models for dispersive,
weakly nonlinear waves, which are essentially unidimensional, when weak
transverse effects are taken into account [10] [13]. They read, for a general

Codes matière A.M.S.: 35 Q 53, 35 Q 51.
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212 A. DE BOUARD AND J.-C. SAUT

nonlinearity f (u).

u = u(x, ~, t), (x, ~) E f~2, t > 0 in dimension 2, and

u = u(x, ~, z, t), (x, y, z) E f~3, t > 0, in dimension 3.
The constants c, a, b measure the transverse dispersion effects and

are normalized The "usual" Kadomtsev-Petviashvili equations
correspond to f(u) = u. We will consider therein power nonlinearities.
We recall that (1.1) with f(u) _ ~c is integrable by the inverse scattering
method and is classically called KPI (~ _ -1 ) or KPII (~ _ ~ 1 ).
Many rigorous results have recently appeared concerning the Cauchy

problem associated to (1.1) (1.2) (mainly in the KPI or KPII cases). To
quote a few, [5], [7], [8], [9], [17], [19], [21], [22] and the survey [18]. We
are interested here in solitary wave solutions of (1.1) (1.2). In order to give
a precise definition we need to introduce a few spaces.
We shall denote for d = 2, 3, Y the closure of for the norm

where denotes the space of functions of the form 8xcp
with cp e (i.e. the space of functions ~ in such that

x’)dx = 0, for every x’ E 

DEFINITION 1.1. - A solitary vvave of (1.1) (resp. ( 1.2)) is a solution of
the type u(x - ct, y) (resp. u(x - ct; y, z)) where u E Y and c > 0.

Remark 1.1. - By standard imbedding theorems, if u e Y and d = 3,
then u = where cp E L~(R~); if d = 2 and u e Y then u = 8xcp
where cp e V q, 2  q  +00. Note that for d = 2, the choice
of cp e such that u = is not unique, but two such cp will differ

by a function independent of x. Hence, only one of them (up to a
constant) satisfies v = 8ycp e L~(R~). We assume in all what follows that
when u e Y and when we take cp E with 8xcp = ~c ; we also have
v = ~y03C6 e L2 . We then denote v = 8ycp by 

Annales de l’Institut Henri Poincaré - Analyse non linéaire



213SOLITARY WAVES OF GENERALIZED KADOMTSEV-PETVIASHVILI EQUATIONS

We are thus looking for "localized" solutions to the systems

Except for the KPI equation (where the existence of "lumps" solitary
waves is well known (see [1] [2]) no general results seemed to exist so
far concerning solitary wave solutions to equations (1.1) and (1.2). The
aim of the present paper is to solve completely this problem for power
nonlinearities f(u) . Throughout the paper, we will assume that f(u) = uP ,
with p = > 1, m and n relatively prime, and n odd, except in
Section 4, where p is a positive integer.

Remark 1.2. - Note that we may from now on assume that c = l,
since the scale change = where :z/ = ~/ (resp.
x’ _ (~, z) ) transforms the system (1.3) (resp. (1.4)) in u, into the same
in but with c = 1.

We now describe our results. In Section 2 we use Pohojaev type identities
to prove nonexistence of solitary waves. In Section 3 we prove the existence
of solitary waves in the remaining cases. Our strategy is to consider the

minimization problem

if d = 2, x’ _ ( ~ , z ) if d = 3 and A > 0. We shall

use the concentration-compactness principle of P.L. Lions [14]. There are
some difficulties due to the functional setting of the Kadomtsev-Petviashvili
equations. In particular the minimizing sequence un is not bounded in Hl
and we have to prove a compactness lemma in for bounded sequences
in Y. In Section 4 we show that solitary waves are smooth; namely,
they belong to = ~m~N Hm(Rd) where is the classical

Sobolev space of order m. The difficulty arises from the nonisotropy of
the symbol of the underlying elliptic operator - 0394 + ~4x. We argue by
"bootstrapping", by using the imbedding theorems for anisotropic Sobolev
spaces [4], and a variant due to Lizorkin [15] of the Mikhlin-Hormander
multiplier theorem. Finally Section 5 is devoted to an extension to physically
minded equations with other dispersions and to some concluding remarks.

Vol. 14, n° 2-1997.



214 A. DE BOUARD AND J.-C. SAUT

The results of this paper were announced in [6]. After this work has
been completed we have been aware of the paper [20] where an existence
theorem for solitary waves to (1.1) is presented.

