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Soliton interactions for the extended Korteweg-de Vries (KdV) equation are
examined. It is shown that the extended KdV equation can be transformed (to its
order of approximation) to a higher-order member of the KdV hierarchy of
integrable equations. This transformation is used to derive the higher-order,
two-soliton solution for the extended KdV equation. Hence it follows that the
higher-order solitary-wave collisions are elastic, to the order of approximation of
the extended KdV equation. In addition, the higher-order corrections to the
phase shifts are found. To examine the exact nature of higher-order, solitary-wave
collisions, numerical results for various special cases (including surface waves on
shallow water) of the extended KdV equation are presented. The numerical
results show evidence of inelastic behaviour well beyond the order of approxima-
tion of the extended KdV equation; after collision, a dispersive wavetrain of
extremely small amplitude is found behind the smaller, higher-order solitary
wave.

1. Introduction

The Korteweg-de Vries (KdV) equation is a generic model for the study of
weakly nonlinear long waves, incorporating leading-order nonlinearity and
dispersion. For example, it describes surface waves of long wavelength and small
amplitude on shallow water (Whitham, 1974) and internal waves in a shallow
density-stratified fluid (Benny, 1966). The solitary-wave solution of the KdV
equation, thus named because it consists of a single humped wave, has a number
of special properties. Zabusky & Kruskal (1965) numerically examined the
nonlinear interaction of a large solitary-wave overtaking a smaller one. It was
found that, after interaction, the solitary waves retained their original shapes (and
hence conserved both mass and energy), the only effect of the collision being a
phase shift Due to this special property, amongst others, the solitary-wave
solution of the KdV equation is termed a soliton. Gardner et al. (1967) showed
that the KdV equation can be solved exactly using the inverse-scattering
transform. Inverse scattering shows that the collision of KdV solitons is elastic,
because the solitons retain their shape after an interaction and no dispersive
radiation is generated as a result of a collision. The explicit solution for
interacting KdV solitons was developed by Hirota (1972) using inverse scattering.
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The KdV equation arises as an approximate equation governing weakly
nonlinear long waves when terms up to the second order in the (small) wave
amplitude are retained and when the weakly nonlinear and weakly dispersive
terms are in balance (Whitham, 1974). If effects of higher order are of interest
then retention of terms up to the third order in the (small) wave amplitude leads
to the extended KdV equation

7j, + 67777, + iixn + acx TI2T}X + ac2T)xT)xx + ac 3 7777^ + ac4Tjj:rixr = 0

(or« l ) , (1.1)

where a is a nondimensional measure of the (small) wave amplitude. This
equation describes the evolution of steeper waves with shorter wavelengths than
in the KdV equation. If the terms involving a are dropped, the usual KdV
equation results. The values of the parameters cu c2, c3, and c4 depend on the
physical context. In the special case of surface waves on shallow water these
coefficients have the values

c, = - l , c2 = £ c3=i c4 = $ . (1.2)

In the context of surface water waves (1.1) is also useful as a first step in
understanding the progression from shallow-water waves to deep-water waves,
such as occurs in a surf zone. The extended KdV equation of (1.1) with the
coefficients given in (1.2) was derived by Marchant & Smyth (1990) to enable
resonant flow of a fluid over topography to be modelled more accurately, and it
was also derived by Byatt-Smith (1987a) to examine higher-order solitary-wave
interactions. Chow (1989) derived (1.1) for surface waves in shallow water subject
to a linear shear flow and obtained the coefficients given in (1.2) in the limit of
no-shear. For each value of the Froude number F (which is a nondimensional
measure of the magnitude of the shear flow) two wavespeeds are possible. One
represents waves which propagate in the same direction as the shear flow, while
the other represents waves propagating in opposition to the shear flow. Numerical
values of the parameters cit c2, c3, and c4 were presented for some special cases in
which the waves propagate in the same direction as the shear flow. In addition,
(1.1) describes internal waves of moderate amplitude in a shallow, density-
stratified fluid. Gear & Grimshaw (1983) calculated second-order solitary-wave
solutions for various density stratifications and shear flows; in the limit of
no-shear and no stratification (1.2) would also be obtained.

The question arises as to whether the higher-order solitary-wave solutions of
(1.1) are solitons or not, that is, whether or not they undergo elastic collisions.
The special case of (1.1) with coefficients

Ci = l, c2 = i c3 = i, c4 = i> (1-3)

is a member of the KdV family of integrable equations (Newell, 1985). Hence it
has /V-soliton solutions. Also, the special case in which only the higher order
nonlinear term ar)2-qx is retained in (1.1) is integrable. In this case (1.1) can be
linearly transformed (Kivshar & Malomed, 1989) to the modified KdV equation

0, (1.4)
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which is known to possess soliton solutions. This modified KdV equation can, in
turn, be transformed to the KdV equation by the Miura transformation
(Whitham, 1974). This linear transformation generates a soliton solution of (1.1)
in which only ct is nonzero, having a sech profile, rather than a KdV-like sech2

profile, on a nonzero background. Hence it is not known if an A'-soliton solution
for the KdV-like, higher-order solitary waves exists for this special case.

