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Abstract—We investigate ultrashort pulse generation based
on the fundamental soliton generation that is stabilized by a
saturable absorber. The case of an absorber with a recovery
time much longer than the pulsewidth of the generated soliton
is investigated in detail. Based on soliton perturbation theory
we derive equations for the soliton variables and the continuum
generated in a mode-locked laser. Analytic criteria for the tran-
sition from stable to unstable soliton generation are derived. The
results demonstrate the possibility of ultrashort pulse generation
by a slow saturable absorber only. The theoretical results are
compared with experiments. We generate pulses as short as 13 fs
using only semiconductor saturable absorbers.

I. INTRODUCTION

OVER the last years great progress in the production of
femtosecond pulses has been achieved. Colliding pulse

mode-locked lasers, producing pulses as short as 27 fs were
replaced by the Kerr-lens-mode-locked (KLM) Ti:sapphire
lasers [2]–[4]. This new solid state laser material together
with KLM allows for a routine production of 10-fs pulses
and lower [5]–[8], if the higher order dispersion is carefully
controlled [9], [10]. Due to the nonresonant nature of the
Kerr effect in crystals, KLM can be used to mode-lock lasers
from the visible to the near infrared without any additional
intracavity elements. Despite its success, KLM has also some
disadvantages. KLM is based on the generation of an artificial
fast saturable absorber effect due to the self-focusing that
occurs inside the laser crystal [11] for subpicosecond pulses.
To enhance self-focusing one usually operates the cavity close
to the stability limit, so that the cavity is sensitive to small
additional intracavity lensing effects [11], [12]. Thus, KLM
interrelates the laser modes with the laser dynamics. This leads
to a complex spatio-temporal laser dynamics [13] and results in
a restricted cavity design. Furthermore, very short pulse lasers
based on a fast saturable absorber alone, have an intrinsic
problem to self-start from a continuous-wave (CW)-operation.
This is simply due to the fact, that the peak intensity changes
by about six orders of magnitude when the laser switches from
CW-operation, where the pulse energy is distributed over about
10 ns, to a 10-fs pulse. Thus, nonlinear effects which are in
the order of one in pulsed operation are of the order of 10in
CW-operation, if the absorber is not completely oversaturated
when it reaches steady-state pulsing. Currently, self-starting
KLM lasers have been demonstrated down to about 50 fs
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[14], [15] in cavities optimized for self-starting. Even then, the
measured mode-locking build-up time is in the order of several
milliseconds. Thus, usually separate starting mechanisms are
required [4], [16].

In order to generate the shortest pulses, the modulation
depth of the absorber has to be maximum. In a KLM laser
the generated artificial, saturable absorption and the self-phase
modulation have the same origin: the intensity dependent
refractive index. Recent measurements of the beam waist in
KLM lasers suggest, that the self-phase modulation (SPM) in
sub-10-fs lasers is overdriven and might limit further pulse
shortening.

Recently, we have shown theoretically, that femtosecond
solid-state lasers can generate ultrashort solitonlike pulses
when mode-locked only by a slow saturable absorber. By a
slow saturable absorber we understand an absorber with a
recovery time much longer than the final pulsewidth [18]. This
is a regime of mode-locking, where the pulse is completely
shaped by soliton formation, i.e., the interplay between nega-
tive group-delay dispersion (GDD) and SPM. The absorber
dynamics only stabilizes the soliton against the growth of
background radiation. In the final stage of pulse formation, it
is the solitonlike pulse shaping that locks the modes together.
With this method we can generate pulses, which are consider-
ably shorter than the recovery time of the absorber. Therefore,
we call this scheme soliton mode-locking stabilized by a slow
saturable absorber.

It is well known that solitonlike pulse shaping, due to SPM
and GDD generates pulses that are both shorter and more
stable [5], [9], [19], [20]. Both mechanisms are the ingredients
for the existence of average, or guiding center solitons [21]
in mode-locked lasers. These solitons are governed by a
perturbed nonlinear Schrödinger equation [22] as long as the
changes of the pulse in the nonlinear elements per round-trip
are small [23], [24]. However, the traditional mode-locking
schemes [25] rely either on a fast saturable absorber, as is
the case for additive-pulse or KLM mode-locked systems
[20], [26], [see Fig. 1(a)] or on the interplay between a slow
saturable absorber and gain saturation, as is the case with
dye lasers [27], [28], [see Fig. 1(b)]. The two mechanisms
open a net gain window in time so that only the pulse itself
experiences gain per round-trip. This permits the system to
discriminate against noise that may grow outside the net
gain window, and therefore the pulse is kept stable against
perturbations or noise.

In contrast to these well-known schemes, in a soliton mode-
locked laser stabilized by a slow absorber the net gain window
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(a) (b) (c)

Fig. 1. Pulse-shaping and stabilization mechanisms owing to gain and loss
dynamics in a mode-locked laser in case of using: (a) a fast saturable absorber,
(b) a slow saturable absorber plus slow gain saturation, and (c) a slow saturable
absorber plus soliton formation.

does not close immediately after passage of the pulse, [see
Fig. 1(c)]. This is possible in the soliton regime because, for
the soliton, the nonlinear effects due to SPM and the linear
effects owing to the negative GDD are in balance. In contrast,
the noise or instabilities that would like to grow are not
intense enough to experience the nonlinearity and are therefore
spread in time. However, when they are spread in time they
are even absorbed by a slowly recovering absorber. Then,
the instabilities experience less gain per round-trip than the
soliton and they decay with time. We verified this theoretical
prediction experimentally, by showing that a semiconductor
saturable absorber with a 10-ps response can generate pulses as
short as about 300 fs [29]. Meanwhile, based on this principle,
we can generate pulses as short as 13 fs by using broad-
band semiconductor saturable absorbers [30]. This is clearly a
regime which was previously only possible by KLM. But in
addition to KLM-lasers our pulses are self-starting with mode-
locking build-up times in the 200-s regime. Since, we use
real absorbers we can independently optimize the self-phase
modulation and the saturable absorption so that the laser self-
starts reliably without overdriving the SPM when reaching
steady-state pulsed operation. The use of real absorbers also
has drawbacks: the absorber can be damaged due to the
deposited heat and the absorber has to be designed for a
broad bandwidth if short pulses have to be achieved. However,
as will be demonstrated by the experimental results, this is
manageable.

