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Abstract

"Under appropriate conditions, ocean waves may b modeled by

certain nonlinear evolution equations that admit s iton solutions and

can be solved exactly by the inverse scattering transform (IST). The

theory of these special equations is developed in five lectures. As

physical models.. tese equations typically govern the evolution of

narrow-band packets of small amplitude waves on a long (post-linear)

time scale. This is demonstrated in Lecture I, using the Korteweg-

deVries equation as an example. Lectures II and III develop the theory

of IST on the infinite interval. The close connection of aspects of

this theory to Fourier analysis, to canonical transformations of

Hamiltonian systems, and to the theory of analytic functions is

established. Typical solutions, including solitons and radiation, are

discussed as well. With periodic boundary conditions, the Korteweg-

deVries equation exhibits recurrence, as discussed in Lecture IV. The

fifth lecture emphasizes the deep connection between evolution

equations solvable by IST and Patnlevd transcendents, with an

application to the Lorenz model.
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Part I

The Physical Meaning of Equations with Solitons

One of the important recent advances in mathematical physics has

been the discovery that certain nonlinear evolution equations can be

solved exactly as initial value problems, using a method that may be

called the inverse scattering transform (IST). One of the remarkable

features of many of these special equations is that they admit as

solutions extremely stable objects called solitons. For convenience,

we may use "soliton theories" loosely to describe all of these

equations solvable by IST.

It may be regarded as something of a miracle that there are

nonlinear evolution equations that are completely integrable. It is

a second miracle that several of these equations arise naturally as

models of various physical systems, including aspects of ocean waves.

My lectures at this School will describe some of the mathematical

theory that has been developed in the last fifteen years to solve

these special equations. Before discussing the theory, however, it

may be useful to give some idea of the sense in which these soliton

theories model ocean waves. Consequently, in this first lecture, I

will try to describe the physical meaning of equations with solitons.

The spectrum of ocean waves is large and diverse, and soliton

theories describe a rather small part of it. In order to see the

context in which soliton theories arise, we may attempt a crude

classification of ocean waves, admitting in advance that the

classification probably will be incomplete.

Let us first classify ocean waves on the basis of whether the

wave amplitudes are large or small. Large amplitude waves may break,

among other things. Fully nonlinear theories are needed to describe

them, and will be discussed by other speakers at this School. I will

restrict my attention to small amplitude waves, because soliton

theories arise in the context of small amplitude waves. These waves
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are not necessarily infinitesimal, but they are small enough that we

may develop weakly nonlinear theories to describe them. All of the

soliton theories of water waves that have been developed to date have

been weakly nonlinear theories.

Within the context of small amplitude waves, we may classify the

theories that have been developed as either stochastic or deterministic.

Note that this is a classification of the theories (i.e., mathematics)

rather than the waves (i.e., physics). One of the interesting open

questions in this subject is to identify the physical criteria that

determine whether or not a given system of small amplitude waves may

exhibit chaotic behavior. I will return to this point in my fifth

lecture. In the meantime, let us restrict ourselves to strictly

deterministic theories.

By the time we've restricted ourselves to deterministic theories

of small amplitude waves, it begins to sound as if we'll end up with

the linear theory of infinitesimal waves, described in detail by

Lamb (1932), Stoker (1957), and Wehausen and Laitone (1960). That

turns out to be almost right. Soliton theories arise as (singular)

perturbations of linear wave systems, and there are relations between

the linear theory and the soliton theories in terms of their physical

derivation, in terms of their methods of solution, and in terms of

their solutions themselves. Soliton theories are nonlinear, but its

useful to keep re-Iterating the question, "How does this relate to

linear theory?"

The physical relation between linear theory and soliton theories

is this. If the waves are infinitesimal, the linear theory gives a

complete description of their evolution. If the waves have small but

finite amplitude, then the linear theory breaks down after a finite

time, and nonlinear corrections are needed to extend the range of

validity of the theory to a longer time-scale. Typically, soliton

theories provide the nonlinear corrections to render the linear theory

valid on a longer time-scale. There is a short time-scale on which

the linear theory applies, followed by a longer time-scale on which

I
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the soliton theory applies, perhaps followed by an even longer time-

scale on which something else applies.

What are these soliton theories? Here is a list of some of the

equations that can be solved exactly by IST, and also model ocean

waves.

1. Small amplitude waves propagating in only one spatial dimension.

(a) The Norteweg-deVries (KdV) equation,

ut + 6uu x + u = 0, (1.1)

governs long surface (or internal) waves. (Here subscripts

denote partial derivatives.) See Korteweg and deVries

(1895), and Hammack and Segur (1974, 1978).

(b) Under other circumstances, the evolution of "long"

internal waves may be governed instead by the modified

Korteweg-deVries (mKdV) equation

ut - u
2 U

x + Uxxx  = 0, (1.2)

an equation due to Benjamin (1967) and Ono (1975),

Ut + 7 + 1[ if g dy - 0 (1.3)

or by other models.

(c) Nearly monochromatic (i.e., narrow band) surface waves

are governed by the nonlinear Schrddinger equation,

t + " , c = t1 ; (1.4)

(Zakharov, 1968; Hasimoto and Ono, 1972; Yuen and Lake,

1975).
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(d) The sine-Gordon equation,

*x * o sine * (1.5)

xt si

governs the waves that are nearly neutrally stable in a

baroclinically unstable system on a beta-plane earth (Gibbon,

James and Moroz, 1979).

2. Small amplitude waves in more dimensions.

(a) The equation of Kadomtsev and Petviashvili (1970),

(ut + uux + auxxx)x + Uyy = 0 , (1.6)

is a two-dimensional generalization of the KdV equation.