2. NONEXISTENCE OF SOLITARY WAVES

The main result in this section is the

THEOREM 1.1. - (i) Assume that d = 2. The equation ( 1.1 ) does
not admit any nontrivial solitary wave satisfying u = ~x03C6 E Y, u E

n .L~ (f~‘); and e 

or

(ii) Assunze that d = 3. The equation ( 1.2) does uot admit anv nontrivial
solitary wave satisfying u = ~x03C6 E Y. u E n L2(p+1)(R3) n
L~loc (R3), ~2x u, 82 and ~2z03C6 E L2loc (R3) lf

or

Proof - It is based on Pohojaev type identities. The regularity
assumptions of Theorem 1.1 are needed to justify them by the following
standard truncation argument. Let XO E 0  Xo  1, Xo(t) = 1 if
0  It I . 1, = 0, It I > 2. We set ~, = = 1, 2, ...
To begin with we treat the 2-dimensional case. We multiply (1.3)1 by

x~ju and we integrate over 1R2 to get (note that the third integral has to
be interpreted duality)

Annales de l’Institut Henri Poincaré - Analyse non linéaire



215SOLITARY WAVES OF GENERALIZED KADOMTSEV-PETVIASHVILI EQUATIONS

and after several integrations by parts we obtain

where r2 == x2 + y2. By Lebesgue dominated convergence theorem, we
infer from (2.6) that

From now on, we will proceed formally, the rigorous proofs following
by the same truncation argument as above. We multiply ( 1.3)1 by yv and
integrate (the 2 last integrals are understood as a H-1 duality). After
several integrations by parts and using (1.3)2 we obtain finally

To prove the third identity, we first remark that if u E Y n satisfies

(1.3) in D’(~2), and if Y’ is the dual space of Y, then u satisfies

where v = L2(R2) and D-1x vy E Y’ is defined by
D-1xvy,03C8~Y,Y’ _ (v, for any 03C8 E Y. Taking then the Y - Y’
duality product of this last equation with u E Y, we obtain

Vol. 14, n° 2-1997.



216 A. DE BOUARD AND J.-C. SAUT

By substracting (2.7) from (2.8) we get

Adding (2.9) and (2.10) yields

which rules out (2.2). The identity (2.11 ) for c = -1, namely ~~’ 
2 j gives when inserted in (2.7), (2.9),

Eliminating v2 leads to

On the other hand adding (2.7) and (2.8) yields

and (2.1) follows from this equality reported in (2.12).
Let us now consider the case d = 3. Again we give a formal proof which

can be justified by the aforementionned truncation process. We multiply
successively ( 1.4)1 by yv and and integrate to get

Integrating ( 1.4)1 once in and taking the duality product of the resulting
equation with ~, E Y as in dimension 2, one obtains

Annales de l’Institut Henri Poincaré - Analyse non linéaire



217SOLITARY WAVES OF GENERALIZED KADOMTSEV-PETVIASHVILI EQUATIONS

Substracting (2.15) from (2.14) yields

which rules out the case (2.3) when ab = -1. Now adding (2.16) and
twice (2.13) implies

Adding (2.18) and (3p + 4) times (2.14), and using (2.17), we obtain

which rules out (2.4). On the other hand, from (2.14) and (2.17) we infer

This identity plugged in (2.16) yields

which proves (2.3) for a = b = 1.

3. EXISTENCE OF SOLITARY WAVES

In this section, we prove the existence of solitary waves solutions of
equations (1.1) and (1.2) by using the minimization problem Ix defined in
Section 1. The existence results are the following.
THEOREM 3.1. - Let d = 2, C == -1 and p be such that 1  p  4. Then

equation ( 1.3) possesses a solution (u, v) with u E Y, u ~ 0.

THEOREM 3.2. - Let d = 3, a = b = -1 and 1  p  4/3, then equation
(1.4) possesses a solution (u, v, w) with u E Y, 0.

Remark 3.1. - The uniqueness of solitary waves to ( 1.1 ) or ( 1.2) (when
they exist !) is an open problem.
As said previously, Theorems 3.1 and 3.2 will be proved by considering

the minimization problem (1.5). More precisely, we will show that under

Vol. 14, n° 2-1997.