The paper is organized as follows. First we set the theoret-
ical treatment presented in [18] on a firm foundation and also
include refractive index changes due to the absorber, which
seem to become very important when using semiconductor
absorbers. Then, we use soliton perturbation theory to derive
stability relations against the growth of background radiation.
Based on these relations, we derive limits with respect to
pulsewidth that can be achieved with a given absorber. In
Section V, we compare the theoretical results with experiments
and show that self-starting lasers in the 10-fs range can be
constructed using only semiconductor saturable absorbers and
soliton mode-locking. In Section VI, we perform numerical
simulations, which demonstrate that the experimental results so
far achieved can be understood within the theoretical models
discussed in this paper.

II. BASIC MODEL OF SOLITON MODELOCKING

WITH SATURABLE ABSORBERS

In this section, we set up the basic model for a laser mode-
locked with a saturable absorber and derive the governing
equations that describe the mode-locking process. The laser
pulse that builds up in the cavity will experience changes over
one round-trip due to GDD, SPM, gain, loss, filter action due
to the finite gain, output coupler and mirror bandwidth, a time
dependent absorption and phase change due to the absorber
(see Fig. 2). Following the master equation approach of Haus
[31], we obtain for the equation of motion of the laser pulse
averaged over one round-trip

(1)

Here, is the slowly varying field envelope, the
cavity round-trip time, the intracavity GDD,

the gain and intracavity filter dispersion. and
are the HWHM gain and filter bandwidth, respectively. The

SPM-coefficient is given by , where
is the intensity dependent refractive index of the laser

crystal, the center wavelength of the pulse and and
the effective mode area in the laser crystal and length of

the light path through the laser crystal within one round-trip,
respectively. The frequency independent losses per round-trip
are denoted by, is the saturated
gain, the small signal gain, and the saturation power.

is the pulse energy

(2)

We assume a gain medium with a long relaxation time and a
large saturation energy. Therefore, the gain is only appreciably
saturated by a series of successive pulses traveling through
the gain medium, i.e., we neglect the gain saturation during
each individual pulse. is the response of the saturable
absorber due to an ultrashort pulse. We assume that the pulse
is much longer than the transverse relaxation time of the
absorber, i.e., the absorber is broad band, so that we can
neglect coherent effects in the absorber. Then the absorber
dynamics is described by the simple rate equation

(3)

Here, denotes the relaxation time and the satura-
tion energy of the absorber. If the absorber is a two level
absorber, driven at resonance, with a transverse relaxation
time much shorter than the pulsewidth, the associated change
in the refractive index can be neglected. However, in the
case of semiconductor absorbers the free carriers generated
in the material contribute to the refractive index. Because the
saturation of the absorption and the refractive index change
are related to the excited carrier density, we assume that they
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Fig. 2. Schematic of the laser model described by the master equation of
mode-locking.

are proportional to each other like in semiconductor lasers.
The refractive index change is then implemented in the master
equation (1) by a complex saturable absorption

(4)

where the -parameter, often called the linewidth enhancement
factor, is the ratio between the amplitude absorption and the
refractive index changes [33]. Note, that the-parameter used
here is twice the value usually used in literature since (1)
describes the dynamics of the field amplitude and not of the
field intensity.

The basic equation (1) is a generalized Ginzburg–Landau
equation describing an enormous wealth of physical phenom-
ena in nonequilibrium phase transitions in general [32] and
fluid flow [34], [35] in particular. No analytic solutions to
the full master (1) are known. Without the dissipative terms
due to gain and loss, (1) reduces to the nonlinear Schrödinger
equation that has the following fundamental soliton solution
in case of negative GDD [22]

(5)

where

(6)

is a retarded time normalized to the soliton width. The total
phase is given by

(7)

Yet, the collective variables of the soliton, i.e., its amplitude,
phase, center frequency, and timing shift are not fixed. There-
fore, we have introduced in addition, a frequency offset
from the assumed carrier frequency, a timing shiftand a
initial phase . The energy contained in the soliton is related
with its amplitude via

(8)

The FWHM of the soliton is given by . The
soliton is a consequence of the balance between GDD and
SPM. This balance is achieved when the chirp introduced by
GDD is compensated by the nonlinear phase shift due to SPM

that leads to

(9)

To find an approximate solution of the master equation (1) we
will later use soliton perturbation theory.