Fenton & Rienecker (1982) numerically solved the full Euler equations for
water waves, and they examined the interaction of two long (but finite) waves
travelling in the same and in opposite directions. For the case governed by (1.1),
that of higher-order solitary waves travelling in the same direction, they found a
small change in the wave amplitude after the collision (of magnitude O(a2)), in
which the larger wave increased in amplitude and the smaller wave decreased in
amplitude, but they were unable to find any evidence of dispersive radiation being
shed as a result of the collision.

Mine & Su (1982) developed perturbation and numerical solutions of a
higher-order Boussinesq equation. A perturbation solution was developed for the
head-on case, which showed that the solitary waves are unchanged at the third
order after the collision except for a phase shift. This phase shift at the third
order is not uniform however, which causes an asymmetry in the wave profile
after the collision. This asymmetry leads to the shedding" of secondary waves of
small amplitude. Both weak (head-on) and strong (overtaking) solitary-wave
collisions were considered numerically, with a small change in amplitude after the
collision and the production of a dispersive wavetrain occuring in the head-on
case. For the overtaking case, no firm conclusion on the nature of the collision
was reached.

Zou & Su (1986) considered higher-order interactions of solitary waves on
shallow water by using a perturbation expansion of the Euler equations. At
first-order, the solution was assumed to be the KdV two-soliton solution. A
continuation of the perturbation procedure resulted in partial differential equa-
tions describing the solitary-wave collision at the second and third orders, which
were then solved numerically. At second order (i.e. at O(a)) the solitary-wave
collision was found to be elastic, which means that there was no change in the
solitary-wave amplitude and that no dispersive wavetrain was generated as a
result of the collision. This result was shown to be consistent with the A'-soliton
solution, describing the interaction to O(a), found by Sachs (1984). This
A'-soliton solution was found by using the KdV inverse-scattering solution to
analytically solve the partial differential equation describing the second-order
effects. At third order, the numerical solutions again show no change in the
solitary-wave amplitude after collision. However, a dispersive wavetrain of small
amplitude occurs behind the smaller solitary wave after the interaction, which is
taken as evidence that the interaction is inelastic.

Byatt-Smith (1987a) considered the interaction of two solitary waves governed
by the version of (1.1) appropriate for surface waves on shallow water by using a
perturbation method based on inverse scattering. It was found that the amplitudes
of the waves underwent a change of O(a) due to the interaction; the larger wave
had an increased amplitude, while the smaller one decreased in amplitude. This
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change in amplitude is larger than that found numerically by Fenton & Rienecker
(1982) and by Zou & Su (1986) and that found theoretically by Sachs (1984).
This anomalous result is explained in Section 3.2 (see p. 17). Byatt-Smith (1987b,
1988) considered the interaction of solitary-wave solutions of the Benjamin-
Bona-Mabony (BBM) equation and the reflection of a solitary wave from a wall
by the same perturbation technique based on inverse scattering.

Kkhenassamy & Olver (1992) considered the extended KdV equation of (1.1)
and showed that exact solitary-wave solutions (waves with sech2 profiles) exist
only for the special parameter combination

c2 + c3 = 30c4, 3c3 = c,. (1.5)

In particular, their work implies that the form of (1.1) appropriate for surface
waves on shallow water does not have an exact solitary-wave solution. The series
which represents the higher-order solitary-wave solution in this case is noncon-
vergent due to the presence of exponentially small terms.

Pomeau et al. (1988) and Grimshaw & Joshi (1995) considered the version of
the extended KdV equation of (1.1) with only higher-order dispersive terms
present (only c4 is nonzero). They showed that the solitary-wave solution has the
form

17 = a sech2 y0 + — exp (-TtJfc/2-ye) sin (* |0|/e - 5) + • • •, e 2 = a c 4 « l , (1.6)

when c4 > 0. Note that k is the wavenumber, the soliton ampltiude a = 2y1, and b
is the amplitude of the nonlocal oscillatory tail, which is a function of the phase
shift 8. Expression (1.6) is just the first term of the series for the higher-order
solitary wave and the nonlocal oscillatory tail of exponentially small amplitude.
Kichenassamy & Olver (1992) concluded that, except for the parameter combina-
tion of (1.5), exact, higher-order, solitary-wave solutions do not exist for the
extended KdV equation of (1.1). However, series solutions for higher-order
solitary waves which neglect exponentially small nonlocal tails (such as the tail in
(1.6)) are good approximations to the exact solution of the extended KdV
equation of (1.1) on all but the longest timescales.

Marchant & Smyth (1990) used the transformation

7j = u + ^ac1(2w2 + u r i) ( a « l ) (1.7)

to transform (1.1), with only the higher-order coefficient C] nonzero, to the KdV
equation (i.e. u satisfies the KdV equation when terms of O(a2) are neglected).
Transformation (1.7) was used to derive modulation equations, describing various
wave properties—such as the amplitude, mean height, and wavenumber—for the
extended KdV equation in this special case from the modulation equations for the
KdV equation. The higher-order undular bore solution was then found as a
centred simple wave solution of these modulation equations. This solution was
used to model resonant fluid flow over topography more accurately. Transforma-
tion (1.7) also implies that higher-order, solitary-wave collisions for (1.1) with
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only c, nonzero are elastic to at least O{a)\ hence the change in amplitude can be
no larger than the neglected terms, which are of O(a2).

