Prog. Theor. Phys. Vol. 56 (1976), Dec.

Soliton Creation-Annihilation Operators as the Canonical Transformation

Shogo AOYAMA and Yuji KODAMA

Department of Physics, Nagoya University Nagoya 464

July 30, 1976

Recently, one of the authors (Y.K.) and Wadati have shown that the Bäcklund transformation for the sine-Gordon equation

$$\partial_t{}^2\phi - \partial_x{}^2\phi + \sin\phi = 0 \tag{1}$$

is a canonical transformation which keeps the Hamiltonian form invariant.¹⁾ In the present paper, this result is investigated in view of quantum theory. The canonical transformation $T_a:(\phi,\pi) \rightarrow (\phi',\pi')$ for Eq. (1) is given by the formulas

$$\begin{aligned} \pi\left(x,t\right) &= \frac{\delta W_{a}}{\delta \phi} = \partial_{x} \phi' + a \sin \frac{1}{2} \left(\phi + \phi'\right) \\ &- \frac{1}{a} \sin \frac{1}{2} \left(\phi - \phi'\right), \end{aligned} \tag{2.a}$$

$$\pi'(x,t) = -\frac{\delta W_a}{\delta \phi'} = \partial_x \phi - a \sin \frac{1}{2} (\phi + \phi')$$
$$-\frac{1}{a} \sin \frac{1}{2} (\phi - \phi'), \qquad (2 \cdot b)$$

where $W_a[\phi, \phi'; t]$ is the generating functional expressed as

$$W_{a}[\phi, \phi'; t] = \int_{-\infty}^{\infty} dx \left\{ \phi \partial_{x} \phi' -2a \cos \frac{1}{2} (\phi + \phi') + \frac{2}{a} \cos \frac{1}{2} (\phi - \phi') \right\}$$
$$-Et . \qquad (3)$$

Here E is a constant (energy integral) determined by the boundary conditions of the flows (ϕ, π) and (ϕ', π') . Particularly, in the case of the transformation (with positive a or negative a) which transforms a trivial solution $\phi^{(0)} = 0$ into a solution $\phi^{(\pm 1)}$ with the boundary condition $\phi^{(\pm 1)} \rightarrow$ $(\mp)2\pi$ as $x \to -\infty, \phi^{(\pm 1)} \to 0$ as $x \to \infty$, we see that $\phi^{(\pm 1)}$ is a one-soliton, or antisoliton, solution with the velocity $u = (1 - a^2)$ $/(1+a^2)$ and energy $E=8/\sqrt{1-u^2}$. Classically, this transformation may be interpreted as the creation-annihilation of soliton. Also, in relation to the quantum theoretic version of soliton, Ichikawa et al. have shown that a soliton solution to the Korteweg-de Vries equation can be interpreted as a coherent state of interacting phonons in a one-dimensional anharmonic lattice.2) We construct a transformation operator generating the transformation (2) by coherent representation.

In quantum field theory, the Lagrangian for Eq. (1) is defined by

$$\hat{L} = : \int dx \{ \frac{1}{2} (\partial_t \hat{\phi})^2 - \frac{1}{2} (\partial_x \hat{\phi})^2 + (\cos \hat{\phi} - 1) \} : .$$
(4)

The operators $\hat{\phi}(x, 0)$ and $\hat{\pi}(x, 0)$ are expressed as

$$\hat{\phi}(x, 0) = \int \frac{dk}{\sqrt{2\omega_k}} (\hat{a}_k + \hat{a}_{-k}^+) \frac{e^{ikx}}{\sqrt{2\pi}},$$

$$\pi(x, 0) = -i \int dk \sqrt{\frac{\omega_k}{2}} (\hat{a}_k - \hat{a}_{-k}^+) \frac{e^{ikx}}{\sqrt{2\pi}}$$
(5)

in the Schrödinger representation. Here \hat{a}_k and \hat{a}_k^+ hold the commutation relations of boson.

Consider the following operator:

7

$$\widehat{A}\left[\phi\right] = \exp\left[-i \int_{-\infty}^{\infty} dx \left\{\phi\left(x,t\right) \widehat{\pi}\left(x,0\right) -\pi\left(x,t\right) \widehat{\phi}\left(x,0\right)\right\}\right], \quad (6)$$

which transforms the vacuum state $|0\rangle$ $(a_k|0\rangle=0)$ into one state $|\phi;t\rangle$, i.e.,

$$|\phi;t\rangle = \widehat{A}[\phi]|0\rangle, \qquad (7)$$

where $\phi(x, t)$ and $\pi(x, t) = \partial_t \phi(x, t)$ are arbitrary functions. It is easily shown that the expectation value $\langle \phi | \hat{H} | \phi \rangle$ of the Hamiltonian \hat{H} is the energy of the *classical* sine-Gordon system, and that the invariant variational problem to $\langle \phi | \hat{H} | \phi \rangle$ yields Eq. (1) for $\phi(x, t)$.