III. A BSORBER RESPONSE

It is instructive for the following sections, to solve the
saturable absorber equation for a sech-shaped pulse

(10)

and a -shaped pulse with a small perturbation

(11)

Introducing the normalized time (3) reads with (11)
up to the first order in the perturbation

(12)

Here, is the ratio between the pulsewidth and the
absorber recovery time and is the ratio between
the pulse energy and the saturation energy of the absorber. This
differential equation is linear in and, therefore, its solution
up to first order in the perturbation is given by

(13)

where is the solution to the -shaped pulse only

(14)

In the case of an infinitely slow absorber, i.e., , the
unperturbed absorption is explicitly given by

(15)

For the case of a fast absorber, , we obtain

where (16)

is the saturation power of the absorber. Fig. 3 shows the pulse
and the unperturbed absorber response for different values of
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Fig. 3. Response of a saturable absorber for different ratios between
pulsewidth and absorber recovery time�. Fast absorber limit� = 1,
slow absorber limit� = 0.

the normalized absorber recovery time but a fixed pulse energy
five times the saturation energy of the absorber, . In the
case of a nonsaturated absorber the pulse and the change in
absorption overlap completely. If the absorber is also fast, the
absorption change is a picture of the pulse shape itself and
therefore becomes symmetric. A fast absorber also saturates
with the pulse intensity rather than with the pulse energy.
In contrast, a slow absorber saturates with the pulse energy
and shows a strong asymmetric response. Thus only the front
wing of the pulse experiences absorption. If the absorber is
strongly saturated, and in the case of a slow absorber
or , the absorption change and the pulse do not
overlap any more. This is important, because then the response
of the absorber onto a perturbed pulse, [see (12) and (13)],
no matter whether the absorber is fast or slow, goes to the
first order independent of the perturbation. This means, that
the absorber response mostly depends on the pulse energy
and not on the detailed shape in contrast to an unsaturated
fast saturable absorber. Later, we will focus on the case of
strongly saturated absorbers. For a pulse much shorter than
the recovery time of the absorber the response of the absorber
is essentially independent of the pulse shape and is roughly
given by for assuming the
pulse arrives at . The depth of the modulation is given by

(17)

and depends only on the pulse energy and the saturation energy
.

IV. SOLITON DYNAMICS STABILIZED

BY A SATURABLE ABSORBER

Application of soliton perturbation theory to (1) gives
equations for the four collective variables of the soliton and
the continuum generated by the perturbations on the soliton.
We assume that the solution of the full master equation (1) is
a soliton with time dependent soliton parameters, amplitude,
center frequency, phase and timing plus a small continuum
contribution

(18)

with

and

(19)

where is the continuum contribution. The phase is deter-
mined by

(20)

whereby we always assume that the relation between the
soliton energy and soliton width is maintained

(21)

Application of soliton perturbation theory using the notation
developed in [38] gives the following set of coupled differ-
ential equations for the soliton parameters and the continuum
generated:

(22)

(23)

(24)

(25)

As has been shown in [38] the continuum can be written as

(26)

where the spectra of the continuum and are related
by

(27)

The continuum is determined by the spectrum through

(28)

where is Gordon’s associated function [36], which is the
inverse Fourier transform of the spectrum

(29)

Therefore, we obtain for the time evolution of the continuum

(30)
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with the redefined phase shift per round-trip

(31)

Here, we have introduced the following abbreviations. The
continuum vector is given by and the soliton
vector is defined analogously. The operatordescribes the
linearized action of gain and loss:

(32)

where is the absorber response when saturated by the
soliton. This response is given by the solution of (3) with

, as discussed in Section III. Note, that
the linearization of the absorber response to first order in the
continuum, i.e., the perturbation to the soliton, is negligible
for a strongly saturated absorber, as discussed at the end
of Section III and which we will assume for the following.
The vectors , , , and project onto the soli-
ton energy, phase, carrier frequency and timing due to the
perturbations added to the soliton dynamics. Analogously,
the vectors project onto the continuum contribution. A
detailed definition of the projection functions can be found in
[38]. The quantities with a tilde describe the shift in the soliton
variables per round-trip due to the response of the saturable
absorber excited by the soliton

(33)

(34)

(35)

(36)

The remaining operator describes the additional dynamics
introduced as long as the soliton parameters do not reach their
steady-state values

(37)

With the response of the absorber (14), as discussed in
Section III, we can compute the shifts in the collective vari-
ables of the soliton per round-trip due to the saturable absorber
according to (33)–(36)

(38)

(39)

(40)

(41)

The auxiliary functions , , , and are defined by

(42)

(43)

(44)

(45)

In the limit of a very slow absorber ( ), we obtain the
analytical results

(46)

and

(47)

The auxiliary functions are evaluated in Fig. 4(a)–(d). Note, if
there is only an absorption change associated with the saturable
absorber, , then there is no shift in frequency and phase
of the soliton due to the absorber. The reduced loss seen by
the soliton, , favors the soliton against the continuum,
i.e., the background radiation, which will be the subject of the
next sections. The continuous timing shift which is due to
the fact that during each round-trip only the front part of the
soliton is absorbed in case of a slow saturable absorber, has
also a stabilizing function for the soliton, as will be discussed
in more detail later on.

If the linewidth enhancement factoris not zero, then there
is an additional frequency shift of the soliton per round-trip
due to the response of the absorber. This is the Raman self-
frequency shift (RSFS) as has been observed for ultrashort
pulses in fibers [42], [43]. The Raman shift is due to the
asymmetric response of the refractive index and therefore
vanishes for a instantaneous Kerr effect, . As we
will see later, the RSFS can have a destabilizing as well as a
stabilizing effect on the soliton.

Before we start to investigate the soliton stabilization mech-
anisms in more detail, we further simplify the evolution
equations of the soliton variables and the continuum. In [38],
we have shown that the coupling of the continuum to the
soliton due to the finite gain and loss bandwidth can be
neglected as long as the spectral width of the soliton is much
smaller than the gain and loss bandwidth. In the case of strong
saturation of the slow absorber, and , also
the absorber only weakly couples the continuum to the soliton.
Therefore, we neglect these coupling terms in the following,
(see Appendix A). Furthermore, for the stability considerations
later on, we will always assume that the system of equations is
close to equilibrium, . Thus, terms like
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(a) (b)

(c) (d)

Fig. 4. (a) Normalized energy loss, (b) normalized phase shift, (c) normalized timing, and (d) normalized frequency shift per round-trip due to a saturable
absorber for different ratios between pulsewidth and absorber recovery time�.

can be considered as higher order terms and will be

neglected in the following. This simplifies the operator to

(48)

Using the approximations derived in Appendix A, the evolu-

tion equations for the soliton variables are

(49)

(50)

(51)

(52)

Introducing the normalized group delay mismatch be-

tween the soliton and the continuum

(53)

we obtain for the time evolution of the continuum,

(54)

By inverse Fourier transformation of (54) we obtain for
Gordons associated function

(55)

where is the complex dispersion in the system
and , the group delay mismatch between soliton
and continuum due to the nonlinearity.