Kodama (1985) obtained an approximate Hamiltonian for the extended KdV
equation of (1.1). This Hamiltonian is exact for the integrable version of the
extended KdV equation, with coefficients given by (1.3), and it is accurate to
O(a) in the general case. The Hamiltonian system is transformed, to O(a), to an
integrable system, which implies that the extended KdV equation with arbitrary
coefficients is approximately integrable. The asymptotic transformation used by
Kodama (1985) includes the elements of transformation (1.7) and a nonlocal
term. In this paper, transformation (1.7) is extended in a different manner to that
used by Kodama (1985), to allow the extended KdV equation with arbitrary
coefficients (1.1) to be transformed, to O(a), to the version of the extended KdV
equation which is part of the KdV hierarchy of integrable equations ((1.1) with
coefficients given by (1.3)).

In Section 2, the transformation, and the higher-order two-soliton solution of
the integrable extended KdV equation with coefficients given by (1.3), is used to
write down the higher-order two-soliton solution for (1.1), which implies that
higher-order solitary waves of (1.1) are elastic to at least O{a). The O(a)
corrections to the phase shifts of the higher-order solitary waves after collision are
also found.

In Section 3, numerical results for higher-order solitary-wave collisions are
presented for three cases. The first case is the integrable extended KdV equation
with coefficients given by (1.3), which is known to possess soliton solutions. The
numerical solution in this case allows error estimates for the numerical scheme to
be determined. The other two cases are of a collision involving two higher-order
solitary waves for versions of the extended KdV equation, equation (1.1),
describing surface waves on shallow water with only coefficient c3 nonzero. The
conclusion is reached that higher-order solitary-wave collisions of (1.1) are elastic
to at least O(a2) with a change in the solitary-wave amplitudes no larger than
O(a3). Evidence of inelastic behaviour in these two cases is found; an oscillatory
wavetrain of extremely small amplitude is found behind the smaller, higher-order
solitary wave after the collision. In addition, there is good agreement between the
higher-order phase shifts of the solitary waves, derived in Section 2, and the
numerically obtained values. The Appendix details the numerical scheme used to
solve (1.1).

2. The higher-order rwo-soliton solution

If the transformation

2c3 35c

(2-1)
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is substituted into (1.1), then u(f, T) is a solution of the extended KdV equation

uT + 6uut + u((( + a'u2ut + la'u(u(( + \a'uuii( + ^a'u((((( = 0, (2.2)

where a' = al5(c3 - 8c4)« 1, and terms of O(a2) are neglected. Since (2.2) is a
member of the family of integrable KdV equations, it has an N-soliton solution.
Transformation (2.1) shall be applied to the two-soliton solution of the extended
KdV equation, equation (2.2), to obtain the corresponding higher-order two-
soliton solution for the extended KdV equation, equation (1.1), with arbitrary
coefficients. Note in the special case when c3 = 8c4 that a = 0 and that
transformation (2.1) reduces the extended KdV equation, equation (1.1), to the
KdV equation. If the nonlocal term in the transformation of Kodama (1985) is
added to (2.1) then an asymptotic transformation is obtained which reduces the
extended KdV equation with arbitrary coefficients to the KdV equation.

The two-soliton-solution of the extended KdV equation, equation (2.2), is

where

and m =

(Newell, 1985). The velocity of the ith soliton is Vf, and its position is s, + Vfx.
The two-soliton solution given by (2.3) is the same as the KdV two-soliton
solution except for the correction at O(a') to the velocity. Well before interaction
(as T—• -°°) the two-soliton solution of (2.3) is

u = Af sech2 0] + A\ sech2 62, (24)

where

Expression (2.4) is just the sum of two solitons. The one-soliton solution (A* = 0)
can be found directly from results given by Kichenassamy & Olver (1992) or by
Marchant & Smyth (1990). Expression (2.4) satisfies the extended KdV equation
of (2.2) because the solitons are a long distance apart (hence the interaction
terms, such as /i/2 , in (2.3), are all negligible). Also we choose A*>A* and
Si < s2; this means that the larger soliton is behind the smaller one initially. Since
the first soliton is larger, it travels faster, hence it will interact with the second
soliton as it overtakes it. To see the result of the collision, the solution is
considered well after the interaction (as r—* °°). After the interaction the solution
is again given by (2.4), but with the phase shifts

. 1 .and
 V
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for the larger and smaller solitons, respectively. These are the phase shifts of KdV
solitons; solitons corresponding to higher-order equations (such as (2.2)) in the
KdV hierarchy have the same phase shifts. Hence the soliton collision is elastic,
with no change in the solitons' shapes (hence mass and energy are conserved for
each soliton) and no dispersive radiation is produced as a result of the
interaction. The only effect of the collision is a forward phase shift for the larger
soliton and a backward phase shift for the smaller soliton.

