
Soliton interactions and transformations in colloidal media

Michał Matuszewski,1 Wieslaw Krolikowski,2 and Yuri S. Kivshar1

1Nonlinear Physics Center, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200, Australia
2Laser Physics Center, Research School of Physics and Engineering, Australian National University,

Canberra ACT 0200, Australia
�Received 29 September 2008; revised manuscript received 17 November 2008; published 11 February 2009�

We study nonlinear light propagation in colloidal suspensions of spherical dielectric nanoparticles. We
analyze the existence and properties of one-dimensional self-trapped beams �spatial optical solitons� in such
media and demonstrate the existence of a bistability regime. The solitons corresponding to the two bistable
branches have very different properties, and they can be easily distinguished by the measurement of the soliton
width. We find that both types of solitons can form spontaneously through spatial modulational instability of
continuous wave beams, but the solitons corresponding to the upper branch are more robust. This is also
confirmed by the study of soliton collisions, where we describe a number of possible scenarios, including
soliton amalgamation, destruction, reflection, deflection, and switching to another branch. We also find that the
interaction of two mutually coherent solitons corresponding to different branches is phase independent and
always repulsive. We provide a simple physical explanation of this phenomenon.
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I. INTRODUCTION

Spatial optical solitons are formed when a change of the
nonlinear refractive index induces an effective lensing effect
that balances diffraction of the laser beam �1�. When an op-
tical beam passes through a colloidal medium composed of a
liquid suspension of dielectric nanoparticles, the optical gra-
dient force acts against particle diffusion, increasing the re-
fractive index in regions of higher light intensity. The corre-
sponding local change of the refractive index is of the self-
focusing type, and it allows for creation of spatial optical
solitons in the form of self-trapped optical beams, as was
demonstrated in both theoretical and experimental studies
�2–5�. Recently, it was shown theoretically �5� that the opti-
cal response of a colloidal medium in the hard-sphere ap-
proximation can lead to optical bistability and the existence
of two stable soliton solutions for the same beam power—
i.e., soliton bistability of the first kind �6,7�. This opens novel
opportunities for the control of soliton beams via their colli-
sion and switching.

The interaction of optical solitons is a problem of funda-
mental importance, and it has been studied thoroughly in the
past decades �1,8�. While collisions of solitons described by
integrable models �e.g., for one-dimensional Kerr solitons�
are always elastic, those of nonintegrable models �including
bistable� demonstrate the richness of the dynamics depend-
ing on the detailed form of the nonlinearity �9�. For instance,
soliton annihilation or amalgamation of two solitons from
the lower branch into one upper-branch soliton was predicted
�10�.

In this paper, we study collisions of bistable solitons in
the model of colloidal media and demonstrate that the soli-
tons can undergo transformations during their interactions.
Moreover, we reveal that the interaction of two solitons from
different branches is phase independent and always repul-
sive, a surprising result in view of all previous studies �1,8�.
We provide a simple physical explanation of this phenom-
enon.

II. MODEL

The model of nonlinear laser beam propagation in a col-
loidal suspension of dielectric hard spheres was described in
�5�. We assume that the refractive index of colloidal par-
ticles, np, is slightly higher than the background index nb and
that the particle diameter is much smaller than the laser
wavelength in the background medium, d��0 /nb �Rayleigh
regime�. We assume that the dielectric colloidal particles in-
teract with each other through a hard-sphere potential. In the
steady state the colloidal particles satisfy the Maxwellian ve-
locity distribution, which follows from the phase-space den-
sity in the canonical ensemble ��exp�−E /kBT�. The pres-
sure exerted by colloidal particles can be obtained from the
equation of state in analogy with the hard-sphere gas �11�:

�p

�
= Z��� , �1�

where �=1 /kBT, p is the pressure, � is the colloidal particle
density, Z��� is the compressibility, and �=� /�0 is the pack-
ing fraction. In the case of ideal gas, we have Z=1. For a
hard-sphere gas, the Carnahan-Starling formula Z��1+�
+�2−�3� / �1−��3 gives a very good approximation up to the
fluid-solid transition at ��0.5 �11�. This phenomenological
formula is in agreement with exact perturbation theory cal-
culations as well as molecular-dynamics simulations.