Another generalization of KdV (in a different limit) is the

cylindrical KdV equation,

qt + (2t)-1 q - 6qqx + qxxx = 0, (1.7)

(b) The resonant interaction of three (narrow-band) packets of

nearly resonant internal waves satisfy

D2 a2  = 1y2 a a1  , (1.8)

Dias " ty3 a*'a*2

where Dj - t 
+ 
(j j" V)

Clearly there is no point in trying to derive all of these

equations. Rather, let us derive the KdV equation fairly carefully by

a multiple time-scale argument, and I simply will assert that the other [
equations may be derived by multiple time-scale arguments as well. We

begin with the following "exact" problem. We assume that the fluid is

homogeneous, Incompressible and inviscid. It is subject to a constant,

L. . .. I- . .
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vertical gravitational force (g), and rests on a horizontal impermeable

bed at z - -h (see Figure 1). The pressure vanishes at the free Fg.1

surface, defined by z = n (x,y. t), where surface tension may be

acting or not. (In this derivation we will omit it, but almost no

qualitative changes are needed if it is included.) The motion of the

fluid under these forces is assumed to be irrotational, two-dimensional

(ay = 0), and either to vanish as jxl - or to be periodic in x

for all time.

The governing equations under these conditions are well known

(e.g., Stoker, 1957):

7 = 0 -h < z < n(xt) (l.9a)

w = /az x 0 z = -h (l.9b)

nt + unx  = w (.9c)

z = n(x,t)

Ct + 1V.1
2 

+ gn = constant (1.9d)

and either

I.1 , n* 0 lx (1.ge)

* or

v1l, n periodic in x with period L.

These equations, along with appropriate initial conditions, uniquely

determine the fluid motion, at least for some finite time. A

consequence of these equations is that there are three globally

conserved quantities:

[
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M 0f n dx net mass of wave,
f

mx = f u dz dx horizontal momentum, (1.10)

E = 
2 

+ f SI1 1 1dzI dx energy.

-h

To derive the KdV equation from (1.9), we must make more

assumptions, to restrict the possible solutions. For this restricted

class of solutions, we may replace (1.9) by a simpler problem, whose

solutions will approximate some of the solutions of (1.9). In

particular, the KdV equation follows by making the following

assumptions.

i) Small amplitude waves. If represents a "typical" wave

amplitude,

C nih 1 . (.11a)

ii) Long waves. If k is a typical horizontal wavenumber,

(kh)
2  

1 . (l.11b)

iii) These two effects approximately balance,

(kh)
2  

_ O(E) . (.11c)

Two remarks are in order here. The first is that because (1.9)

uniquely determines its solution its not obvious that any additional

assumptions are permitted. We must verify a posteriori that our final

solution is consistent with the assumptions that led to it. Second,

(kh) and r are not well-defined. We may use them as convenient
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computational tools only because they eventually drop out of the

analysis.

Consistent with (1.11), we my scale the independent variables as

z* = z/h, x* = re x/h, t* - VF ct/h, (l.12a)

where c
2 

= gh (the only speed available in the linearized, long-wave

limit). We also introduce a slow time,

T= , (l.12b)

so that

e 0l.120)Tt h + tl a "

Rayleigh (1876) noted that if 0 is analytic at z = - h , then we

may expand 0 in a power series there. The final result is that the

solution of (l.9a,b) is

0 ( 2 ! 2J I a(X , *nT ( 1.13 )

If 0 is analytic at z = -h, this series is convergent. If all of

the derivatives of 0, are bounded, it is also asymptotic (in £).

Next we expand the unknowns:

ri(xt;) - hCni(x*,t*,T) + C2n2 +

(1.14)

u = U g *u(x*,t*, T + C2U2 +
z - -h ax Z - -h

It follows that at the free surface, z-n,

.. 1

J' . .
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u E' ug + 2 2 - + O(C)]

(1.15)

_EV~ UL + IaU2 + UiL 1 _t_.L + ,2

I E~W ax* + T"5 'ka 3x 6 / xJ

Now we simply substitute this into (l.9c) and the tangential derivative

of (l.9d), and collect terms. The result at leading order is:

a__ + _ = 0
at* ax*

(1.16)

aul + a = 0
t*

7IF ax*

The unique solution is:

TI (x*, t*, T) f(r, T) + g(Z,T)

(1.17)

ul(x*, t*,) fir, T) - g(Z,-t)

where r = x*-t*, Z z x*+t*. The initial data for (n, u) define

(f, g), which inherit their boundedness, smoothness, etc. At this

order, the solution consists of a left- and a right-traveling wave.

There is no interaction and no evolution, so all waves are permanent

waves.

At the next order, we obtain

IflL + u L + fl + - (u n) an 0

at* ax* aT ax* 6 x

* (1.18)

au-L + L + Ua + u, aU l 1 u1  0

at* ax* aT ax* 2 ax 2 
at*

where (ul, ni) are defined by (1.17). The next step is more

transparent if we eliminate u2jor n2) and write the result in

characteristic coordinates:
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4__2 2fT + 3ff + f + 2gf gf

__; ;r_ 3 1 rr 1 rf + gf r+ gfl

-2gT + 39g. + 1 gf; = 0 . 19)
az3 1

The dependence of each term on (r,2.) is explicit, so (1.19) can be

integrated easily. It is apparent that Tn2 will grow linearly both in

r and in Z. unless we require

fT + 
3
ffr + 1 frrr 0 ,

(1.20)

-
2
gT + 3gg 

+ 
j g.2 jz 0 ,

which can be reascaled to the form (1.1) if desired. We must also

require that

f r f fdr. g, f g d

(1.21a)

all be bounded if -o < x < o, and that

f dr = 0 = fgdt (1.21b)

in the periodic problem. Then n2 is bounded;

n2(r, P.,T) = [9[g rf 6 + gdi + 2fJ

+ f2(r,t) + g2(, ) . (1.22a)

Similarly,

fL'



u2 = r f - fr g di . 4(f2 v)

+ j (frrg) +f2 - 92  (1.22b)

The conditions (1.21) guarantee that the left- and right-going

waves do not affect each other long enough to interact strongly on

this time-scale [T = 0(1)]. However, each of the two wave trains does

interact with itself for a long time, and the two KdV equations

govern the evolution of each wave train on this longer time-scale.