The higher-order two-soliton solution, to O(a), describing the interaction of
two higher-order solitary waves governed by the extended KdV equation of (1.1)
with arbitrary coefficients is just the extended KdV two-soliton solution of (2.3)
transformed by using (2.1). Due to the complicated form of (2.3) the explicit
higher-order two-soliton solution will not be calculated; the nature of the collision
can be found by considering the solution well before and after interaction.
Expression (2.4) describes the higher-order two-soliton solution of (2.3) before
and after interaction; substitution of (2.4) into transformation (2.1) gives

7j = /4, sech2 0, + A2 sech2 62 + aA]cs sech2 0, + aA^Cs sech2 B2

+ aA\cb sech4 0, + aA]cb sech4 62 +• • •,

where

Jc, + \c2 - 5c4), c6 = ($c4- \c3 + rjc, - \c2), (2.6)

0t = kt{x - s,[l + a(¥c4 - Jc3M.] " V,t],

*+--- (i = 1, 2),

where the cross terms (such as sech2 Bt sech2 92) are negligible because of the
large distance between the solitons.

Marchant & Smyth (1990) derived the higher-order cnoidal wave solution for
(1.1). The solitary-wave limit of this solution (their (2.25)) is the same as (2.6) in
the special case of one solitary wave (A2 = 0). It should be noted that the
transformation has shifted the higher-order solitary wave slightly, from f = s^ at
T = 0 to x = Si[l + a(10c4 - c3)v4i/3] at t = 0. Hence it can be seen that transfor-
mation (2.1) gives the appropriate expression for the case of a single, higher-order
solitary wave.

Expression (2.6) is just two higher-order solitary waves as required. As for the
integrable case, the higher-order solitary waves are unchanged in shape after the
collision. The transformation modifies the phase shifts of the extended KdV
solitons given in (2.5). After interaction, the phase shifts for the higher-order
solitary waves, corresponding to (1.1), are

1 (k, + k2A\ 1 fk,+k2A

V
0g

u^M)
 and

 -rM^d
where

for the larger and smaller higher-order solitary waves, respectively. Note that in
the special case c3 = 10c4 the phase shifts are unchanged from the KdV case.
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In summary, the interaction of two higher-order solitary waves, governed by
the extended KdV equation (1.1), is elastic to O(a), which is the order of
approximation of the extended KdV equation and of transformation (2.1). The
higher-order solitary waves are solitons; they maintain their shape (and hence
their mass and energy) after interaction, the only effect of the collision being the
phase shifts (2.7).

In the special case of surface waves on shallow water, governed by (1.1) with
the coefficients given by (1.2), the phase shifts are, after expanding (2.7) in a
Taylor series,

for the larger and smaller waves, respectively. The phase shifts given in (2.8) are,
after appropriate scalings of space, time, and the amplitude a, the same as those
obtained by Zou & Su (1986) directly from the Euler water-wave equations.

3. Numerical results

In Section 2 it was found that the higher-order solitary waves of (1.1) interact in
an elastic manner to O(a). In this section, the interaction of higher-order solitary
waves is examined numerically (the Appendix gives details of the numerical
scheme) to determine the exact nature (at O(a2) and higher) of the interaction.
Of particular interest is the interaction of surface waves on shallow water, which
corresponds to (1.1) with the parameters given by (1.2).

3.1 Accuracy of the numerical method

For an elastic collision, both the masses and the energies of the individual solitons
are unchanged by the collision. If the energy of the higher-order solitary waves
changes due to the collision, then the collision is not elastic and a dispersive
wavetrain will be generated behind the solitary waves. Hence we examine both
the amplitude and energy of each higher-order solitary wave before and after
interaction to determine if the collision is elastic. Also of interest is the amplitude
of any dispersive wavetrain generated by the collision.

The mass and energy of the wavetrain are

M = [ 77 dLc and £ = \ [ 7j2ck, (3.1)

respectively. Substituting the expression for a single higher-order solitary wave
((2.6) with A2 = 0) into the second expression of (3.1) gives

E = ^- A2[\ + i,a/i(210c4 + 2c3 - 3c, - 7c2)], (3.2)

for the energy, to O(a), of a higher-order solitary wave of first-order amplitude
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A. The first-order amplitude A is related to the numerically obtained second-
order amplitude

(3.3)

The energy of each higher-order solitary wave can be calculated using (3.2), (3.3),
and the numerically obtained second-order wave amplitude. Hence it is assumed
that after interaction the numerical solutions have regained the form (3.1).

When the higher-order solitary wave of (2.6) (with A2 = 0) propagates alone, it
evolves to a numerically exact solitary-wave solution of (1.1). This evolution, of
magnitude O(a2), changes the amplitude of the solitary waves and causes mass
and energy to be shed, which results in the production of a dispersive wavetrain
behind the solitary wave. Hence, if the form (2.6) is used for the initial
higher-order solitary waves, any effects due to the interaction will be obscured by
the change in amplitude and by the dispersive wavetrain generated by the
numerical evolution of these higher-order solitary waves. To eliminate this effect
numerically, exact higher-order solitary waves are generated by propagation on
the numerical grid of a single higher-order solitary wave ((2.6) with A2 = 0). The
numerically exact higher-order solitary waves, trimmed to a finite width on which
the surface profile is greater than 1 x 1(T6, are copied to a new numerical grid.
The initial condition is then composed of the larger numerically exact higher-
order solitary wave located at x = 42 with the smaller wave located at x = 78. The
wave amplitudes are chosen so that they are approximately equal to 1 and i so
the waves interact at a time / x 54 and the calculation is continued up to a time
t = 95 to allow the higher-order solitary waves to separate and to allow any
dispersive wavetrain to completely form behind the smaller wave. The numerical
scheme uses damped boundaries (see (A.4)) which absorb any dispersive
radiation. This prevents small-amplitude high-frequency waves being reflected
back into the solution domain, which can also obscure any effects due to the
interaction.