A. Stationary Solution

Equations (49) and (50) imply that the laser reaches steady
state when the saturated gain equals the losses experienced by
the solitary pulse

(56)

with

(57)

and

(58)

Here, and are the steady-state pulse energy and cen-
ter frequency of the soliton, respectively. Together with the
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relation between soliton width and energy ,
(56) and (58) determine the steady-state pulse energyand
center frequency . We eliminate the Raman self-frequency
shift from (56) via (58) and obtain an equation that determines
the steady-state pulse energy directly

(59)

Usually one uses very moderate amounts of saturable absorp-
tion to mode-lock a laser, e.g., 1% and total linear
losses 10%. As we will see later the filter losses of the
pulse are smaller than the maximum modulation depth of the
absorber, . If there is no excessive linewidth
enhancement factor the pulse energy is then approximately
determined by

(60)

If the saturable absorption is comparable with the frequency
independent loss, or if the absorber has a large linewidth
enhancement factor one has to solve (59) numerically and
it can possess multiple solutions. In general, these solutions
depend in a complex way on the system parameters and they
will be studied in more detail elsewhere.

Equations (51) and (52) indicate that the timing and phase
shifts increase with the additional rates and . As we
will see later, the timing shift is important for the stability
of the continuum. Once the soliton energy and momentum are
fixed one can compute from (55) the steady-state continuum
contribution which we assume to remain small even in steady
state. However, this is only true if the values for the soliton
parameters and the continuum are stable.

B. Stability of the Stationary Solution

As we have seen in the preceding sections the coupling of
the continuum back to the soliton due to gain dispersion and
saturable absorption can be neglected. Therefore, the equations
of motion for the soliton variables are decoupled from the
continuum, i.e., background radiation, so that we can study
the stability of the four soliton variables and the continuum
separately.

1) Stability of the Soliton Variables:We consider the dy-
namics in the subspace of the four soliton variables according
to (49) and (50). Since the timing and phase shifts of the soliton
do not couple back to energy and momentum of the soliton, it
is enough to investigate the stability of energy and momentum
of the soliton. To keep the discussion short we consider the
case where we can neglect the finite gain bandwidth so that
the laser bandwidth is completely determined by the bandwidth
of an intracavity filter, which can be the finite bandwidth of
the cavity mirrors, i.e., . We introduce
the normalized soliton energy and momentum

and rewrite the dynamics on a time scale of
the cavity decay time

(61)

(62)

with the normalized saturated gain .
The normalization reduces the number of free parameters. The
following five dimensionless parameters remain.

Filter Strength:

(63)

Normalized Saturable Absorption:

(64)

Saturation Factor:

(65)

Pump Parameter:

(66)

Normalized Ratio Between Absorber Recovery Time and

Pulsewidth:

(67)

The filter strength is the ratio between the change in the pulse
spectrum, if the pulse energy is increased by the saturation
energy of the absorber and the available laser bandwidth,.
The normalized saturable absorptionis the ratio between
the saturable and the nonsaturable losses in the laser. The
saturation factor is the ratio between the saturation energy
of the absorber and the gain medium. The pump parameter

describes how many times the laser is above threshold in
the absence of the saturable absorber. Thus the stationary
normalized frequency shift is given by

(68)

Equation (68) shows that the Raman self-frequency shift
becomes large for low filter strength. Fig. 5 shows the nor-
malized steady-state frequency shift as a function of the
normalized pulse energy for different normalized ratios be-
tween absorber recovery time and pulsewidth. Thus, for a
fast absorber, i.e., large, the laser shows no RSFS. However,
for a slow absorber, i.e., small, a considerable RSFS can
occur.

Instead of solving the remaining equation (61) for the
missing steady-state energy, we can express the necessary
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Fig. 5. Normalized steady-state frequency shift as a function of normalized
pulse energy for different values of the normalized ratio between absorber
recovery time and pulsewidth�0.

pump parameter, , as a function of the steady-state pulse
energy

(69)

Fig. 6 shows the necessary pump parameter for , a
constant product and for different filter
strength. The parameter range where a large RSFS occurs
requires a very high pumping rate since a possible pulse
is shifted into the wing of the filter. The RSFS leads to a
maximum overshoot of the pump parameter for a pulsewidth
of the order of the absorber recovery time where it is strongest.
Linearization of (61) to (62) results in

(70)

(71)

where the coefficients are given by

(72)

(73)

(74)

(75)

The stationary values are stable, if the trace of the coefficient
matrix is negative and its determinant is positive

i) (76)

ii) (77)

The coefficient is always negative. Also the coefficient
is negative if the ratio between saturable and nonsaturable

Fig. 6. Necessary pump parameter as a function of the normalized pulse
energy fors = 1, a constant product�s=f = 20, and �0 = 1 for different
filter strengthf.

losses is not too large. By partial derivation of the stationary
equations (61) and (62), it can be shown

(78)

Equation (78) shows, that for a given pump parameter in
Fig. 6, only those values for the pulse energy can be stable
(and, therefore, physically accessible), which are on the posi-
tive slope of the curve. This behavior may lead to a suppression
of short pulses, and a hysteresis in the output power versus
pump parameter curve, see Fig. 6. The phase modulation due
to a slow refractive index change can effectively prohibit self-
starting mode-locking, if the laser can not be pumped strong
enough to overcome the RSFS.