This is the main point of the derivation. The KdV equation governs

the evolution on a slow time-scale of a small amplitude wave that

satisfied the linear wave equation on a fast time-scale.

To stop at 0(E
2
), one may set f2 = g2 

= 
0, and (1.22) gives

the second order corrections of the unknowns. To go on to third order,

it is necessary to use f2 and g2 to eliminate secular terms at the

next order. In principle, the expansion can be carried to arbitrarily

high order, although this is rarely done in practice.

We will discuss how to solve the KdV equation in the second

lecture. For the moment, we consider only some of the implications of

this derivation. The first is that both the wave equation (1.16) and

the KdV equation (1.20) are c-independent. The expansion is intended

to be valid in the limit e - 0, and we may take this limit without

emasculating the governing equations. That is indicative that the KdV

equation is a true asymptotic equation.

A second consequence of this derivation concerns the conservation

laws. It follows from (1.20) that if f vanishes rapidly as Irl

or is periodic, then

Ii = f dr , 12 ff2 dr , 1, = f3 - (fr)k dr

(1.23)
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all are conserved. In fact, the KdV equation has an infinite number

of conservation laws. These may be reconciled with the three physical

conservation laws in the following way. We obtained (1.20) by

expanding the deoendent variables, as in (1.14). If we also expand

the mass integral (for example) in powers of E, each coefficient in

that expansion must also be conserved. The infinity of conserved

quantities for KdV are related to these coefficients. For example, we

may easily verify that for the right-going waves (i.e., g-O), to

3( Z ),

M 
h2  +

mx  = oh
2
V "JW [E; II + E212 + 0(E')] ,

4
(1.24)

KE = [E: 12 + EI3 I + O(EW)]

PE = "h
3 

[E212 + O(E)]2 VF

E = KE + PE
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Part II

Introduction to the Inverse Scattering Transform

The first lecture was devoted to the physical derivation of

equations that admit solitons. We saw that even though the equations

themselves are fully nonlinear, they typically arise in physical

problems by eliminating secular terms in a weakly nonlinear theory.

This lecture is devoted to the method of solution of these

special equations. This method goes under a variety of names,

including the inverse scattering transform. It turns out that

this method can be viewed as a generalization of Fourier analysis to

certain nonlinear problems. It provides the exact solution to

certain nonlinear evolution equations, just as the Fourier transform

does for certain linear evolution equations.

The outline of this lecture is first to review briefly the method

of Fourier transforms for linear problems, then to sketch how IST

works for certain nonlinear problems, and to show that it is a

generalization of Fourier analysis. In the process we can say

something about the solutions of these equations, and the class of

equations to which the method applies. This approach is essentially

that of Ablowitz, Kaup, Newell and Segur (1974).

1.

Linear Evolution Equations

Let us consider three examples of linear problems on the infinite

interval (-- < x <

(a) ut + Uxx x  = 0 , (2.1a)

(b) iUt + U = 0, (2.1b)

(c) uTT- UXX + u 0, or

(I
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Uxt u . (2.1c)

Part (a) may be called the Airy equation; it arises in certain problems

in optics. Part (b) is the time-dependent Schr6dinger equation, with

no potential. Part (c) is the Klein-Gordon equation, written both in

laboratory and in characteristic coordinates. In all three cases, the

equation holds for all real x, initial data also must be given at

t =0 , and we will require that the initial data be smooth and decay

rapidly as lxj .

These equations all can be solved by Fourier transform methods.

The first step in that approach is to map the initial data into its

Fourier transform:

6(k) = u(x, 0) exp(-ikx) dx , (2.2)

As t changes, u(x, t) evolves according to a partial differential

equation, but 6(k, t) satisfies an ordinary differential equation.

(This is precisely the advantage of Fourier transforms.) The equation

is so simple that we often skip that step and simply look for

solutions in the form

u (x, t Tr f 6(k) exp(ikx - iwt) dk . (2.3)

Substituting (2.3) into the (linear) evolution equation yields the

(linear) dispersion relation, w(k). In particular, for our example

problems,

(a) w - -k,

(b) w - k 2 (2.4)

(c) w v 1/k

mim l m ul N l m~~l =m l m m m
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If the problem has a dispersion relation, it, contains all of the

information that was in the original partial differential equation.

For example,

(i) for a first order (in time) equation, if u3(k) is real for real

k, then the original problem has an "energy" integral that is

conserved. In our example problems,

(a) at f Jul' dx = 0 ,

(b) a tfJul' dx = 0 , (2.5)

(C) atI ux I dx = 0

(ii) If (d'w/dk
2
) # 0, then the problem is "dispersive". Each wave-

number travels with its own speed, and the waves sort themselves out

in time. [These concepts are discussed in detail by Stoker (1957)

and by Whitham (1974), among others.)

The net effect is that in the long time limit, the solutions of each

of these equations have rather characteristic features determined

largely by the group velocity, (dw/dk). For example, a typical

solution of (2.1a) for large times Is shown in Figure 2. The waves Fg.2

are spreading slowly to the left, because (dw/dk) 0. Energy is

conserved, because w(k) is real, so as the waves spread out, the

amplitude tends to zero [for (2.1a), as t"
3  

or faster].