Fundamental quantities which should be conserved during any motion gov-
erned by the extended KdV equation of (1.1) include the total mass and energy of
the fluid. Table 1 presents these two constants of the fluid motion, giving the

TABLE 1
Mass and energy conservation

Example

1

2

3

Before numerical
integration

Mass

2-828093
4-452 788

2-880 601
4-517 588

3-075 146
4-751 265

Energy

0-942 821
1-121550

0-942 513
1-122 084

1-029151
1-214155

After numerical
integration

Mass

2-828 092
4-452 786

2-880 596
4-517 557

3-075 149
4-751 282

Energy

0-942 821
1-121 550

0-942 517
1-122 089

1-029151
1-214 155

Error

Mass

2
3

5
5

2
2

(X104)

Energy

0-5
0-1

0 1
0-1

0-5
0-6



1 6 6 T. R. MARCHANT AND N. F. SMYTH

values for the larger higher-order solitary wave propagating alone (first entry) and
of the full interacting system (second entry) both before and- after the numerical
integration of the extended KdV equation of (1.1) for the three examples. The
quantities are calculated using Simpson's method. For examples 1 and 2, a spatial
step of Ax = 015 was used, while a spatial step of Ax = 0-075 was chosen for
example 3. The discretization error in the quantities of O(Ax2), was estimated by
using Richardson extrapolation between the presented results and those obtained
with a larger spatial step. The discretization error in the mass and energy was
found to be no larger than 001%, while the change in mass and energy before
and after the numerical runs was much less than the magnitude of the
discretization error. Hence it seems that most of the error, as predicted by
Richardson extrapolation, is consistent between time steps. However, in sum-
mary, the error is very small, allowing the nature of the collision to be examined
to O(a2).

Table 2 shows the numerical amplitude and energy of the individual
higher-order solitary waves both before and after interaction for the three
examples. To improve the accuracy of the numerical results a quadratic curve was
fitted to the three grid points surrounding the solitary-wave's peak. The position
and amplitude of the solitary wave was then assumed to occur at the turning point
of the quadratic curve.

Example 1 is the extended KdV equation with coefficients given by (1.3), which
is a member of the KdV hierarchy of integrable equations. The parameters were
a = 0-4, AJC = 0-15, and At = 10~3. For this case a two-soliton solution is known to
exist, so the interaction is elastic. Figure 1 shows a perspective plot of the
higher-order solitons of example 1 up to t = 50. Examination of the numerical
solution allows the size of the numerical errors to be determined. The amplitudes
and energies of the two higher-order solitons before (t = 0-2) and after interaction
(f = 95) were found. Firstly, as a check, numerical runs were performed in which
each higher-order soliton propagated alone (without interaction with the other
wave). Table 2 shows that the change in wave amplitude for both higher-order
solitons, both with and without interaction, was much less than the discretization
error, which was about 001% of the amplitude. Examination of the free surface
behind the smaller higher order solitary wave after interaction (at t = 95) showed
the presence of a spurious dispersive wavetrain. However, the amplitude of this
wavetrain was extremely small, with the largest peak in the wavetrain having an
amplitude of about 2 x 10"6.

Herman & Knickerbocker (1993) considered the truncation error associated
with a scheme used by Zabusky & Kxuskal (1965) for the KdV equation. In
particular, they showed that the O(Ax2) error in the soliton's velocity introduced
by the numerical scheme caused a large error in the soliton's position at long
times. For example 1, the larger soliton was, without interaction, at x = 236-29 at
t = 95. The soliton's velocity (the last equation of (2.6)), however, places the wave
at x = 237-40 after / = 95. The discrepancy in the position, then, due to the
discretization error of the numerical scheme, is about 0-5% of the distance
travelled at t = 95; compare this error with the O(a) difference in the distance



TABLE 2

Numerical data for the solitary-wave interactions

Example

1

2

3

Before

Amplitude

1-00179
0-330 23

0-985 17
0-32962

0-993 42
0-32982

Energy

0-945 34
0-178 92

0-91828
017916

1009 02
0184 61

1 Extended kdV theory.

After, no

Amplitude

1-00178
0-330 23

0-985 17
0-329 62

0-993 42
0-329 82

interaction

Energy

0-945 34
0-178 92

0-918 28
017916

1-009 02
0-18461

Error in
amplitude

(X101)

1
0003

7
2

4
0-6

After, with

Amplitude

1-00176
0-330 23

0-985 16
0-329 63

0-993 42
0-329 82

interaction

Energy

0-945 30
0-178 92

0-918 26
017916

1009 02
0-184 61

KdV
theory

1-874
-3-217

2040
-3-427

1-989
-3-372

Phase shift

eKdV
theory"

1-847
-3-217

1-962
-3-925

2-212
-3-753

Numerical

1-859
-3-221

1-957
-3-283

2-176
-3-701

E
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0 20 40 60 80 100 120 140

FIG. 1. A perspective plot of the interaction of two higher-order solitons up to t = 50. The parameters
were a = 0-4, Ax = 0-15, and Ar = 10"3, and the coefficients are given by (1.3).

travelled of about 2-5% between a KdV soliton and its higher-order counterpart
in this case. Hence the discretization error here is about O(a2).