In the presence of a slowly varying external potential,
such as that induced by the presence of optical beam, the
particle velocity distribution is locally Maxwellian. The gra-
dient of the density ��r� is assumed to be locally parallel to
x̂, and we consider a small box of volume dV=dx dS, with
length dx and normal surface dS. The difference in pressure
exerted on the right and left surfaces, dp, gives rise to an
effective force acting on the colloidal particles, Fint. It is
equal to the external force that is necessary to sustain the
density gradient, and dp=−Fint /dS=−f int� dV /dS=−f int� dx,
where f int is the average force acting on a single particle.
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Using Eq. �1�, we get d��Z� /dx=−f int��. The particle cur-
rent density is equal to

j� = ���f�ex + f�int� = ��f�ex − D�� ��Z� , �2�

where � is the particle mobility and D=� /� is the diffusion
constant. In the ideal gas limit, this equation becomes Eq. �3�
of �4�. Let m=np /nb be the ratio of the colloidal particle
refractive index to the background refractive index. The po-
larizability of a sphere is given by

� = 3Vp	0nb
2
 , �3�

where Vp is the sphere volume and 
= �m2−1� / �m2+2�. If

we look for the steady state �j�=0�� in the presence of an

optical field gradient �f�ex= �� /4��� I, where I= �E�2�, we ob-
tain

�
��

4

dI

dx
=

d��Z�
dx

, �4�

which can be solved analytically to give the dependence
I���:

��

4
I��� = g��� − g��0� , �5�

where g���= �3−�� / �1−��3+ln � and �0 is the background
packing fraction.

Assuming a relatively low packing fraction, the corre-
sponding nonlinear refractive index change can be approxi-
mately calculated using the Maxwell-Garnett formula �12�

	eff = 	b +
3�	b�	p − 	b�

�	p + 2	b − ��	p − 	b��
. �6�

For low refractive index contrast �	p /	b�1�, we have

	eff � 	b +
3	b�	p − 	b�
�	p + 2	b�

� = 	b�1 + 3
�� . �7�

Substituting this formula to the Helmholtz equation �2E
+k0

2neff
2 E=0, we obtain the propagation equation for a slowly

varying envelope of electric field u�r̃� defined by E�r̃�
= �2 /����u�r̃�exp�ik�1+3
�0�1/2z̃�:

i
�u

�z̃
+

1

2k�1 + 3
�0
	1

2
�

�̃

2
u + 3k2
�� − �0�u
 + i

�

2
u = 0,

�8�

where k=2�nb /�0 and the additional last term on the left-
hand side accounts for damping due to Rayleigh scattering
from the dielectric spheres. The damping coefficient is given
by �=2�5�
2d6 / �3�4� �13�, where �=�0 /nb. Additionally,
for steady-state solutions, relation �5� gives

�u�2 = g��� − g��0� �9�

at each point in space, where g���= �3−�� / �1−��3+ln �.
The typical dependence ���u�2� in this case is shown in Fig.
1. In the low-intensity limit, the nonlinear index change is
Kerr-like �proportional to intensity�. For higher intensities, it
is well described by the exponential model of �3,4�. Finally,

for higher densities the particle hard-sphere interactions be-
come significant and the nonlinearity saturates as the expo-
nential model breaks down.

We renormalize the spatial coordinates according to
�x ,y�= �2 /3k2
�1/2�x̃ , ỹ� and z= �2�1+3
�0�1/2 /3k
�z̃, obtain-
ing

i
�u

�z
+

1

2
��

2 u + �� − �0�u + i


2
�u = 0, �10�

where the renormalized damping coefficient is

 =
2

3
�3�1 + 3
�0� d

�
�3


 . �11�

From Eq. �10� and formula �11�, we conclude that the effect
of scattering losses depends strongly on the ratio of the par-
ticle size to the laser wavelength. In the following, we will
ignore the effect of damping in accordance with the assump-
tion d /��1. Later on we will verify correctness of this as-
sumption.

III. MODULATIONAL INSTABILITY

We consider stability of continuous wave solutions of Eq.
�10� with background packing fraction �0=10−3 in the form
u= �us�exp�i�sz+ i��, where relation �9� holds between us and
�s. The initial stage of modulational instability was studied
analytically in Ref. �5�, with a general conclusion that the
beams are always unstable. Here we investigate in detail the
subsequent beam evolution and the formation of solitons.