Thus, the solutions of these conservative, dispersive problems

are comparatively simple for large times. They are characterized by

the waves dispersing over larger and larger regions of space, with

the amplitudes decaying as required by energy conservation. The

method to obtain these solutions depends on the existence of two

functions: a(k) represents the initial data; and w(k) represents

the evolution equation. This method of solution (Fourier transforms)

L' _ _ _ _ _ _ _ _
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may be represented schematically as follows.

u(x, 0) (- k, 0) (k, t) -- u(x, t) . (2.6)

2.

Nonlinear Evolution Equations

Consider next three nonlinear generalizations of the equations

in (2.1):

(a) the Korteweg-deVries equation,

ut + 6uu x + Uxxx  = 0 ; (2.7)

(b) the nonlinear Schrodinger equation,

iut + uxx + 2u12u = 0 ; (2.8)

(c) the sine-Gordon equation,

Uxt = sinu . (2.9)

Why these examples? First, each of these equations linearizes to one

of the linear equations in (2.1). Second, they have the same energy

integrals as their linear counterparts. Third, each arises as a

model of some aspect of ocean waves. Fourth, they all possess

solitary wave solutions. For KdV,

u(x, t) - 2
2 

sech
2 [

I (x - x0 - 4K
2 
t)] , (2.10)

where K and xo are free constants; see Figure 3. Finally, and most Fg.3

importantly, each of these equations can be solved by the inverse

scattering transform (IST).

Understanding how IST works requires some knowledge of direct

and inverse scattering theory. Here is an extremely superficial

introduction for the Schr~dinger scattering problem. For a very

fq

b I 1



-17-

thorough treatnent, see Deift and Trubowitz (1979). Let q(x) be

given, satisfying

J (1 +x
2

) q Idx < (2.11)

The direct scattering problem is to find pairs [X, p(x;x)] such that

p xx + C + q(x)]iJ= 0, o< x < (2.12)

Here X is a real number, an "eigenvalue", and j, is required to be a

bounded function satisfying certain boundary conditions. For X > 0,

we may set X = k
2
, and require that

- a(k) exp(-ikx) as x-* - ,

(2.13)

- exp(-ikx) + b(k) exp(ikx) as x +

These are related by la1
2 
+ lb1

2 
= I (a Wronskian relation). [In

the scattering context, these solutions are called "radiation", a(k)

is called the "transmission coefficient", and b(k) the "reflection

coefficient".] For X < 0, there are only a finite number of

discrete eigenvalues ["bound states"]. We may set X = - ,n ' and
- n

normalize J 1Inl
2
dx = 1 . The boundary conditions are:

n- dn exp(Knx) as x * - ,

(2.14)

cn exp(-cnX) as x - .

A given "potential", q(x) , generates certain scattering data

[a(k), b(k); Cn, Kn]. These may be collected into a single function,

N

B(x) • 'b(k) exp(lkx) dk + c
2 

exp(-KInx)

n,1

(2.15)
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The direct scattering problem is to find B(x) for a given q(x)

The inverse scattering problem is given B(x) , to find the

potential, q(x) , that generated it. This is an interesting

mathematical question that was solved in a slightly different form

in a famous paper by Gel'fand and Levitan (1951). Skipping all

intermediate details, the final result is that one must solve a

linear integral equation:

K(x,y) + B(x+y) + J K(xz) B(z+y) dz = 0, y >x.

x

(2.16)

(An equation of this form now is called a Gel'fand-Levitan-Iarchenko

equation.) Then the solution of the inverse scattering problem is

q(x) - 2 -4- K(x,x) . (2.17)
dx

Thus, we may represent the direct and inverse scattering problems by

q(x) * B(x+y) -* K(x,y) - '((xx) - q(x) • (2.18)

After that rather long detour, let us return to nonlinear

evolution equations, and come to the main point. In 1967, Gardner,

Greene, Kruskal and Miura made a remarkable discovery about the KdV

equation, (2.7). Denote its initial data by u(x, 0) and consider

xx + Ex + u(x, 0)] 0 . (2.19)

In this way, u(x, 0) is mapped into scattering data, summarized by

B(2x, 0) . As t changes, u(x, t) evolves according to (2.7), and of

course, the scattering data change as well. The remarkable fact is

that if u satisfies (2.7), then

0 0• (2.20)

b (
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In other words, u(x, t) evolves through a family of potentials, all

of which have exactly the same spectrum! [For this reason.

Calogero and Degasperis (1976) prefer to let IST abbreviate the

"Iso-Spectral Transform".] The rest of the scattering data also

evolves simply:

Tt a(k, t) - 0
at

Ttb(k, t) - 8 ik'b (2.21)

at

.~Cn(t) • 4t< cn ,

so that

B(2x, t) b(k) exp[2ikx + 81k
3
t] dk

N

+ L c2 exp[8. t - 2nx] . (2.22)
n=l

Therefore u(x, t) satisfies a nonlinear evolution equation (KdV),

but B(2x, t) satisfies a linear evolution equation whose dispersion

relation is that of the linearized KdV equation,

w(2k) 
l 

-8kV . (2.23)

But now we know B(2x, t) for any t, and we my reconstruct the new

potential, u(x, t) , via inverse scattering. To summarize, we have

a method to solve the KdV equation:

u(x, 0) - B B(x+y; 0) w(2k) B(x+y; t) -- K(x,y; t) - u(x, t) .

(2.24)
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In fact, this scheme represents the method of solution for all

problems solvable by IST. The steps are:

) Map the initial data of the nonlinear evolution equation into

the scattering data, using the linear scattering problem;

ii) Let the scattering data evolve, in accord with the dispersion

relation of the linearized evolution equation;

iii) Reconstruct the solution of the nonlinear evolution equation

at a later time by solving a linear integral equation.

Notice that each step in this method is linear, and that the whole

procedure parallels the method of Fourier transforms for linear

problems. In this sense, IST is a generalization of Fourier analysis

tc certain nonlinear problems.