The numerical phase shift of each higher-order soliton, which is clearly visible
in Fig. 1, was taken to be the difference in the positions of each higher-order
soliton at t = 95 for numerical runs involving interaction and in which the
higher-order soliton propagates alone. This eliminates from the calculation the
error in the soliton's position due to the discretization because this error is the
same for both numerical runs. The phase shifts of the higher-order solitons
obtained numerically, together with the theoretical predictions for the KdV
equation, as given by (2.5), are presented in Table 2. The correspondence
between the numerically obtained phase shifts and the exact phase shifts is
excellent, with an error of about 0-5% between the two results, due to the finite
grid size.

In summary, the numerical scheme is capable of determining the higher-order-
soliton amplitudes to about 0-01% (which is generally less than any O(a2)
changes), and it produces a spurious dispersive wavetrain after collision of no
more than 10~4% of the amplitude of the larger soliton. In addition, the phase
shifts of the higher-order solitary waves after interaction can be found to about
0-5%. These error bounds will be used as benchmarks when examining other
specia] cases of the extended KdV equation of (1.1) for which the exact nature of
the solitary-wave interactions is not known.
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3.2 Inelastic examples

Example 2 is for the case a = 0 1 , Ax = 0-15, and A/=10~4 and with the
parameters given by (1.2). Example 2 corresponds to surface waves on shallow
water. Table 2 shows the amplitudes and energies of the two higher-order solitary
waves before (t = 0-2) and after interaction (/ = 95), as well as for test runs up to
t = 95 with no interaction. Comparison of the amplitudes show that any changes
are much smaller than the discretization error, which is about 0-07% both with
and without interaction. For example 2 the O(a) differences in the amplitude and
energy between the larger KdV soliton and its higher-order counterpart are about
10% and 12%, respectively. Hence it can be concluded that the changes in
amplitudes after interaction are smaller than O(a2).

It was found that the amplitude of the largest wave in the dispersive wavetrain
generated by the interaction was 4 X 10~5. Richardson extrapolation indicates that
this numerical estimate of the dispersive-wave amplitude is about 50% larger
than the converged amplitude as AJC, Ar —> 0. The converged amplitude is an order
of magnitude larger than the spurious dispersive wavetrain, of amplitude O(10~6),
generated behind the solitons in Fig. 1. Also, note that no discernible dispersive
wavetrain is generated by the propagation of single, numerically exact,
higher-order solitary waves. Hence the dispersive wavetrain can be taken as
evidence that the interaction of higher-order, solitary, water waves is inelastic,
even though no change in the solitary-wave amplitude could be detected after the
interaction.

Numerical calculations show that the mass in the dispersive wavetrain is
negative and of O(10~3), whilst the energy is negligible. As the pair of
higher-order solitary water waves have suffered a net loss in mass and no change
in energy after collision, conservation of mass and energy implies that the larger,
higher-order solitary wave has increased in amplitude and that the smaller,
higher-order solitary wave has decreased in amplitude, with the change in
amplitudes being 0(1O~5).

Numerical calculations for steeper, solitary water waves confirm these predic-
tions. For the case a = 0-2, the largest wave in the dispersive wavetrain has a
converged amplitude of 1-2 X 10~4, again with the amplitude of the larger wave
increasing and that of the smaller wave decreasing after interaction. Figure 2
shows a perspective plot of the dispersive wavetrain generated by the interaction
of these higher-order solitary water waves. The parameters were a = 0-2,
Ax = 0-3, and Ar = 1 x 10~3, and the coefficients are given by (1.2). So that the
dispersive wavetrain is visible, the higher-order solitary waves are cut off at a
height of 1 x 10"3.

Table 2 shows comparisons of the numerically obtained phase shifts of example
2 with the KdV theory of (2.5) and with the extended KdV (eKdV) theory of
(2.8). In this case the O(a) correction to the KdV phase shift is about 4%. The
difference between the numerically obtained phase shifts and the extended KdV
theory is less than 0-4%, which is the size of the numerical error in example 1.

Example 3 is for the case a = 0-4, cx = c2 = c4 = 0, c3 = 1, Ax = 0075, and
A/ = 2-5 x 10~4. This example was chosen because its numerical scheme is stable
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FlG. 2. A perspective plot of the dispersive wavetrain generated by the interaction of two
higher-order solitary water waves up to t = 95. The solitary waves are cut off at a height of 1 X 1CT3.
The parameters were a = 0-2, Ax = 0-3, and A/ = 10"3, and the coefficients are given by {12).

for much steeper waves (larger a) than for the version of the extended KdV
equation considered in example 2. Table 2 shows the amplitudes and energies of
the two higher-order solitary waves before (f = 0.2) and after interaction (t = 95),
as well as for test runs up to t = 95 with no interaction. A comparison of the
amplitudes and energies shows that no change was greater than the discretization
error, which was about 0.04% in this case. Here the O(a) differences in the
amplitude and energy between the larger KdV soliton and its higher-order
counterpart are about 6-5% and 20%, respectively. Hence, as in example 2, it can
be concluded that the changes in higher-order solitary-wave amplitudes after
interaction are smaller than O(a2).