A typical example of propagation of an initially homoge-
neous beam is presented in Fig. 2. The initial beam is per-
turbed by a Gaussian noise equal to �=1% of the beam
intensity to reflect the experimental beam distortion and im-
purities, u�x ,z=0�=us�1+ f�x ,���, where the value of f�x ,��
is chosen independently at each grid point according to a
random Gaussian distribution. We find that, depending on the
beam intensity, the beam can undergo modulation instability,
which leads to filamentation into large-scale solitons corre-
sponding to the lower stable branch �see below�, shown in
Fig. 2�a�, or small-scale upper branch solitons, as shown in

FIG. 1. �Color online� Packing fraction � of colloidal particles
vs the light intensity �solid line�. The dashed line shows the depen-
dence of the exponential model.
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Fig. 2�b�. The second scenario occurs for the beam intensity
over the threshold �u0�2�0.08. While the lower branch soli-
tons can merge, disappear, and reappear, the upper-branch
solitons display more robustness and are well distinguish-
able. For the scenario presented in Fig. 2�a�, the scattering
losses prevent the formation of solitons for particle diameter
to wavelength ratios larger than d /��10−2 due to the long
propagation distance.

IV. SOLITONS

In this section, we study one-dimensional spatial solitons
and look for localized solutions of Eq. �10� in the form
u�r�=A�x�exp�i�z�. In this case, the propagation equation
�10� reduces to

− �A +
1

2

d2A

dx2 + �� − �0�A = 0 �12�

and the soliton profiles can be obtained numerically �5�. In
Fig. 3�a� we show the dependence of the soliton width W
=3�x��u�2dx and power P=�u�2dx versus the propagation
constant �. The two stable branches with a positive slope
dP /d��0 are separated by an unstable branch with a nega-
tive slope �6�. Bistable solutions exist within the power range
P�33–51. These solitons fulfill all the three stability con-

ditions required for robustness during collisions �9�.
Example of bistable soliton profiles for P=40 are pre-

sented in Figs. 3�b� and 3�c�. The width of the soliton from
the lower branch is approximately 20 times larger than the
width of the soliton from the upper branch carrying the same
beam power. Therefore, these solitons can be easily distin-
guished in experiment by measuring their width. For the ex-
perimental parameters �=1064 nm, particle diameter d
=30 nm, np=1.56, and nb=1.33 �polystyrene beads in wa-
ter�, the total soliton beam power is about 2 W and the peak
intensity of the soliton from the upper branch reaches
�300 MW /cm2.

V. SOLITON INTERACTIONS

Now we study numerically collisions of mutually coher-
ent solitons from the two bistable branches. We employ dif-
ferent configurations and collision parameters. The initial
state is selected in the form of two stationary soliton solu-
tions u1�x� and u2�x� separated by a distance 2x0 large com-
pared to each of the soliton widths. The solitons have im-
printed opposite linear phases k0, which resemble the initial
beam tilt, and a constant phase difference ��:

u�x,z = 0� = u1�x + x0�eik0x + u2�x − x0�e−ik0x+i��. �13�

Our numerical studies reveal that interaction of two soli-
tons from the same branch and from different branches are
dramatically different, and we consider them separately in
the following study of the possible collision outcomes. We
notice that in all cases presented below, the two interacting
solitons carry the same power. We also perform numerical
simulations involving collisions of solitons with different
powers, but these did not lead to any qualitatively different
scenario. For the values of the experimental parameters pro-
posed in Sec. IV, the damping coefficient is calculated as 
=5�10−5. Therefore, the soliton power loss due to the Ray-
leigh scattering in most of the cases is negligible, except for
the longest simulations where for upper branch solitons it
can reach 10%.

FIG. 2. �Color online� Modulation instability leading to the for-
mation of solitons from the �a� lower branch for �u0�2=0.05 and �b�
upper branch for �u0�2=1. The threshold value separating these two
scenarios is �u0�2�0.08.

FIG. 3. �Color online� �a� Soliton power and width vs the propagation constant � for �0=10−3. Bottom panels show the soliton intensity
profile �solid� and colloidal particle packing fraction �dashed� for bistable solitons carrying power P=40 from �b� the lower stable branch and
�c� the upper stable branch. Notice the difference in the width scale.
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A. Collisions of solitons from the same branch

We consider collisions of two solitons from the lower
branch as well as from the upper branch. We find that far
from the instability threshold corresponding to the limit of a
stable branch, the soliton interaction is similar to the previ-
ously described elastic collisions of Kerr solitons �for lower
branch� or inelastic collisions in a saturable medium �upper
branch� �1�. This interaction can be either repulsive or attrac-
tive depending on the phase difference ��, and it can also
lead to a power transfer between solitons in nonintegrable
case �1,8�.