218 A. DE BOUARD AND J.-C. SAUT

the conditions of each theorem, Ix has a nontrivial solution u E Y. This will
be done by using the concentration-compactness principle (see [14]). Then,
when d = 2 for example, if v = there is a Lagrange multiplier
8 such that

where is the element of Y’ (the dual space of Y in the L2-duality)
such that for E Y,

By taking the .~;-derivative of (3.1) in D’ ( I~? ~ , using the definition of

v = and performing the scale change u = and

~i~ = one then easily see that satisfies the system ( 1.3)
(with c = 1) in D’((~z).
A similar argument works for the 3-dimensional case. We now turn to

the proof of the existence of a minimum for I,~ .

Proof of Theorem. 3 . l . - First, observe that I03BB > 0 for any 03BB > 0 : this
follows from the imbedding theorem for anisotropic Sobolev spaces (see
[4] p. 323) which gives

 for any e Y and Ia > ( ?~ ) 2~ (~+2 > > 0
for any positive A.

Now, let A > 0 and let be a minimizing sequence for (1.5).
Then, as was noticed in Remark 1.1, there is a sequence of functions

which belong to for any positive and finite q, satisfying
= Let vn = = we apply the concentration-

compactness lemma of [14] to = I 2 + ‘ 
+ (note that

03C1ndxdy = ~un~2Y ~ Ia > 0).
(i) Assume first that "vanishing" occurs, that for any R > 0,

where B~ is the ball of radius l~ centered at 0. Let q such that 2  q  ~;
then from the Sobolev inequalities in anisotropic Sobolev spaces (see ~4~),

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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there is a positive constant C independent of (x, y) E R~ such that if

Y,

Now, covering f~2 by balls of radius 1, in such a way th~~ each point of
R~ is contained in at most 3 balls, we have

for any cp such that 03C6x ~ Y. From this, we conclude that under assumption
(3.2), -~ 0 in L~ for any q such that 2  q  6, which contradicts
the constraint in Ix.

(ii) Assume now that "dichotomy" occurs, i. e. that

Note that the sub-additivity condition of [14] holds here, since we have for
A > 0: Ix = ~‘’~~z’+2~I1. Assumption (3.3) will then give a contradiction
provided that it leads to the splitting of into two sequences and u2n
with disjoint supports. In order to get ~~n and ~c;~ in Y, we have to localize

instead of un; but since 03C6n is not in L2(R2), the splitting property of
is not a direct consequence of [14]. To prove this splitting property, we

first need to show the following lemma.

LEMMA 3.1. - Let q be such that 2  q  +00; then there exists a
positive constant C such that for all f E with E 

all R > 0 and for all xo E 1R2

Vol. 14, nO ° 2-1997.



220 A. DE BOUARD AND J.-C. SAUT

where

and

Proof of Lemma 3.1. - The lemma is proved by applying Poincaré
inequality for zero mean-value H1 functions on the bounded open set

Then, using Sobolev imbedding theorem, we obtain the existence
of a positive constant C(xo, R) such that

Then the translation invariance of Lebesgue’s measure, and the scale change
f H f ( R ) show that C(xo ; R) = where C is independent of xo
and R..

We are now able, with the use of Lemma 3 .1, to prove the following
Lemma 3.2.

LEMMA 3.2. - Assume that (3.3) holds. Then for all ~ > 0; there is a

b(~) (with b(~) --~ 0), such that we can find un and un in Y satisfying~-~o

for n > no:

and

Proof of Lemma 3.2. - The proof is adapted from [14] by using
Lemma 3.1. For the reader’s convenience, we give the details. Assume
that (3.3) holds, and fix c > 0. Then we can find Ro > 0, R~z > 0 with

and x,, E f~ 2 such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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for n > no, where

It follows that

Let 03BE and ~ e C~0(R2) be as in [14], 0 ~ 03BE ~ 1, 0 ~ ~  1,
03BE = 1 on Bi, supp 03BE G B2, ~ = 1 on R2BB2, supp ~ G We set

~ ~ ~(~~)’ ~ ~ ~(’~~)? and we consider

where (an) and (bn ) are sequences of real numbers which will be chosen
later. Lastly we set

and

Then we have for example

and

where ~ -}- ~- = 2. Now choosing

and applying Lemma 3.1, we get

Vol. 14, n° 2-1997.