Figure 3 shows the dispersive wavetrain generated by the interaction of the
higher-order solitary waves, in time intervals of 10, for the parameters of
example 3. So that the dispersive wavetrain is visible, the higher-order solitary
waves are cut off at a height of 6 X 10"3. The amplitude of the largest wave,
2-8 X 10"5, is an order of magnitude larger than the spurious dispersive wavetrain
generated by the numerical scheme in example 1. Richardson extrapolation
indicates that the error in this numerical estimate of the amplitude is about 10%.
Here the error is much smaller than the corresponding error in the amplitude of
the dispersive wavetrain of example 2 since a much smaller spatial step has been
used. In this case the mass in the dispersive wavetrain is positive and of O(l0~6),
while the energy is negligible. This implies that the larger wave increases in
amplitude and the smaller wave decreases after interaction, with the changes in
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FIG. 3. The dispersive wavetrain produced by the interaction of two higher-order solitary waves at
time steps up to t = 100 in intervals of 10. The solitary waves are cut off at a height of 6 X 10"5. The
parameters were a = 0-4, c, = c2 = c4 = 0, c3 = 1, Ax = 0075, and A/ = 2-5 x 10"4.

amplitude of O(10 6). The conclusions are similar to those for example 2; the
collision is inelastic, but no change in the solitary-wave amplitude could be found
after collision.

Figure 4 shows the location of the higher-order solitary wave-crests in time for
example 3. Both before and after the interaction, the trajectories of the
higher-order solitary waves are straight lines. The constant velocities represented
by these straight lines are 1-870 and 0-645 before the collision and 1-868 and 0-645
after the collision. Hence there is a difference in the respective solitary-wave
velocities of at most 0 1 % . In this case the wavespeed of KdV solitons and their
higher-order counterparts is the same, but the magnitude of the O(a) difference
in the amplitude indicates that the change in the wavespeed after interaction is
less than O(a2). Hence the higher-order solitary-wave trajectories, as shown on
Fig. 4, are parallel, to O(a2), before and after interaction.

Figure 4 shows that, during the interaction, the crests initially merge, and only
one peak can be identified. However, the peaks then separate, and at the
interaction centre two peaks form close together with a shallow trough between
them. After this, the peaks merge again into one before finally separating into
two higher-order solitary waves after the collision. According to the classification
given by Lax (1968), this means the collision is of type b. It should be noted that
the dynamics of the interaction itself has little effect on the waves after the
interaction. Table 2 gives comparisons of the phase shifts. In this case the O(a)
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FIG. 4. The position of the two higher-order solitary-wave crests for times up to f = 50. The
parameters were a =0-4, c, =c2 = c, = 0, c3 = 1, A* = 0-075, and Ar =2-5x 10~\

correction to the KdV phase shift is about 10%. It can be seen the difference
between the numerically obtained phase shifts and the phase shifts obtained using
the extended KdV theory, which is presumably an O(a2) effect, is less than 2%.

Previous numerical work on higher-order solitary-water-wave interaction has
been done by Fenton & Rienecker (1982), by Mine & Su (1982), and by Zou &
Su (1986), while theoretical studies have been made by Sachs (1984) and by
Byatt-Smith (1987a). Fenton & Rienecker (1982) solved the full Euler equations
numerically, and they considered an example of higher-order solitary waves
interacting whilst travelling in the same direction. Their example corresponds to
a =0-45 in our notation, a case for which the numerical scheme used here is
unstable. They found that the larger solitary wave increased in (unsealed)
amplitude from 0-3252 by 0-00364, whilst the smaller solitary wave decreased in
amplitude from 01035 by 00018. Hence the change in scaled amplitude is of
O(a2). These results are qualitatively consistent with example 2, which also
predicts an increase in amplitude for the larger wave and a decrease for the
smaller wave after interaction.

Numerical solutions of a higher-order Boussinesq equation were found by
Mirie & Su (1982). The equation considered was not consistent with the
perturbation expansion of the full Euler equations to the appropriate order
because terms involving fifth-order derivatives were neglected. The neglect of
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these terms makes the numerical scheme much easier to implement, whilst the
solutions are qualitatively representative of solutions of the higher-order
Boussinesq equation appropriate for surface waves on shallow water. Both weak
(head-on) and strong (overtaking) solitary-wave collisions were considered. A
head-on collision of solitary waves of dimensional amplitude 0-5 results in a
change in amplitude of about 2% after collision coupled with the creation of an
oscillatory wavetrain of small amplitude. A collision between a solitary wave of
dimensional amplitude 0-6 overtaking a solitary wave of dimensional amplitude
0-2 shows that the waves recover 99% of their original amplitude. While an
oscillatory wavetrain is produced, its amplitude is compared with the numerical
error. Hence no conclusion about the elasticity of solitary-wave interactions could
be deduced in the case of a solitary wave overtaking another, except that the
change in wave amplitude was less than O(a).