However, if the soliton power P or propagation constant �
approaches the instability threshold, the soliton interaction
can have a dramatically different character. In Figs. 4�a� and
4�b� we show the results for collisions of two high-power
solitons from the lower branch, amalgamating into one soli-
ton from the upper branch, with a significant amount of beam
power being radiated. In the scenario from Fig. 4�c�, the
repulsive force between out-of-phase solitons causes them to
switch to the upper branch. Figure 4�d� shows the annihila-
tion of two solitons from the upper branch close to the insta-
bility threshold. This scenario does not occur for perfectly
in-phase solitons, but a slight phase difference, unavoidable
in experimental conditions, leads to destabilization and de-
struction of the soliton beams.

B. Collisions of solitons from different branches

In contrast to the case described above, the interaction of
solitons from two different branches has a completely differ-
ent character than soliton collisions in any model considered
before �8�. The main feature is that, despite the fact that the
beams are mutually coherent, their interaction appears to be
phase independent; i.e., it does not depend on ��. At the

same time, the interaction is always repulsive, the effect be-
ing opposite to what is observed in models of mutually in-
coherent optical beams in self-focusing media �8�.

In Figs. 5 and 6, we present some of the possible sce-
narios of soliton collisions. In Figs. 5�a� and 5�b�, the soliton
of the lower branch is triggered to switch to a soliton of the
upper branch. In Fig. 6�a� solitons pass through each other as
the initial beam tilt is too large for the interaction to occur. In
Figs. 6�b� and 6�c� the soliton of the upper branch is de-
flected by the lower-branch soliton, which eventually dif-
fracts, and in Fig. 6�d� both solitons undergo reflection. We
notice that while both beams carry the same power, the
upper-branch soliton is much more robust and appears in
unchanged form after the collision, except for a possible
change in the propagation angle. Figure 7 summarizes the
results of a systematic study of these soliton collisions, with
the regions in parameter space �P ,k0� corresponding to the
various scenarios described above.

C. Explanation of the phase-independent repulsive soliton
interaction

As was pointed out above, the collisions of solitons be-
longing to different branches differ drastically from those
involving solitons of the same branch. In a sharp contrast to
all previously considered types of interaction between optical
solitons �1,8�, the soliton collisions we described are phase

FIG. 4. �Color online� �a�–�c� Collisions of solitons from the
lower stable branch for P=45, k0=0.05, and different values of the
phase difference ��. In panels �d�, �e�, and �f� collisions of solitons
from the higher branch are presented for P=33 and k0=0.1.

FIG. 5. �Color online� Switching from the lower to the upper
branch triggered by collision with another soliton for soliton power
P=50 and �a� k0=0.01 or �b� k0=0.03. Powers of both solitons are
equal to P.

FIG. 6. �Color online� Other scenarios for collision of two soli-
tons from different branches. For high transverse velocities, the
solitons pass through each other as shown in �a� for P=50 and k0

=0.5. For lower velocities, the interaction leads to �b� soliton de-
flection for P=35 and k0=0.025, �c� destruction for P=40 and k0

=0.02, or �d� reflection for P=45 and k0=0.01.

MATUSZEWSKI, KROLIKOWSKI, AND KIVSHAR PHYSICAL REVIEW A 79, 023814 �2009�

023814-4



independent and always repulsive. Typically, the coherent
interaction of solitons depends strongly on their relative
phase, so that the collision is attractive for in-phase solitons
and is repulsive for out-of-phase solitons. The property of
phase independence revealed here can be explained by a
strong mismatch in the propagation constants. From Fig. 3 it
is evident that for solitons belonging to different branches
their phase velocities, expressed by the propagation constant
�, differ by more than two orders of magnitude. This phase
mismatch leads to very fast oscillations of the soliton mutual
phase in the interaction area. As a result, the coherent con-
tribution to the soliton interaction averages out and the inter-
action becomes effectively incoherent. As such, it can be de-
scribed not by a single equation, but rather two incoherently
coupled nonlinear equations for the two colliding solitons:

i
�ũ1

�z
+

1

2
��

2 ũ1 + �� − �0�ũ1 = 0,

i
�ũ2

�z
+

1

2
��

2 ũ2 + �� − �0�ũ2 = 0, �14�

where � is determined by Eq. �9� with the light intensity
being just a sum of the intensities of both the solitons, �u�2
= �ũ1�2+ �ũ2�2.