2) Stability of the Continuum:However, for a successful
mode-locked operation, additional conditions arise from the
stability of the continuum. The continuum is stable, if all the
eigenmodes of the evolution operator of the homogeneous part
of (55) experience net loss per round-trip. Thus, we have to
study the eigenvalue problem

(79)

The real part of the eigenvalue is the gain and the imaginary
part is the phase shift per round-trip experienced by the

th eigenmode. The continuous timing shift describes
the difference in group delay between the soliton and the
continuum. This timing shift can be removed by the following
transformation

(80)

which results in the new eigenvalue problem

(81)

with the total eigenvalue

(82)

The mathematical elimination of the first-order term in (79)
results in the additional loss term in (81). Physically, this
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means that the group delay mismatch between the continuum
and the soliton leads to an additional loss for the contin-
uum eigenmodes since the continuum once generated drifts
continuously away from the window of minimum loss. This
mechanism leads to a stabilization of the soliton against the
continuum by introducing the additional continuum loss

(83)

The importance of this stabilization mechanism becomes ob-
vious when we compare the additional continuum loss due to
shifting between soliton and continuum, with the soliton loss
due to bandwidth limitation. We obtain with (53)

(84)

Soliton perturbation theory is only a good approximation if
the phase shift per round-trip is much bigger than the filter
loss and the pulse shaping due to the saturable absorber, i.e.,

. Thus, we can approximate (84) by

(85)

Equation (85) shows that the continuum loss induced due to the
group delay mismatch between the soliton and the continuum
can be as large as the filter loss experienced by the soliton.
The effect is maximum if we saturate the absorber such that
the RSFS and the timing shift due to the front absorption of
the soliton add up. Fig. 4(c) and (d) show that this is the case
for a pulse energy about 2–3 times the saturation energy of
the absorber, i.e., . Furthermore, the two effects add
up if the linewidth enhancement factoris negative, i.e., the
refractive index change is negative.

Before we discuss the continuum loss due to the group delay
mismatch between soliton and continuum in further detail, we
complete the study of the stability issues involved with the
continuum by investigating the eigenvalue spectrum of the
reduced continuum (81) in two different approximations, (see
Fig. 7).

i) by a V-shaped response:

for and for

Fig. 7. Different approximations for the absorber response.

ii) by an exponential response:

for and for (86)

1) V-Shaped Response:For the V-shaped approximation
of the response we obtain from (81) a standard eigenvalue
problem for a Schr̈odinger operator with complex coefficients.
According to the perturbation theory for linear operators
the eigenvalues have a unique analytic continuation into the
complex plain. The V-potential is a standard problem solved
in [49]. We obtain with the eigenvalue for the ground state

(87)

where

(88)

denotes the normalized absorber recovery time. For the case
of a strongly saturated absorber, , we obtain for the
loss of the most unstable continuum mode normalized to the
maximum saturable absorption

(89)

Fig. 8 shows the normalized continuum losses as a function
of the normalized recovery time for a vanishing linewidth
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Fig. 8. Normalized continuum losses as a function of the normalized recov-
ery timewA for vanishing linewidth enhancement factor� = 0 and different
values of the normalized dispersion. For small values of the normalized
recovery time the calculated normalized continuum loss becomes larger than
one, which is an artifact of the infinite V-potential approximation.

enhancement factor, 0, and different values of the
normalized dispersion. For small values of the normalized
recovery time the calculated normalized continuum loss be-
comes larger than one, which is of course an artifact of
the infinite V-potential approximation. For large normalized
recovery times, the real parts of the eigenvalues lay deep in
the V-potential, and therefore the used approximation gives
the right asymptotic behavior for large . Thus, we see, that
even for a normalized recovery time as large as 40 almost
20% of the available saturable absorption is still left over
as continuum losses which can stabilize a soliton against the
continuum. Fig. 9 shows the variation of the forefactor

(90)

which scales the continuum losses as a function of the nor-
malized dispersion and the linewidth enhancement factor.
The influence of the normalized dispersion onto the continuum
loss is rather small if it is not chosen to be excessively large,
as it is possible in actively mode-locked systems [38]. The
analytic result (90) shows, that the continuum losses scale
with the inverse third root of the normalized dispersion. This
explains the weak dependence on the normalized dispersion.
However, a phase modulation due to a nonvanishing linewidth
enhancement factor is important. The forefactor (90) scales
with the power 2/3, almost linearly. A positive linewidth
enhancement factor, which corresponds to a refractive index
increase during saturation, leads to a destabilization of the
continuum. This can be understood by the modulational in-
stability that exists in a medium with negative dispersion and
positive Kerr effect in the presence of a pump [39]. Here,
the pump is the soliton. If the linewidth enhancement factor
is negative, which corresponds to a negative Kerr effect, no
modulational instability is present. In this case, the additional
phase modulation leads to an additional spreading of the
continuum in the frequency domain and therefore pushes the
continuum into the region of higher filter losses which results
in additional continuum losses. Therefore, an ideal absorber for
good mode-locking behavior should have a negative linewidth
enhancement factor.

Fig. 9. Variation of the factorf(�; Dn) which scales the continuum losses
as a function of the normalized dispersion and the linewidth enhancement
factor �.

(a)

(b)

Fig. 10. Normalized continuum losses for a fully saturated absorber that
recovers with an exponential response as a funtion of the normalized recovery
time and the linewidth enhancement factor�: (a) for a normalized dispersion
Dn = 1 and (b) for a normalized dispersionDn = 10.