What about the solutions of an equation solvable by IST on

-< < x < - ? The scattering data consists of a discrete spectrum

(bound states) and a continuous spectrum (radiation), and these

represent different kinds of solutions. Each discrete eigenvalue

represents one solitary wave (or "soliton", since they are no

longer required to be solitary):

B . c2 exp(-K nx) =--* u n 2 ic sech' {Icn(x - xn - 4t<2t)}

(2.25)

where xn = xn(cn) . The permanence of these waves is insured by the

fact that the eigenvalues (-K') are time-independent. Notice that

each of these waves has positive speed, and that the bigger waves

move faster.

The continuous spectrum requires a little more care, but in a

crude sense it represents a part of the solution that behaves almost

as If the problem were linear. More precisely, It represents a

dispersive wave-train in which the linearized group-velocity (which

is negative for KdV) plays an important role. The net result 's that

$14
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the long-time solution of KdV is comparatively simple, as shown

in Figure 4. It may be worth emphasizing that even though the Fg.4

equation is fully nonlinear, its long time behavior may be predicted

to any desired accuracy. The problem is stable, and there are no

chaotic solutions.

3.

Generalizations

The reader may have the impression by now that IST is a miracle

that works. To a certain extent that is true, but that is no reason

not to use it wherever possible. The question is, "To what problems

does IST apply?" Next we show that there are infinitely many

problems solvable by IST. (So even though it is a miracle, it may not

be uncommon.) Let us consider a different scattering problem on

ax V + icV, - qV2 ,

(2.26)

axV2 - i;V 2 = rV 1 ,

with q, r - 0 as lxi - -. This problem was first analyzed by

Zakharov and Shabat (1972) for r = -q* (* denotes complex conjugate).

Note that if r = 1, (2.26) can be reduced to (2.12). Note further

that if r - 0 and V, exp(ix) -1 as x * -, then

lim [V1 exp(i cx)] is just the Fourier transform of q(x). In
X . l-

this sense (2.26) is already a generalization of Fourier transforms.

To construct an IST out of (2.26), we need [q(x, t), r(x, t)] to

evolve so that at =z 0; i.e., we will force the eigenvalue to be

time-independent. To do this, we allow the elgenfunctions to evolve

according to linear equations:

(4
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atV I= AV, + BV2 ,

(2.27)

t V2 = CV, - AV 2 ,

where A = A(q,r; ), etc. Compatibility of (2.26) and (2.27) requires

that (V)xt 
= 

( .)t" Demanding 3t C = 0 yields:

Ax  = qC - rB,

Bx + 2i ; B = qt - 2Aq , (2.28)

Ct - 2i C = rt + 2Ar,

If (A, B,C) satisfy these coupled ordinary differential equations

(in x), then the eigenvalue is constant, and we can construct an iST

based on (2.26). Boundary conditions for (2.28) are obtained by

comparing (2.26), (2.27) as xi - - . Because (q, r) - 0 , we know

that V, C, exp(-i~x) , V2 -- C2 exp(irx) from (2.26). To assure

compatibility with (2.27), we require

A - Ao(). BC - 0 as lxj - . (2.29)

This gives six boundary conditions for (2.28), which is now over-

determined. Therefore (2.28), (2.29) will have no solution except in

special cases.

Given (2.26), the choice of nonlinear evolution equations is

determined by Ao() . Here we use the linearized dispersion relation:

w(2;) = 2iAG(-;) . (2.30)

For example, if Ao(;) - -21 , then (2.28) has a solution only if

iqt + qxx 2q 2
r - 0,

(2.31)

irt - rxx + 2qr
2

- 0.
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If r = -q*, each of these reduce to the nonlinear Schrddinger

equation, (2.8).

Theorem (Ablowitz, Kaup, Newell, and Segur, 1974)

Let w(k) be a ratio of entire functions, and be real

for real k . Then (2.26) generates a nonlinear evolution

equation that is solvable by IST, and whose linearized

dispersion relation is w(k) . If w(k) also is an odd

function of k, then (2.12) generates a different nonlinear

equation solvable by IST. Its linearized dispersion relation

also is w(k).

If your objective is to generate nonlinear equations solvable by

IST, you need two ingredients:

i) A scattering problem; and,

ii) A linearized dispersion relation.

Each such pair generates one nonlinear problem solvable by IST. If

your objective is to solve a particular equation, this is almost no

help at all. In my fifth lecture, I will discuss how to determine

whether a given equation can be solved by IST.

I.
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Part III

More Inverse Scattering on the Infinite Interval

in the second lecture we saw that the inverse scattering

transform works, and that it may be regarded as a generalization of

the Fourier transform to certain nonlinear problems. For the KdV

equation (2.7), IST may be represented schematically as follows:

direct
scattering

u(x, 0) {a(k, 0), b(k, 0), Kn cnO)}

E 0 b- 8i0
at b at

__ __PCA] (3-1)

aKn 0 1 acn K

at J2 at n

U(x, t) - - {a(k, t), b(k, t), Kn , Cn(t)}

inverse

scattering

In this lecture we will examine IST on the infinite line in more

detail. The extra information may help to explain why IST works and

what sort of solutions it admits.

1.

Hamiltonian Mechanics

Zakharov and Faddeev (1971) pioneered a description of IST as a

canonical transformation of a Hamiltonian system to action-angle

variables. This description is an alternative to that of IST as

Fourier analysis for nonlinear problems. Both are legitimate; which

is preferable is a matter of taste.