To confirm this finding, we solve Eqs. �14� numerically
and compare the profile of the total intensity �u�2 to that
obtained in the case of the coherent interaction, as plotted in
Figs. 4–6. Indeed, we observe that the outcome of the inter-
action is identical in both cases, with the only visible differ-
ence being the disappearance of interference fringes in the
area of the soliton overlap in the incoherent case. Moreover,
we find that there is no exchange of soliton power, so each of
the solitons remains in its initial component.

Presently, it is commonly believed that the incoherent in-
teraction of solitons results always in their attraction, but not
repulsion �1,8�. In fact, each of the solitons “feels” the other
one as an effective attractive potential; hence, the soliton
coalescence or passing can be anticipated. However, a soli-
ton reflection from a narrow, deep, attractive potential wells
or defects has been already reported for different systems
�14,15�. It was shown that if the soliton velocity falls below
a certain threshold, a repulsive interaction between the soli-
ton and an attractive potential can occur. In our case, the
conditions required for this phenomenon to take place corre-
spond well to the parameters of the soliton interactions. The
narrow but intense soliton from the upper branch plays the
role of an effective defect potential for a broad but weak
soliton from the lower branch, which is reflected if its kinetic
energy �velocity� is low enough; see Fig. 7. We present here
evidence of a phase-independent repulsive interaction of
solitons.

VI. CONCLUSION

We have studied numerically bistable spatial optical soli-
tons and their collisions in colloidal media. We have revealed
a number of various scenarios of the soliton interaction, in-
cluding such effects as amalgamation, destruction, reflection,
deflection, and switching to another branch. We also found
that the collision of two coherent solitons corresponding to
different branches is effectively incoherent and always repul-
sive, and we have provided a simple physical explanation for
this phenomenon.

ACKNOWLEDGMENTS

The authors acknowledge support of the Research School
of Physics and Engineering of the Australian National Uni-
versity and the Australian Research Council.

�1� Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fi-
bers to Photonic Crystals �Academic Press, San Diego, 2003�.

�2� A. Ashkin, J. M. Dziedzic, and P. W. Smith, Opt. Lett. 7, 276
�1982�; P. J. Reece, E. M. Wright, and K. Dholakia, Phys. Rev.
Lett. 98, 203902 �2007�; C. Conti, G. Ruocco, and S. Trillo,
ibid. 95, 183902 �2005�.

�3� R. Gordon, J. T. Blakely, and D. Sinton, Phys. Rev. A 75,
055801 �2007�.

�4� R. El-Ganainy, D. N. Christodoulides, C. Rotschild, and M.
Segev, Opt. Express 15, 10207 �2007�.

�5� M. Matuszewski, W. Krolikowski, and Y. S. Kivshar, Opt. Ex-
press 16, 1371 �2008�.

FIG. 7. Diagram of collision outcomes for two bistable solitons
from different branches. The marked points correspond to numeri-
cal data from Figs. 5 and 6. The central area corresponds to sce-
narios where the lower-branch soliton is destructed and the higher-
branch soliton changes the propagation direction. The dashed lines
determine the bistability region.

SOLITON INTERACTIONS AND TRANSFORMATIONS IN… PHYSICAL REVIEW A 79, 023814 �2009�

023814-5



�6� A. E. Kaplan, Phys. Rev. Lett. 55, 1291 �1985�.
�7� S. L. Eix and R. H. Enns, Phys. Rev. A 47, 5009 �1993�.
�8� G. I. Stegeman and M. Segev, Science 286, 1518 �1999�.
�9� R. H. Enns, S. S. Rangnekar, and A. E. Kaplan, Phys. Rev. A

36, 1270 �1987�.
�10� R. H. Enns, D. E. Edmundson, S. S. Rangnekar, and A. E.

Kaplan, Opt. Quantum Electron. 24, S1295 �1992�.
�11� J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids,

3rd ed. �Elsevier, Amsterdam, 2006�.

�12� J. C. M. Garnett, Philos. Trans. R. Soc. London, Ser. A 203,
385 �1904�.

�13� H. C. van de Hulst, Light Scattering by Small Particles �Dover,
New York, 1981�.

�14� Yu. S. Kivshar, Zhang Fei, and L. Vázquez, Phys. Rev. Lett.
67, 1177 �1991�.

�15� R. H. Goodman, P. J. Holmes, and M. I. Weinstein, Physica D
192, 215 �2004�; C. Lee and J. Brand, Europhys. Lett. 73, 321
�2006�.

MATUSZEWSKI, KROLIKOWSKI, AND KIVSHAR PHYSICAL REVIEW A 79, 023814 �2009�

023814-6