2) Exponential Response:The analytic solution of the
eigenvalue problem for the complex exponential response
is presented in Appendix B. Fig. 10(a) and (b) show the
resulting normalized continuum losses for a fully saturated
absorber as a function of the normalized recovery time for
two different values of the normalized dispersion. Comparison
with the results obtained for the V-potential shows that the
V-approximation and the results for the exponential potential
agree rather well for a normalized recovery time larger than
10. Again, the continuum loss only weekly depends on the
normalized dispersion. Fig. 10 clearly demonstrates again that
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Fig. 11. Gain and loss balance in a laser mode-locked by a fast saturable
absorber only.

Fig. 12. Gain and loss balance in a soliton mode-locked laser stabilized by
a slow saturable absorber.

a negative linewidth enhancement factor increases stability.
With an absolute value for the linewidth enhancement factor
as large as 5 the effective continuum loss increases almost
by a factor of 4. Such large negative linewidth enhancement
factors are possible, for example, near the band edge in bulk
GaAs [46]–[48] for quasi-CW excitation. The normalized
recovery time is not simply the ratio between the absorber
recovery time and the pulsewidth but is in addition multiplied
by the square root of the ratio between saturable absorption
and the nonlinear phase shift. As we will see later the
nonlinear phase shift can be as large as 0.5 whereas the
saturable absorption is typically on the order of 0.5%–5%.
Therefore, the normalized recovery time can be a factor
of 3–10 smaller than the actual value of . Thus, we can
still use a large fraction of the saturable absorber action
to overcome the bandwidth limitation in a mode-locked
laser while we use a saturable absorber with a relaxation
time 10–30 times longer than the pulsewidth achieved. This
is the most striking feature of soliton-mode-locked lasers.
Traditional laser models [25] provide stability for the single
pulse solution by dissipative mechanisms that generate a
short net gain window in time that supports only the pulse.
Fig. 11 shows the gain and loss balance for the fast saturable
absorber mode-locking model. The gain and loss curves cross
each other exactly at the full width half maximum points.
In contrast, Fig. 12 shows the situation for a soliton mode-
locked laser, where the pulsewidthis ten times shorter than

Fig. 13. Spreading of the continuum in the net gain window due to disper-
sion.

the absorber recovery time, and the pulse energy is ten times
the saturation energy. During saturation of the absorber, the
soliton experiences already 10% of the absorber losses per
round-trip. According to Fig. 10 the continuum experiences
up to 30% of the available absorption as loss, even if the
absorber has a vanishing linewidth enhancement factor. Then,
one can use almost all of the remaining 20% of the absorption
to overcome the bandwidth limitation and to provide still
some stability against the growth of continuum. Thus, there is
a considerable open net gain window when compared with the
fast saturable absorber mode-locking scheme but the pulse is
still stable against the growth of continuum. This is possible
in a soliton mode-locked laser, because the pulse is shaped by
a balance between negative GDD and SPM. In contrast, the
weak background radiation, the continuum, only experiences
the linear effects, especially the dispersion, (see Fig. 13).

C. Discussion of Different Stabilization
and Pulse Cleaning Mechanisms

In total, we obtain for the round-trip gain of the continuum,
the real part of the eigenvalue of the most unstable continuum
mode, from (56), (79), (80), and (85)

(91)

where

(92)

is the soliton loss due to the finite laser bandwidth, the RSFS
and the saturable absorber. The round-trip loss of the most
unstable continuum mode is given by

(93)

The soliton is stable, if the lowest order continuum mode
decays, Re , i.e.,

(94)

The first part of the continuum loss is due to the group delay
mismatch between soliton and continuum, and the second part
due to the finite gain bandwidth and the saturable absorption.
If we neglect for the moment the direct timing shift due to
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Fig. 14. Due to the asymmetric response of a slow absorber, the soliton is
continuously shifted against the continuum.

the slow saturable absorption, (92) to (93) indicate that the
losses for the soliton due to the RSFS are as large as the
additional losses experienced by the continuum due to the
difference in group delay via the RSFS. Thus, a RSFS is of no
help in stabilizing the soliton against the continuum. However,
the direct shift of the soliton due to the slow absorption
leads to a continuous retardation of the soliton against the
continuum generated by the perturbations onto the soliton.
Once separated from the soliton the continuum is absorbed by
the unsaturated absorber is now in front of the soliton. This is
an additional pulse stabilization and cleaning mechanism not
present in a fast saturable absorber. The mechanism is very
similar to the sliding frequency filter technique invented by
Linn Mollenauer. There, the center frequency of the filter is
continuously shifted, so that the soliton can follow the center
frequency of the filter but the continuum cannot. Then, the
continuum is on the average absorbed in the stop band of the
filter. In the case of a slow saturable absorber this happens
in the time domain, (see Fig. 14). Due to the continuous
retardation of the soliton with respect to the continuum, the
continuum experiences an average additional loss given by
the term in (93). If the ratio between the absorption and the
nonlinear phase shift is not larger than one, which is hardly
the case, the soliton shifting cannot provide much stability to
the pulse and the pulse stability is mainly determined by the
real part of the eigenvalue in the stationary potential .

V. EXPERIMENTAL RESULTS

The main result of the previous section is, that we can
stabilize pulse formation in a mode-locked laser by a saturable
absorber with a response time about 10–20 times longer then
the pulsewidth. With a given amount of saturable absorption
one achieves almost the same performance as with an ideal
fast saturable absorber due to soliton formation. Recently,
we demonstrated experimentally the soliton mode-locking
principle. We achieved pulses about 30 times shorter than
the response time of the absorber. In this section, we present
experimental results on the shortest pulses achieved so far
with this technique.