Zou & Su (1986) considered a perturbation expansion of the Euler water-wave
equations. The partial differential equations describing the effects at O(a) and
O(a2) were solved numerically. At O(a) the interaction was found to be elastic,
while at O(a2) the solution consisted of a correction to the phase shifts and of a
dispersive wavetrain which occurred behind the smaller solitary wave after
collision; hence the collision was inelastic. In the example presented of solitary
waves with amplitudes in the ratio of four to one, the oscillatory wavetrain has an
amplitude of about 10% of the correction to the phase shift at O(a2). There is no
change in the solitary-wave amplitude, which is presumed to be an O(a3) effect.
These conclusions are consistent with the results presented in example 2 for
surface waves on shallow water.

Byatt-Smith (1987a) used a perturbation method based on the method of
inverse scattering to examine the higher-order solitary-wave interaction for the
extended KdV equation. The perturbation equations (see his (4.10)) which
describe the evolution of the scattering data were considered for the special case
of the two-soliton solution of the KdV equation. This gives the change in
amplitude of the solitary waves due to the higher-order terms, at O(a), of the
extended KdV equation. The change in the solitary-wave amplitude was found in
terms of a number of integrals which were simplified to a single equivalent
integral, and the change in the solitary-wave amplitude was shown to be of O(a).
For example 2, his theory predicted that the larger solitary wave increases in
amplitude by about 4% and that the smaller solitary wave decreases in amplitude
by about 20%. This change in amplitude is much larger than that found
numerically in Section 3, and it also contradicts the theoretical results of Section 2
and those given by Sachs (1984). A numerical integration of the perturbation
equations given by Byatt-Smith (1987a; his (4.10)) by the present authors showed
no change in the solitary-wave amplitude after interaction. The present authors
believe that there are algebraic errors in Appendix B given by Byatt-Smith
(1987a), which simplifies the various integrals of his (4.15) to his equivalent
integral (4.19).

Numerical evidence has been presented for surface water waves of moderate
steepness (a = 0-1 and a = 0-2) and for much steeper higher-order solitary waves
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(a = 0-4) governed by another version of the extended KdV equation. This has
confirmed the theoretical prediction of Section 2 that higher-order solitary waves
governed by (1.1) interact in an elastic manner to O(a) and that the phase shifts
of higher-order solitary waves are given by (2.7) to O{a).

In addition, these examples strongly suggest that the interaction of solitary
waves on shallow water, and indeed the interaction of higher-order solitary waves
governed by the complete family of equations (1.1), is elastic to at least O(a2).
No change in wave amplitude can be detected after collision, but a dispersive
wavetrain of very small amplitude is generated, which shows that the higher-order
solitary-wave collisions are inelastic. The dispersive wavetrain allows an estimate
of the change in wave amplitudes after collision to be found indirectly via mass
and energy conservation. For surface waves on shallow water the larger wave is
increased while the smaller wave is decreased in amplitude after collision.

Appendix: The numerical scheme

The numerical solutions of the extended KdV equation of (1.1) were obtained by
using centred finite differences in the spatial coordinate x and a fourth-order
Runge-Kutta method for the temporal coordinate t. This method was chosen
over straight finite-difference methods (such as an extension to the finite-
difference scheme used by the KdV equation by Zabusky & Kruskal, 1965)
because of its stability. The hybrid fourth-order Runge-Kutta finite-difference
method for (1.1) detailed below is bound to be stable for moderate values of a
when reasonable choices are used for the space step Ax and for the time step A/,
in contrast to various straight finite-difference methods considered by the authors
which were found to be unstable for nearly all nonzero values of a.

Given that the solution at the time tt is

Vu = <n(t, = iAt, Xj = jAx) 0 = 1 , . . . , N), (A.I)

then the solution at time f/+1 is given by

V,j + Ua,j + 2btJ + 2c,j + dtJ) + y(Xj) (J = 1 , . . . , AO,

where

\atJ),
(A.2)
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and y(x) is the damping function used at the boundaries. The function / is the
finite-differenced form of all the terms in (1.1) involving spatial derivatives,

1 2Pi,

ac2 ,

(P - 2pIJ+3 -

+ PlJ-\ ~

-i - p,j_A). (A.3)

The damping function

y(xj) = 20[sech2 (;Ax)] + sech2 [(/ - N)Ax] (A.4)

is used to absorb the small-amplitude dispersive radiation at the boundaries of the
solution domain. If et al. (1987) describe its application to the nonlinear
SchrSdinger equation. The boundary conditions used are

T , y = 0 ( i = - 3 , . . . , 0 ; j = N + l , . . . , N + 4). (A.5)

This boundary condition maintains the surface elevation at zero far ahead and
behind the solitary waves. The accuracy of the numerical method at each time
step is O(Al4, Ax2). Hence, for an integration to a time t = A/A/, the accuracy of
the method is OiAt3, Ax2).
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