222 A. DE BOUARD AND J.-C. SAUT

In the same way, choosing bn = mRn (03C6n) leads to the bound

This implies the desired estimate on ( ~~,7 -+- ~.c2, - ~c,~z ~ ~ L2 ; the bound on

-~- v2 - obtained in the same way. Now, consider

The three first terms in the right hand side of the above inequality are
bounded as the preceding ones. For the two last terms, one may use for
example

All the other terms of Lemma 3.2 are bounded in a similar way; the last

bound follows from the first one, the fact that supp u,; n supp un =: 0
and the injection of Y into Lp+2 ( (~2 ~ .
We now continue the proof of Theorem 3.1. Taking subsequences if

necessary, we may assume that

with [Ai (e) + 03BB2(~) - A)  6(e).
. Assume first that lim Ai (e) = 0; then choosing e sufficiently small, we

£-o

have for n large enough R2(u2n)p+2dxdy > 0. Hence by considering

we get

but this is a contradiction since A.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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. Thus, we may assume that lim ~~ (~) ~ ] > 0 and lim ~2 (~) ~ > 0. In the
same way as before we then obtain

We reach a contradiction by letting ~ tend to zero, and by using the
fact that for any positive ~,. This ends to rule out the

"dichotomy" case.
(iii) The only remaining possibility is the following : there is a sequence

(xn) with x7t E R~ such that for all c >0, there exists a finite R > 0,
and no > 0, with

Note that this implies, for n large enough,

Since un is bounded in Y, we may assume that ~cn ( ~ - converges

weakly in Y to some U E Y. We then have

The following lemma shows that the injection Y C is compact.

LEMMA 3.3. - Let un be a bounded sequence in Y, and let R > 0. Then
there is a subsequence which converges strongly to u in L2 (BR).
We first end the proof of Theorem 3.1, afterwhat we prove Lemma 3.3.

By Lemma 3.3, we may assume that ~c~z ( ~ - xn) converges to u strongly
in But then, the inequality preceding Lemma 3.3 shows that in fact

~zcn ( ~ - xn ) converges to ’u strongly in L~(!R~), and by interpolation, using
the imbedding Y C L6 (I~~’ ), ~zcn ( ~ - also converges to u strongly in
LP+2 so  lim = Ix, this shows
that 1.L is a solution of Ix.

Proof of Lemma 3.3. - Let be a bounded sequence in Y, with

un = E and let vn = E L2 (II~2 ) . Multiplying
cpn by a function ~ E with 0  ~  = 1 on BR and
supp 03C8 C B2R , we may assume that supp C B2R . Now since un is

bounded in Y, we may assume that = weakly in Y, and

Vol. 14, n° 2-1997.



224 A. DE BOUARD AND J.-C. SAUT

replacing if necessary rpn by pn - cp, we may also assume that cp = 0.

Then we have

~z) is the Fourier transform of f(x, ;y). The third term satisfies

The second term is bounded in the following way

Fix c >0; then choosing Ri sufficiently large leads to

We then use Lebesgue’s dominated convergence theorem for the first term,
having noted that since ~un tends to 0 weakly in L2 ( I~ 2 ) ,

tends to zero as n --~ +oc, for a.e. (~l, ~2) E (~2, and that ~un (~) ~ I 

We now turn to the 3-dimensional case.

Proof of Theorem 3.2. - Again, we prove the existence of a minimum for
Ix , by using the concentration compactness principle. Many details are very
similar to the two-dimensional case, so that we will omit them. Moreover,
to avoid technicalities, we restrict the proof to the case p = 1.

First, we also have 7B > 0 for any A > 0, since from [4, p. 323], we have

Let 03BB >0, and let urz be a minimizing sequence for Ix. Then there exists

cp.n E L6(R3), with ~x03C6n = un ; let vn = ~y03C6n and wn = ~z03C6n. We apply
Annales de l’Institut Henri Poincaré - Analyse non linéaire
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the concentration-compactness lemma of [14] to pn = Since cpn is

bounded in L6(1R3) by Sobolev’s inequality, there exists a subsequence
still denoted by pn such that f 03C1n dxdydz ~ 03B2 ~ 0. Applying the next
lemma with r = 6 shows that f3 > 0.

LEMMA 3.4.