We used a standard Ti:sapphire laser [30] with a 2-mm
Ti:sapphire crystal and a 40-cm fused silica prism sequence.
To make the absorber broad band, we processed a LT-GaAs
absorber layer on a silver mirror [30]. With this setup, we
achieved pulses as short as 13 fs, (Figs. 15 and 16) over the
full stability range of the cavity, when the mirror supporting

(a) (b)

Fig. 15. Spectrum of the soliton mode-locked pulse, reflectivity of the
mirrors and the measured fluorescence of Ti:sapphire.

Fig. 16. Measured interferometric autocorrelation trace of the 13-fs soliton
mode-locked pulse.

the absorber is moved. This is in sharp contrast to operation of
the laser in KLM mode, when the absorber mirror is replaced
with a normal high reflector. Then the laser shows only mode-
locking over a very small fraction of the stability range of the
cavity.

The pulse spectrum has a FWHM of about 73 nm with its
center frequency at 810 nm. The pulse spectrum extends from
the absorption edge at 870 nm to about 770 nm, where it can
saturate the absorber most efficiently and where the absorption
is flat over the wavelength. Fig. 17 shows the pump-probe
response of the LT-GaAs semiconductor absorber mirror at 810
nm when excited with 10-fs pulses with a pulse energy fluence
similar to the intracavity fluences when used to mode-lock the
laser. The pump-probe trace well resolves the 60-fs carrier
thermalization time for undoped GaAs as measured previously
by Knox [45] with differential transmission measurements.
Thus the pulse is about four times shorter than the fastest
recovery time of the absorber. The pulse could not be tuned
to shorter wavelength without broadening or breaking up into
multiple pulses. Nevertheless, this is a pulsewidth which was
previously only achievable by KLM. Fig. 18 shows the mode-
locking build-up behavior of the laser. First the laser starts
CW-running. After about 200 s, the pulses build up and
saturate the absorber. Therefore, the average output power
almost doubles. Thus, the laser is truly self-starting. Further
optimization of the absorber and a better understanding of the
saturation behavior, phase effects and possible coherent effects
[40], [41] in this absorber on a ten femtosecond time scale will
help to improve these first results.
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Fig. 17. Pump-probe trace of the LT-GaAs semiconductor absorber mirror
at 810 nm with 10-fs pulses. The pump-probe trace well resolves the 60-fs
carrier thermalization time for undoped GaAs.

Fig. 18. Measured mode-locking buildup behavior of the 13-fs soliton
mode-locked pulse.

VI. NUMERICAL SIMULATIONS

Since we extracted the most important absorber parameters
by independent pump-probe measurements, we can compare
the experimentally achieved results with the numerical simula-
tions on the basis of the master equation (1). The simulations
are done using the split-step Fourier transform method, where
the SPM and the total intracavity dispersion per round-trip is
applied in one step very much as it occurs in the real laser. The
semiconductor absorber dynamics is modeled by two saturable
absorbers obeying (3) with the parameters collected in Table I.
The reflectivity of the mirrors, the transmission of the output
couplers and the actual group delay dispersion due to the
prisms is included in the simulation. The laser is simulated
for different prism insertions, which results in different values
for the dispersion and also higher order dispersion, Fig. 19(d).
Fig. 19(a) shows the absorber response when saturated by the
pulse, which stays very much the same for all simulations. On
top of the absorber response, the pulse power is shown for
the different runs. With increasing prism insertion, the amount
of negative dispersion is reduced and the pulse gets initially
shorter, down to about 14 fs at FWHM. Then, in the window
of net gain, the continuum starts to grow as expected. This
leads to the formation of a pulse pedestal as shown more
clearly in the autocorrelation traces of Fig. 19(b). Reducing
the amount of negative dispersion even further, does not lead
to shorter pulses. Instead more and more energy flows into the
continuum for different reasons. First the impact of the third-
order dispersion and also the discrete nature of the SPM and
the dispersion in the cavity leads to an energy flow from the

TABLE I
PARAMETERS USED FOR NUMERICAL SIMULATIONS

Parameter Value

l 0.025
g0 0.07
PL 3.2 W

g 2�� 43 THz
� 0.4/MW

q0; 1 0.01
TA; 1 60 fs
EA; 1 4 nJ
q0; 2 0.02
TA; 2 734 fs
EA; 2 4 nJ

Fig. 20. Intensity and saturable absorption for increasing prism insertion.
The simulation is with the parameters listed in Table I and an additional
linewidth enhancement factor of� = �2 for both absorbers.

soliton to the continuum, i.e., increased soliton losses. Finally
also the bandwidth limitation due to the finite mirror and gain
bandwidth introduces soliton losses which limits the shortest
pulses achievable, even if the higher order dispersion can be
fully eliminated and the SPM is reduced. Fig. 19(c) shows
the corresponding spectra. The spectra look very much like
a sech-square until the continuum takes over, which consists
of long pulses, therefore, narrow spectral components appear
in the pulse spectrum. Note, the simulated pulse spectra are
centered around a much shorter wavelength, close to the peak
of the gain of Ti:Sapphire, in contrast to the experiment. This
is easily understood, because we neglect in the simulation, the
wavelength dependent losses occurring in the absorber. The
losses of the absorber are clearly wavelength dependent, see
Fig. 15, which pushes the spectrum to longer wavelength in
the experiment.

