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Soliton propagation in multimode optical fibers
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Seliton propagation in a multimode optical fiber in the presence of an intensity-dependent refractive index is inves-
tigated by means of a set of nonlinear coupled equations derived in the frame of coupled-mode theory. In particu-
lar, the conditions on modal amplitudes and modal dispersion necessary for soliton existence are derived.

The possibility of propagating distortion-free pulses
(envelope solitons) in optical waveguides by taking
advantage of the quadratic nonlinearity of the refractive
index in order to balance material dispersion was
pointed out several years ago.! Subsequently, this
problem has been the object of a renewed interest that
has led to a better understanding of the role of the
waveguide structure? and of the finite coherence time
of the carrier.3

Following the above investigations and after the re-
cent experimental observation of solitons? concerning
single-mode optical fibers, it is natural to look for a
generalization of the previous results to the case in
which more than one mode is present. Along this line,
the possibility of exploiting nonlinear-mode interaction
in a multimode fiber for optical pulse confinement and
the conditions under which it can take place have been
stated.5 We write here, relying on the coupled-mode-
theory approach to nonlinear propagation,® a general
set of coupled equations describing pulse evolution in
a multimode optical fiber in the presence of an inten-
sity-dependent refractive index. We specialize this
system of equations to investigate soliton propagation,
thus enabling us to derive the conditions under which
it can be achieved.

In the frame of the coupled-mode formalism, the
evolution of a multimode optical pulse is studied by
identifying the departure of the refractive index from
ideality, which is responsible for coupling, with the
presence of a nonlinear part in the refractive index itself.
Assuming that the fiber material is isotropic and that
the fast-responding electronic processes dominate the
nonlinear response, the nonlinear polarization PNL
takes the form?

PNL(¢) = (a/2)E(¢) - E)E(¢), ¥

which implies a nonlinear contribution to the dielectric
constant of the kind

e B ()%, 2

where ¢, = (5/8)0 and E, is the analytic representation
of the component of the electric field along an arbitrary
axis orthogonal to the z direction of propagation. The
validity of Eq. (2) relies on the assumption of a circularly
symmetric fiber in which random power exchange be-
tween the two degenerate polarization states of an ar-
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bitrary mode takes place over few centimeters and on
the hypothesis of weakly guiding fiber allowing one to
neglect the longitudinal field component with respect
to the transverse ones.

The analytic field E, can be written as

E (r,z,t) = ¥ E,(r) expliot — iB8,(0,)2]®,(z,t),
(3)

where r = (x,y) represents the transverse coordinates,
the E,’s are the modal transverse configurations, 3, is
the propagation constant of the »th mode, and the
®,(2,t)’s are the slowly varying mode amplitudes, having
allowed for the various modes to be centered on slightly
different frequencies w,. Equation (2) implies a total
dielectric constant of the form

f(l',Z,OJ) = fl(r,w) + 52|Ex (razyt)|2: (4)

where ¢;(r,w) is the fiber linear dielectric constant, so
that 5| E, |2 can be regarded as the fiber deviation from
ideality giving rise to mode coupling. By taking ad-
vantage of the results of coupled-mode theory,® one is
able to obtain the following set of coupled equations:

L,®,(z,t) = —2i [ > R | %2+ (1/2)R,,,1<i>y|2] 3,
pFEY
v=12,..., (5

ff—:m E,*(r)E,(r)dxdy

f B 2(r)dxdy

—_—

where

Ryuv = [wo(eg/€0)/2n1c]

= [wo(ea/ep)/2n1¢] ey, (6)

and
L, = [8/3z + (1/V,)a/8t — (i/24,)8%/3t%],  (7)
with
V,7l = (dB/dw)e=w, A1 = (d28,/d0?) =,
(8)

wp being the average frequency of the field and n; the
average value of the fiber linear refractive index.
In principle, whenever the w,’s are chosen in such a
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way as to provide a common group velocity V for the
various modes, that is, when

V—l = (dﬁl/dw)w=m1 = (dﬁ2/dw)w=w2 Sy (9)
Egs. (5) admit of bright-soliton solutions of the kind

®,(z,t) = Do, exp(iz/24,72) sech[(¢ — 2/V)/7],
v=1,2,..., (10)

provided that the amplitudes &,, and the duration 7
satisfy the relations

—I/Avfz =2 Z R,wl‘i’oulz - Rw|&>0u‘2y
n

v=12.... (11)

Equations (11), which imply A, < 0, generalizeé the
usual soliton-existence condition valid for single-mode
fibers2® and are valid for any refractive-index profile
ni(r). In particular, recalling that A, is nearly inde-
pendent of ¥, a multimode step-index fiber admits of the
solution |Pg;1|2 = [Pge|2 =...= ||, with

2R|Dy|2 = —1/A72, (12)

where 1/A = (d2k/dw?),=,, indicates the core material
dispersion and

R = [woleo/€0)/2n1c] 2 E 2(r = 0). (13)

Equations (12) and (13) were obtained by neglecting
the negative contribution on the right-hand side of Eq.
(11) and by taking advantage of the relation8

2
LB )~ nia)

ny (0) ”'12(0'),
E E 2(0
u ( )

(14)

where a is the fiber core radius, specialized to a step-
index fiber. In this case, if the transverse-mode pat-
terns are normalized to unity, one has®

Y E,20) = (wo2/4re)(n® — nsd),  (15)

ny and ns indicating, respectively, the core and cladding
refractive index.

In most practical situations, all the w,’s coincide with
wp, so exact soliton solutions do not exist. However, it
is possible to obtain approximate solutions by applying
the self-confinement condition introduced for multi-
mode fibers.> More precisely, we use the criterion
leading to Eq. (7) of Ref. 5, which yields a lower limit for
the electromagnetic intensity required for mode

trapping. In our case it reads, for a generic refractive- -
index profile,

(V,—V)2/V2 —(V2/A,,)[w0(€g/60)/nlc]
XX a#VI(i’ulz,
M

where V is the average velocity of the unperturbed
modes. The strong inequality ensures that the over-
lapping among the different modes is always main-
tained, so it is possible to substitute 1/V for 1/V, in the
operator L, defined by Eq. (7). This in turn imples that
Egs. (5) admit of the soliton solution of the kind given
in Eq. (10). Intuitively, Eq. (16) implies that soliton
propagation is more easily achieved in graded-index
optical fibers whose refractive-index profiles provide
small modal dispersion.

Finally, it is worth mentioning the recent develop-
ment of polarization-maintaining birefringent multi-
mode fibers.? In this case, the results obtained in this
Letter still apply, provided that (3/5)e; is substituted
for €. :

r=1,2,..., (16)
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