. Let 03C6 E L6(R3) with E Y; then 03C6 E and there is a
constant C > 0 such that

. For any r with 6  r  10, there exist cx~ with 0 ~ cx~  1 for
j = 0, 1, 2, 3 and a constant C > 0 such that if p E L6(R3) and ~x03C6 E Y,

Proof of Lemma 3.4.
. The first inequality and the case r = 6 in the second inequality follow

directly from the generalized Sobolev inequality (see [4], p. 323).
. If 6  r  10, then we cannot take directly q = 3 in the generalized

Sobolev inequality but we first consider q such that 3  2+r  q  3 ;
then the generalized Sobolev inequality applies with /~i = 

112 = I~3 = 2~1 - 1 and ,~o = r (i - 21 ) , i.e. we have

We obtain the desired inequality by interpolation, writing

(i) We first show that "vanishing" cannot occur. If it occured then an
easy adaptation of Lemma 1.1 of [14] part II would show that ~pn tends to
zero in for any r such that 6  r  10 (Note that Lemma 1.1 of
[14] does not apply directly because we are in the "limit case" q = 2014~-
with the notations of [14], but using the fact that cpn is however bounded
in for r  s  10, one easily checks that the proof of [14] adapts).
But then, the use of Lemma 3.4 contradicts the constraint.

(ii) Next, assume that "dichotomy" occurs, i. e. that

Vol. 14, nO 2-1997.



226 A. DE BOUARD AND J.-C. SAUT

We define in the same way as in the proof of Lemma 3.2,
with + + replaced by we then set (~ = 
~ - and (~.~,~) = (~/~,~) - By doing so,
we have for n sufficiently large,