We performed the same simulations with a linewidth en-
hancement factor of 2. Fig. 20 shows the corresponding
intensity profiles of the steady-state pulses for increasing prism
insertion. We achieve now pulses as short as 12.5 fs and one
clearly recognizes the much better continuum suppression for
these even shorter pulses when compared with Fig. 19(a). This
confirms that a negative linewidth enhancement factor of the
absorber leads to additional losses for the continuum as derived
theoretically in Section IV-B-2.
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(a) (b)

(c) (d)

Fig. 19. (a) Intensity and saturable absorption for increasing prism insertion, (b) autocorrelation traces, (c) corresponding pulse spectra, and (d) net intracavity
prism dispersion. The parameters used in the simulation are listed in Table I.

In total, the analytical and numerical results presented her,
show that the independently measured pump probe response
together with the assumption of a small negative linewidth
enhancement factor and the soliton mode-locking principle is
enough to explain the experimental results so far obtained.

VII. CONCLUSION

We have shown, that strongly saturated and relatively slow
absorbers can be used to generate pulses much shorter than the
recovery time of the absorber, if solitonlike pulse shaping is
employed. This is a mode-locking principle distinct from the
traditional schemes, that are based on an ideal fast saturable
absorber, i.e., a fast saturable absorber that never saturates
[31], or on the interplay between gain and loss saturation.
In the soliton mode-locking scheme, the pulse shaping is
completely done by the reversible effects GDD and SPM,
which results in an almost Hamiltonian mode-locking [37]
that is only stabilized by the saturable absorption. The unique
properties of soliton systems, where the pulse is shaped by the
nonlinear and the dispersive effects, whereas the background
radiation only experiences the dispersive effects allows the use
of slow saturable absorbers. As will be shown in more detail
elsewhere, soliton formation not only allows us to achieve
pulses about 10–20 times shorter than the recovery time of
the absorber but in addition, we can achieve a pulsewidth
comparable to a laser mode-locked by a fast saturable ab-
sorber given the same amount of saturable absorption for

both cases. If the absorber shows in addition to the saturable
absorption also a negative slow self-phase modulation that
follows the absorption even better performance with respect
to continuum suppression can be expected. Based on these
results, we demonstrated theoretically and experimentally, that
the fast time constants in semiconductor absorbers due to
thermalization processes are fast enough to generate pulses
in the 10-fs range, which was previously only possible by
KLM. In contrast to KLM, we use real absorption and not
artificial absorption generated via self-focusing. Thus, we have
a decoupling between the laser modes and the laser dynamics
and, therefore, we retain a much larger degree of freedom in
the cavity design. This is extremely useful for high repetition
rate, compact and diode-pumped lasers [44]. The slow time
constant involved in semiconductor saturable absorbers due
to carrier recombination, leads to a self-starting mode-locking
process and a short mode-locking buildup time [50], [51], even
for the shortest pulses. In addition, we have full freedom in
designing the saturable absorption and the strength of the SPM,
which might help in the long run to further shorten the pulses
without overdriving the SPM.

APPENDIX A
APPROXIMATIONS FORSOLITON PERTURBATION THEORY

In this Appendix, we prove the validity of some important
approximations used for the interaction between soliton and
continuum due to the response of a slow saturable absorber.
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The absorber considered here is defined by (3). The parameter
we consider to be small is the ratio between pulsewidth and
absorber recovery time . Now, we show to
lowest order in that the response of a slow absorber excited
by a soliton does not introduce coupling of the continuum to
the soliton and that the response is diagonal in the continuum
representation. The response of the absorber can be written as

(95)

The response can also be expressed in terms of its Fourier
transform

(96)

When computing the matrix elements of the perturbation in
the continuum representation we have to evaluate terms like

(97)

From the expression for the continuum eigenfunctions equa-
tion (2.35) from [38] we obtain

(98)

and, hence, in (97):

(99)

where the bar denotes the derivative with respect to. Sim-
ilarly, we obtain for

(100)

and

(101)

Thus, if the absorber response is slow, , the derivatives
are of the order

(102)

In this case, we can safely neglect the higher order terms in
(99) and (100) and we obtain only the diagonal coupling of

the continuum modes and no coupling between soliton and the
continuum. However, this is not truly the case for the absorber
considered in (3), because we obtain

(103)

Thus, only the term due to the absorber recovery scales
properly with time. The saturation due to the soliton happens
of course on the time scale of the soliton. However, with (103)
this term is proportional to the overlap of the soliton with the
nonsaturated absorber. This term never becomes larger than

, even if the absorber is strongly saturated. Therefore, it
is legitimate to neglect this term in comparison with the-
function like diagonal term. In total this shows, that a slow
absorber leads to first order only to a diagonal coupling
between the continuum modes and no coupling between the
soliton and the continuum. Similar relations have been derived
for the matrix elements of the gain dispersion operator in the
appendix of [38].

APPENDIX B
EIGENVALUES FOR THE COMPLEX EXPONENTIAL POTENTIAL

Here, we give an analytic derivation of the eigenvalues for a
Schr̈odinger equation with the complex exponential potential
according to (81):

(104)

with

for and elsewhere (105)

We transform (104) into Bessel’s differential equation by
substitution of

(106)

Thus we obtain

(107)

with

(108)

for . The solution of (107) is then given by

(109)

We require that the solution should stay bounded for ,
i.e., , thus the constant has to vanish. In the
negative half space, where the potential vanishes, the solution
is in general an exponential function. Matching of the two
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solutions and their derivatives at results in the following
eigenvalue condition

with

(110)

where is the normalized absorber recovery time according
to (88). If the laser parameters are fixed, the complex argument

of the Bessel function is fixed and we have to find those
complex orders , where the Bessel function vanishes. Since
these values are easily computed for real arguments, we
find it for complex arguments, i.e., , by analytic
continuation into the complex plane. We used a homotopy
method that follows the trajectory of the complex roots when
increasing the values of from zero to their nominal
values, (Fig. 10).
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