The reader may recall that Hamiltonian mechanics is simply a

! I
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variational description of certain dynamical systems. (Basic

references here are Arnold, 1978; or Goldstein, 1950.) In this

formulation, one identifies generalized "coordinates" (q) and

"momenta" (p), which describe completely the state of the system. If

the problem has N degrees of freedom, then p and q are each

N-dimensional vectors. For the partial differential equations of

interest here, p and q are infinite-dimensional. One introduces a

Hamiltonian, H(p, q), which must have the property that Hamilton's

equations,

q H 6H (3.2)6 p 6 q

are equivalent to the equations of motion of the system. Here

C) = t( ), and the derivatives of H in (3.2) are functional

derivatives. In general H may depend on time, but for any of the

conservative systems under consideration it does not. Any system

that has such a variational formulation is said to be Hamiltonian.

It happens that problems solvable by IST are Hamiltonian. As

examples, consider

H, = pf PqX + p
2
l - q dx,fz - x -Px

} 
dx

(3.3)

H2  = .i {qXx + p q
2
f dx.

H, yields two evolution equations, which admit the identification

p = qx . Each equation reduces to KdV under this identification.

Similarly, H2  gives the nonlinear Schrbdinger equation if we

identify p = ±q* (complex conjugate).

Canonical transformations play an important role in Hamiltonian

mechanics. Roughly speaking, a canonical transformation is simply a

change of variables,

(p, q) ((P,Q) (3.4)
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that preserves the volume of the phase space; (this corresponds to a

mapping that is 1-1 and onto). One may check this property either by

means of Poisson brackets (old-fasnioned) or a symplectic form

(new-fangled). Necessarily, a canonical transformation does not

affect the form of Hamilton's eq'jations:

H(P,Q) Q = _- (3.5)p ; Q •

Out of all possible canonical transformations, an especially

desirable one is one in which the new Hamiltonian is independent of Q.

These are called action (P) and angle (Q) variables. Obviously, if

H = H(P), then from (3.5),

= 0, H = constant, (3.6)
5p

so that integration of the equations is as simple as possible.

Another way to say this is that if a Hamiltonian system has action-

angle variables, then its motion is basically very simple, when

viewed appropriately. Unfortunately, there is no general method known

to determine whether a system has action-angle variables, or to find

them if they exist.

The valuable insight of Zakharov and Faddeev (1971) was that (3.1),

the equations that describe the evolution of the scattering data for

KdVwas in the form of (3.6).

Theorem (Zakharov and Faddeev, 1971)

Let u(x, t) represent a KdV solution on -< x < .

The IST mapping

P(k) =kznla(k)1
2  

Q(k) =Im Zn b(k)

u(x, t) -

P -2K, n 4n fc

(3.7)

is a canonical transformation to action-angle variables.
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From this standpoint, it is not surprising that the KdV equation

has an infinite set of constants of the motion. They are a

representation of the (time-independent) action variables. Moreover,

given that the equation on -- < x < - has an asymptotic state, it is

not surprising that the asymptotic behavior is relatively simple. The

existence of action-angle variables means that motion is basically

simple (when viewed appropriately); the simple asymptotic behavior

reveals the basically simple motion.

2.

Scattering Theory

Another apparent miracle in IST is the fact that scattering

theory works so well. Even after accepting that the potential in the

scattering problem [e.g., u(x) in (2.12)] is determined by the

scattering data, one is still surprised at the simplicity of the

inversion procedure. In fact, scattering theory works as well as it

does because it uses the powerful theory of analytic functions of a

complex variable.

We may illustrate this close connection to the theory of

analytic functions by considering a scattering problem due to

Zakharov and Shabat (1972), and generalized by Ablowitz, Kaup, Newell

and Segur (1974):

axV, + i V, = q(x)V 2

(3.8)

axV2 - i V2  = r(x)V1

Here - < x < , and we assume that q(x), r(x) vanish rapidly as

Ixj . This scattering problem is appropriate for the nonlinear

Schrddinger equation, the sine-Gordon equation and infinitely many

other problems. However, as time-dependence is not germane to

scattering theory per se, we will hold time fixed for the current

discussion. Thus (q,r) may be considered known functions that are

absolutely integrable.

b I
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Solutions of (3.8) may be identified by the boundary conditions

they satisfy, and we define for real ;,

- exp -i x) as x * - ,

2(x, 0

-- (
0

ex[i x] as x * - ,

I°)
( exp[ix] as x +

( l)exp[-ix] as x -

(3.9)

For real c, @ and are linearly independent for all real x, as

are 4 and T. Because (3.8) has only two linearly independent

solutions, we may define {a(;) , a({) b( ) , b( )} by

= aT + b p

(3.10)

*T -- b- +

These are related by a Wronskian relation, aa + bb = 1 . From (3.9)

and (3.10),

a(,) exp[-i x)

b(c) exp[i~xl 
as x

The set {a,i, b, b} for real makes up part of the scattering data.

These functions may be viewed as representing the asymptotic behavior

of certain solutions or (3.8) as in (3.11), or simply as Wronskians

of solutions from (3.10).

Once these functions have been defined for real ;, they may be

extended into the complex c-plane. Ablowitz, Kaup, Newell and

!A

I
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Segur (1974) proved that:

i) [ (x, ;)exp(i~x)] and [ (x, )exp(-icx)] are analytic

functions of ; for all real x if Im(;) > 0;

ii) [ exp(-i~x)] and FT exp(i;x)] are analytic in if

Im(;) < 0 ;

iii) a( ) = lim €j exp(icx) is analytic for Im( ) > 0, and

a( ) is analytic for Im(4) < 0;

iv) the discrete eigenvalues of (3.8) are zeros of a(;) or

a( ) in their regions of analyticity;

v) as 1, - -, Im( ) > 0, a( ) - 1 + 0(-'1)

¢2 exp(i~x) - -[r(x)/2i ) + 0(-'),

i exp(-i~x) -* [q(x)/2i4] + 0(;-2) , with similar results

for Im(;) < 0.