Now, using the fact that

it is not difficult, although quite technical, to show that

Consider for example

and we conclude by using the fact that ~03C6n is bounded in L2, and that
~~~~ is bounded in L3, independently of n. Using this and the second
inequality in Lemma 3.4, we also have

Finally, (3.4), (3.5) and (3.6) lead to a contradiction with the subadditi-
vity condition implied by the relation Ix = exactly as in the

2-dimensional case.

(iii) The only remaining possibility is that 3 xn E (~3, > 0,
E! R  +~ such that for n sufficiently large

Now, it is easily checked that Lemma 3.3 is also true in dimension 3, hence
the sequence (wn) is relatively compact by Sobolev inequality.
This together with (3.7) shows that, modulo a subsequence, ( . - xn) -~ w
strongly in L~ ( I~~ ) and ~.crt ( ~ - x,n, ) ~ u = c~;~ c~ E Y weakly in Y. Lastly,
by the use of Lemma 3.4 with r = 6 ; un - u strongly in L~ ( f~ 3 ) and
u is a solution of Ix.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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4. REGULARITY PROPERTIES OF THE SOLITARY WAVES

In this Section, we prove that any solitary wave of ( 1.1 ) (resp. ( 1.2)) is
a C°° function, provided p is an integer. More precisely we have

THEOREM 4.1. - Any solitary wave solution of ( 1.1 ) (resp. ( 1.2)) belongs
to provided ~ _ -1 and p = 1. 2, 3 (resp. a = b = -1 and

p = 1 ) . Moreover, v = (resp. v = and w = belong
to 

Proof. - We are reduced to prove regularity results for the nonlinear
elliptic equation

where p = 1, 2, 3 if d = 2 and p = 1 if d = 3.

The difficulty arises from the non isotropy of the symbol of the linear
elliptic We will proceed by bootstrapping, using the
following variant due to Lizorkin [15] of the Hormander-Mikhlin multipliers
theorem.

PROPOSITION 4.1. - [15] > 0, j = 1, ..., n.
Assume that there exists M > 0 such that

with k;,i = 0 or 1, k = I~1 + k2 + ... + I~n = 0, 1, ..., n. Then ~ E 
1  q  -f-oo, i.e. ~ is a Fourier multiplier on 

We first consider the case d = 2. Setting g - -u~’+1, (4.1) yields

LEMMA 4.1. - Let u E Y be a solution of (4.1 ). Then

Proof of Lemma 4.I. - By [4], Theorem 15.7, p. 323, one has
Y c L6(R2) and therefore e L6/(p+1)(R2). It is easily checked
out that 4li(g) = 4l2(g) = 03BE41 |03BE|2+03BE41 and 1F3(() = 03BE203BE21 |03BE|2+03BE41 satisfy

Vol. 14, nO 2-1997.



228 A. DE BOUARD AND J.-C. SAUT

the assumption of Proposition 4.1, yielding u, L6~~p+1) (p~2).
The claim that ~xu E L12/(p+2)(R2) follows by interpolation between
2G E Z6(~2) and E ~6~(P+1)(~21. .
Lemma 4.1 implies that u, ~yu, ~2xu E L6/(p+1)(R2). By [4], Theorem

10.2, one has u e L~(M~), where q = +00 if 1  p  3, 3/2  ~  +00

if p = 3. In any case, one has, for f = -(up+1)xx = -p(p + 
(P + 

Another application of Lizorkin’s theorem leads to

Let v = c~~ u, . Then E Lq ( (~ 2 ) , and by the aforementionned
result of [4],

In both cases, we obtain that f E L’" ( f~ 2 ) , V r, 2  r  +0oo , and Lizorkin’ s
Theorem implies that E Lq (I~2 ), V q, 2  q  -.~-oo, which

implies that E Lq(f~2), V q, 2  q  +0oc.
Reiteration of the process leads to the proof of Theorem 4.1 for d = 2

(the regularity of is obtained by using equation (1.3) and the
regularity of u).

In the case d = 3, (4.1) reads

where g = -u2 E L~/3(~31, because Y C L10/3~~3~ (see [4], Theo-
rem 15.7). Lizorkin’s Theorem still applies to (4.4) and leads to

LEMMA 4.2. - Let u E Y be a solution of (4.4) (with p = 1). Then

The previous lemma implies in particular that u, 8yu, E 

which implies ~4~, ~.c E L5(1R3). We apply Lizorkin’s Theorem from

8;(u2) = 2u; + E L’~‘~((~3) to obtain

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Another application of [4] to v = (note that c~~ v E L5~~ ( [~3 ) )
yields E L5~2(~3). Similarly [4] applied to u (noticing that

~zu E L5~4(~3)) implies that u E Lq(1~3), V q, 5/4  q  -f-oo

and by interpolation, ux E L~(R~), V q, 5/4  q  4. This leads to

u; + L~(R~), V q, 5/8  q  2 which by Lizorkin’s Theorem

implies that

Thanks to [4] applied to v = ~~ ~c, we thus have ~~ ~c E L~(R~), Vq,
1  q  10, u E and by interpolation c~~ ~c E Lq ( U~3 ), Vq,
1  q  10/3.
We also obtain by [4] that E Lq ( 1~3 ) , where

In particular, 8zu E Lq ( f~3 ), V q  10, 8;yu, 8;zu E L~(R~),
V q  10/3, 8xu E 

Lizorkin’s Theorem implies that o~~ ~c, 8;u, Lq ( f~3 ),
V q  10 and also (because + Lq(f~3), V q  10/3), that

By [4] again,

Thus, 2c, c~~ u, 0y u, 0z u, c~~ u, E L °° ( U~ 3 ) . This implies,
setting f = u2x + that f, 8xf E L~(R3), and ~zf E Lq((R3),
V q  10. Theorem 4.1 is now obtained by reiteration (again, the regularity
of D-1xuy and follows from the regularity of u and equation (1.4)
which gives 0394D-1xuy and 0394D-1xuz E 
Remark 4.1. - In the case where p is not an integer (1  p  4 if

d = 2 and 1  p  4/3 if d = 3), the previous method only gives a
finite order regularity for the solitary waves, since in this case, ! ( u) is

not a C°° function of u.

Remark 4.2. - It is worth noticing that, contrarily to the solitary waves of
Korteweg-de Vries or nonlinear Schrodinger equations, the solitary waves
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of Kadomtsev-Petviashvili equations are neither radial, nor positive, and in
general do not decay exponentially to 0 at infinity, as shows the example
of "lumps" solutions of the KPI equation :