It can be also shown that $|\phi; t\rangle$ is a coherent state, so that $|\phi; t\rangle$ is an eigenstate of an annihilation operator \hat{a}_{k} ,³⁾

$$\hat{a}_{k}|\phi;t\rangle = \alpha_{k}(t)|\phi;t\rangle,$$
 (8)

where $\alpha_k(t)$ is given by

$$\alpha_{k}(t) = \sqrt{\frac{\omega_{k}}{2}} \phi_{k} + i \frac{\pi_{k}}{\sqrt{2\omega_{k}}},$$

$$\phi_{k} = \frac{1}{\sqrt{2\pi}} \int dx \phi(x, t) e^{-ikx}.$$
(9)

Thus we see that a soliton solution $\phi(x, t)$ to Eq. (1) is interpreted as a coherent state $|\phi; t\rangle$ of self-interacting bosons. The relation between N-soliton coherent state $|\phi^{(N)}; t\rangle$ and classical N-soliton solution $\phi^{(N)}(x, t) (N=0, \pm 1, \pm 2, \cdots)$ is given by⁴⁾

The canonical transformation (2), $T: \phi^{(N)} \rightarrow \phi'$, can be expressed as an operator transformation relation,

$$\hat{T}^{-1}\hat{\phi}^{(N)}\hat{T} = \hat{\phi}', \ \hat{T}^{-1}\hat{\pi}^{(N)}\hat{T} = \hat{\pi}', \qquad (11)$$

where the transformation \hat{T} is given by

$$\hat{\pi}^{(N)} = \partial_x \hat{\phi}' + a: \sin \frac{1}{2} (\hat{\phi}^{(N)} + \hat{\phi}'): -a^{-1}: \sin \frac{1}{2} (\hat{\phi}^{(N)} - \hat{\phi}'):, \quad (12 \cdot a)$$

$$= \sigma_x \varphi^{(1)} - a! \sin \frac{1}{2} (\hat{\varphi}^{(N)} - \hat{\varphi}'): \qquad (12 \cdot b)$$

Calculating the expectation value of this transformation in the state $|0\rangle$, we obtain the classical transformation (2), *if and only if* $\hat{T}_{N \to N \pm 1} = \hat{A}^{-1}[\phi^{(N)}]\hat{A}[\phi' = \phi^{(N\pm 1)}]$. This result is directly connected with the well-known property of the Bäcklund transformation. Note that the transformation $\hat{T}_{N \to N \pm 1}$ can be rewritten as

$$\hat{T}_{N \to N^{\pm 1}} = e^{iC} \hat{A} [\phi^{(N^{\pm 1})}] \hat{A}^{-1} [\phi^{(N)}], \quad (13)$$

where C is a *real* c-number constant given by $C = \int dx \{ \phi^{(N)} \pi^{(N\pm 1)} - \phi^{(N\pm 1)} \pi^{(N)} \}$. Thus, except for the phase factor e^{iC} , we have

$$|\phi^{(N\pm1)}\rangle = \hat{T}_{N \to N\pm1} |\phi^{(N)}\rangle. \tag{14}$$

Therefore, we conclude that the creationannihilation operators of soliton is given by the quantum theoretic version, $\hat{T}_{N \to N^{\pm}1}$, of the canonical transformation (2).

To close this paper, we give some remarks. Considering the quantum fluctuations around the state $|\phi^{(N)}\rangle$, we can construct the Fock space $H_F^{(N)}$,

$$\begin{aligned} \mathbf{H}_{\mathbf{F}^{(N)}} &= \{ |\phi^{(N)}\rangle \equiv A[\phi^{(N)}] |0\rangle, \\ \hat{a}_{k}^{(N)+} |\phi^{(N)}\rangle, \ \hat{a}_{k}^{(N)+} \hat{a}_{q}^{(N)+} |\phi^{(N)}\rangle, \ \cdots \}, \end{aligned}$$
(15)

where $\hat{a}_k^{(N)+}$ is defined by the following expansion:

$$\hat{\phi}^{(N)}(x,0) = \sum_{k} \{ \hat{a}_{k}^{(N)} u_{k}(x) + \hat{a}_{k}^{(N)} u_{k}^{*}(x) \}$$
(16)

in proper eigenfunctions $u_k(x) \in L^1 \cap L^2$, and $\hat{a}_{k_1}^{(N)+} \cdots \hat{a}_{k_n}^{(N)+} |\phi^{(N)}\rangle$ may be interpreted as N-soliton state on which *n*-bosons are excited. We note that N-soliton operator $\hat{\phi}^{(N)}$ in (10) can be written by

$$\hat{\phi}^{(N)}(x,t) = \hat{\phi}(x,0) + \phi^{(N)}(x,t)$$
 (17)

which is quite analogous to the Bogoliubov prescription in Bose condensation. It can be shown that the transformation \hat{T} in the case $\phi \notin L^2$ is non-unitary just as the Bogoliubov transformation. This fact implies that the Fock spaces $H_F^{(N)}$ are nonequivalent representations of the Hilbert space for the sine-Gordon system.

The authors wish to thank Professors T. Taniuti, Y. Ohnuki and Y. H. Ichikawa for useful advice, and Mr. T. Sugiyama for helpful discussions.

- Y. Kodama and M. Wadati, Prog. Theor. Phys. 56 (1976), 342.
- Y. H. Ichikawa, N. Yajima and K. Takano, Prog. Theor. Phys. 55 (1976), 1723.
- 3) R. J. Glauber, Phys. Rev. 131 (1963), 2766.
- 4) T. Sugiyama, preprint DPNU-33-76 (1976).