Most of the results of IST are a consequence of these relations

and the time-dependence of the scattering data. In particular, one

finds that a( ) and a(;) are time-independent. Then it follows

* from (iv) that the discrete eigenvalues are time-independent as well

(the iso-spectral property). It follows from (v) that Zn a(C) has

an asymptotic expansion as II for Im(c) > 0:

Zn a(;) = In/(2ic)n (3.12)

nl

Because a(C) is time-independent, the coefficients in this expansion

must be time-independent as well. These are the infinite set of

conserved integrals of any of the evolution equations solved by (3.8).

It also follows from (v) that if we can reconstruct 02 exp(i~x) and

ip, exp(-icx) from the scattering data, then q(x) and r(x) may be

obtained by taking a limit. We show next that inverse scattering

theory follows just that strategy.
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To obtain the linear integral equations that are the heart of

inverse scattering theory, write (3.10a) as

¢ x;) = ~ expix) ba exp(ix) + t exp(i~x) , real (3.13)a a

For simplicity, let us assume that a( ) has no zeros for Im(;) 0.

Then [ exp(ilx)]/a is analytic for Im(;) > 0 and vanishes as

-r j there, while 4exp(i~x) has similar properties for

Im(;) < 0. Now the problem of reconstructing these analytic functions

from (3.13) is very similar to a famous problem posed by Hilbert

(cf., Muskhelishvili, 1953, Ch. 5). That problem may be stated as

follows. F+(z) is analytic for Im(c) > 0 and vanishes as

Izi - there. F.(z) is analytic for Im(;) < 0 and vanishes

as Izl -' there. They are related on the real axis by:

F+(x) - F_(x) = f(x) on z = x , (3.14)

where f(x) is a given function. The "Hilbert problem" is to

construct both F+ and F_ from f(z) . If f(x) is absolutely

integrable, the solution of the problem is given by:

1 f f2x Ldx fF+(z) , Im(z) > 0 ,F(z) = - = (3.15)
21i X - ZF_(z) , Im(z) < 0

Comparing (3.13) and (3.14), it is evident that because (b/a) is

known for real , if pexp(i~x) were known for real , then (3.13)

would be solved by a formula like (3.15). However, because pexp(i~x)

is unknown, we obtain instead a linear integral equation, with a

Cauchy-type singularity. Another singular integral equation follows

from (3.10b). The usual Gel'fand-Levitan-type of integral equations

for (3.8) are essentially the Fourier transform of these coupled

singular integral equations.

The original work by Gel'fand and Levitan (1951) and others on

inverse scattering theory did not make this connection to the Hilbert

problem, which has been developed more recently (e.g., Zakharov and

A -

• i
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Manakov, 1979). The advantage of this approach is that it emphasizes

the fundamental role played by analytic functions in the theory of

inverse scattering.

3.

Solutions of the Nonlinear Schrddinger Equation

The practical consequence of all of this remarkable structure is

that the solutions of these special nonlinear evolution equations are

quite predictable, and can be computed explicitly (especially for

large times) once the initial data has been mapped into scattering

data. We may illustrate this by focussing our attention on the

nonlinear Schrddinger equation,

iqt + qxx + 21ql
2
q = 0 , (3.16)

which describes the nonlinear instability of a packet of nearly

monochromatic water waves of small amplitude in one dimension.

The appropriate scattering problem is (3.8), with r = -q*

The discrete spectrum in this case is represented by N discrete

eigenvalues, cj = ( +in)j with nj a 0, along with N parameters,

cj. The continuous spectrum is represented by b/a ( ), on n = 0.

[The equation

i qt + qx -- 21q1
2
q = 0 , (3.17)

also has physical interest. In this case, r = +q* in (3.8), and

there are no discrete eigenvalues.]

A single eigenvalue with n > 0 corresponds to a single soliton

solution of (3.16).

q(x,t) - 2r sech{2n(x + 4&t + xo)) exp{-2i[ x + 2(&
2
-n

2
)t + 0o])

(3.18)

This is an "envelope soliton" (as opposed to a KdV-type solitom). It

A
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represents a one-dimensional wave packet that is stable with respect

to one-dimensional perturbations, and is shown in Figure 5. For a Fg.

one-dimensional packet of water waves that are nearly monochromatic

and of small amplitude, (3.16) describes the Benjamin-Feir (1967)

instability, and one could think of an envelope soliton as a stable

equilibrium state for that process.

N discrete eigenvalues generate N solitons. If they have N

different speeds (j # &k for j # k), they separate in space as

t * , so that the long-time solution of (3.16) is simply a sum of

N individual solitons. We should emphasize that solitons are

intrinsically nonlinear objects, that disappear in the linear limit.

On the other hand the "radiation", which corresponds to the

continuous spectrum, is qualitatively quite similar to the solution

of the linearized problem. For comparison we note that

iyt + Y~x = 0 (3.19)

has a family of self-similar solutions, including

y = t
-  

A exp(i x
2
/4t + i 4) . (3.20)

One may also solve (3.19) as an initial value problem on -- < x <

and evaluate the solution in the long time limit. The result is that

along x/t = 2k (the group velocity),

y(x, t) t Y(k) exp(I x2/4t - i 7T/4) , (3.21)

where q(k) is the Fourier transform of the initial data. This has

the form of a slowly-varying similarity solution.

There is a nearly identical similarity solution of (3.16),

q = t0 A expi(x
2
/4t + 2A1 Xn t + 4)) . (3.22)

In the absence of solitons, the asymptotic solution of (3.21) that

evolves from appropriate initial data also takes the form of a

slowly-varying similarity solution. Along x/t = - ,
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q t- f(x/t) exp{i[x
2
/4t + 2f

2 
Zn t + g(x/t)]} , (3.23)

where

1
2

/ W Z.n[l- b/a(C')!
2
) , (3.24)

47r

and g(x/t) also is determined by b/a (&). (See Zakharov and

Manakov, 1976; Ablowitz and Segur, 1975; and Segur, 1975.]