We do not know whether the solitary waves obtained in Theorems 2.1 and
2.2 decay with the same algebraic rate or not. (Added in proofs: a positive
answer to this question has been given in [23].)

5. AN EXTENSION AND FINAL REMARKS

The results of the previous sections can be extended in various ways. We
consider here the 2D and 3D versions of a fifth order KdV equation which
have been investigated numerically by Abramyan and Stepanyants [3] and
by Karpman and Belashov ( ~ 11 ~, ~ [12]). They read

in the 2-dimensional case and

in the 3-dimensional case. In both cases, b = ~ 1. Let

endowed with the norm

where ~u = Here is our result concerning (5.1 ) and (5.2).

THEOREM 5.1. - (i) The equation (5.1 ) has no nontrivial solitary
wave u = E Z satisfying u.c E n L~ ((1~2), and

E if
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or

and c is sufficiently large.
For b = -1 and p arbitrary, it admits a non trivial solitary wave u E Z

which is a function when p is an integer.
(ii) The equation (5.2) has no nontrivial solitary wave u = ~x03C6 E Z

satisfying u E H1(R3) n L2(p+1)(R3) n L~loc(R3), ~2xu, ~4xu, ~2y03C6 and
E if

or

or

= -1 and 1 ~ p  8/3, it admits a non trivial solitary wave
~u E Z which is a H°° function if p = 1, 2.

Remark 5.1. - Solitary waves for (5.1) (5.2) have been observed

numerically for 03B4 = -1, p = 1 in [3], [ 11 ], [12].

Proof of Theorem. 5.1. - We first prove the non existence part. The proof
is similar to that of Theorem 1.1 though the algebra is different. We just
give the Pohojaev type identities. For equation (5.1) we get successively:

Substracting (5.4) from (5.5) we obtain
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and adding (5.6) (5.7) yields

while adding (5.4) and (5.5) implies

The next steps consists in plugging (5.8) and (5.9) into (5.7) to get

which proves that no solitary wave can exist for 6 = +1 and p > 4, or for
~==l,lp4, when c is sufficiently large, namely c > ~~ (we have
used the inequality ~~~2  !!~!!~!~~!!L2)’
As for equation (5.2), we find the Pohojaev identities

We add (5.12) and (5.13) to obtain

Now we add (5.11) and (p + 1) times (5.15) and get

Our claim results from (5.16) (In the case 1  p  2

we have non existence for c > ~2-p~.~ ) .
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To solve the remaining cases we need a few more identities. First,
substracting (5.13) from (5.12) yields (independently of the value of 8) :

Then adding 2 times (5.13) to (5.14), and using (5.17), we obtain

This identity plugged into (5.15) yields

which with (5.16) and (5.17) imply

This rules out the case 6 = -1, p > 8/3. Note that the cut-off value
p = 8/3 for p corresponds to the imbedding Z C ~14/3 ~~3 ) (see below).

In order to treat the last case 8 =1, p > 4, we substract i times (5.19)
from (5.16) to get

Eliminating the u;x term thanks to (5.18) leads to

which rules out the case p > 8/3 (for 8 = ~ 1). This concludes the non
existence proof for d = 3.
We now turn to the existence proof. Let d = 2 or 3, ~ _ - l, c > 0 and

1  p  8/3 if d = 3 (p arbitrary if d = 2). The proof of existence of
a solitary wave for (5.1) or (5.2) is similar to the proof of Theorem 2.1.
Consider for A > 0 the minimization problem
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Note that Ja is well defined since we infer from [4] that

We then proceed as in the proof of Theorem 2.1 and find a minimum u E Z
of which after a scale change satisfies

and

Note that here, no rescaling allow us to suppress c in equations (5.21)
and (5.22). This explains why we have to introduce c in the minimization
problem 
The regularity of the solitary wave is obtained by the same method as

in Theorem 4.1. t!

We conclude this section by some remarks and open questions.
1. We postpone to a subsequent paper [23] the study of further properties

of the solitary waves and the study of solitary waves of Kadomtsev-
Petviashvili type equations with non pure power nonlinearities (see a
physical example of such equations in [16]).

2. One could also consider solitary waves propagating along an arbitrary
direction, i.e. of the form ~u,(x - c2t) (resp. u(x - c2t,
z - c3t)), with cl > 0. In this case, the change of variables x’ _ x,
?/ = 7/ 2014 (resp. ~’ = x, ~/ == ?/ 2014 z’ = z - allows

to get back to a solitary wave propagating along the :,~-direction with a
velocity c = ci + ~c22/4 (resp. c = c1 + ac2 /4 + bc3 /4). The computations
in Section 2 then show that no such solitary wave exist if c = +1, or

 c~/4 and p  4 (resp.
> (c~ + c~)/4 and p > 4/3,

or a = b = -1, ci  (c2 + c3)/4 and p  4/3). On the other hand,
the existence theorem in Section 3 shows that  4 and

ci > c2 /4 (resp. a = b = - l, p  4/3 and ci > (c2 + c3 ) /4), there is
a solitary wave solution M E Y.
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3. An interesting question is that of stability of solitary waves. To our
knowledge no rigorous result is known so far concerning the orbital
stability of solitary waves for Kadomtsev-Petviashvili type equations
(even for the lumps of KPI). As to instability, it is claimed in [20] that
the solitary waves of (4.1) == ~p are unstable for

p > 4/3. (Added in proofs: see [24] for an answer to this question.)
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