The general solution of (3.16) on -- < x < - involves both

solitons and radiation. For KdV these two components separate in

space, but for (3.16) they coexist. In the long time limit, the

solution consists of N envelope solitons riding on a sea of

radiation. The solitons are permanent wave packets, while the

radiation decays as t
- .

ii

I;

*4 1 t



-34-

Part IV

The Korteweg-deVries Equation

with Periodic Boundary Conditions

To this point we have discussed solitons and IST only on the

infinite interval. However, the KdV equation with periodic boundary

conditions also has applications in water waves. Moreover, the

original discovery of solitons by Zabusky and Kruskal (1965) was

based on numerical experiments on the periodic KdV problem.

There is a theory of inverse scattering transforms for the KdV

equation with periodic boundary conditions. The most complete

version is due to McKean and Trubowitz (1976). In this lecture, we

will follow the less general but simpler version of Dubrovin and

Novikov (1974). In contrast to the theory of IST on the infinite

interval, however, the theory for the periodic problem cannot yet be

considered a practical tool for use in applications. After presenting

the theory in its current form, we will identify some practical

questions that have not yet been answered satisfactorily.

The first work on the periodic KdV problem,

Ut + 
6
uux + Uxx x  = 0,

(4.1)

u(x, t) = u(x + L,t)

was done by Korteweg and deVries (1895), who found a periodic,

traveling wave solution of (4.1):

u(x, t) = 2p
2 
k2 cn2[p(x - ct + X); k + B . (4.2)

Here cn(O; k) is the Jacobian elliptic function with modulus k

(0 k2  
1 1),

c = 68 - 4p
2
(1- 2k)

(4.3)

pL - 2K(k)

, 'w L

( I
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where K(k) is the complete elliptic integral of the first kind

(cf., Byrd and Friedman, 1971). If we require fudx = 0, as

required by (1.21), then

B -2p2  - 1 + k2] (4.4)B = -2 
2  

K(k)  I

where E(k) is the complete elliptic integral of the second kind.

Korteweg and deVries called these "cnoidal waves", by analogy with

sinusoidal waves. A typical solution is shown in Figure 6, for Fg. 6

k = . These nonlinear, periodic, traveling waves reduce to

infinitesimal sinusoidal waves if k - 0,

u(x, t) - pl k cos 2p(x + 4p' t + x) , (4.5)

with pL -T . At the other extreme, if k - I

u(x,t) - 2p
2 

sech
2
p(x - 4p

2
t + x) (4.6)

Aside from these special solutions, however, almost nothing was

known about the periodic KdV problem until the important numerical

work of Zabusky and Kruskal (1965), who were motivated by the earlier

work of Fermi, Pasta and Ulam (1955). In both of these studies, the

authors observed "recurrence of initial states" after a relatively

short time. In other words, rather than showing any tendency to an

equipartition of energy among all of the degrees of freedom of the

system, the solution of the initial value problem almost returned to

its initial configuration repeatedly. The time required for this

recurrence was short enough to suggest that only a few of the

possible degrees of freedom of the system actually were participating

in the process described by (4.1). But how could the solution of

(4.1) be so constrained unless (4.1) itself carried additional

constraints that had not been discovered? These extra constraints

turned out to be the infinite set of conservation laws of the KdV

equation (Miura, Gardner and Kruskal, 1968). The discovery of these

conservation laws led in turn to the development of IST (Gardner,
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Greene, Kruskal and Miura, 1967). We should emphasize the historical

importance of the careful numerical studies of Zabusky and Kruskal

(1965), which indicated that the KdV equation possessed additional

mathematical structure.

Let us now outline the theory of IST for the KdV problem. The

reader will observe that some of this theory is analogous to that on

the infinite interval, but some of it is not. The scattering problem

is:

Vxx + [X + u(x)]V = 0 , (4.7)

just as it was on the infinite interval, but in this case u(x) is a

periodic function of x . Because scattering theory requires no

knowledge of the time-dependence of u(x, t), we may consider (4.7)

at a fixed time.

One of the difficult conceptual questions about the periodic

KdV problem is to find what plays the role of the scattering data

here, since there is no "point at infinity" where the solution

simplifies. Without such a special point, we simply choose an

arbitrary xo  in order to begin the analysis. With xo  fixed (and

time fixed), we may identify two linearly independent solutions of

(4.7), 1(x; xo ,A) and its complex conjugate, *, by imposing

boundary conditions for real A at x = xo :

O(X; xo , X ) = 1 *(Xo; xo, X) = 1

ox(xo; xo , X ) = ik iv ox(xo; xo , X) = -ik

(4.8)

One period to the right (x - x+L), these two functions satisfy the

same differential equation again, so they must be a linear combination

of the 0 and *:

t (x +L; xo N) a a(X0, A) b(x0, X)]F [(x; xo, X)1 (.9II + (4.9)L * x 0, A) Lb*(xo, A) a( 0 JL* xo ~ )
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The matrix connecting these two sets of solutions of (4.7) is called

the "monodromy matrix". In some ways it plays the role of the

scattering data. Its coefficients are related by a Wronskian

relation,

jal - jb1
2  

= 1 . (4.10)

The fact that the coefficients of (4.6) are periodic does not

necessarily mean that its solutions are periodic. In fact, most of

them are not. The solutions of (4.6) that are periodic play a

fundamental role in t e theory of inverse scattering. We define next

the "Bloch eigenfunctions" to be solutions of (4.6) that satisfy

p(xo; x0, X) = 1 ,

(4.11)

ip(x+L; xoX) = u(x; x0 , X) .

Because these must also be a linear combination of ¢ and ¢*, one

may show that for each (xo, X) .

W
2 

- 2
ar P + 1 = 0 , (4.12)

where

a = ar + i ai . (4.13)

Equation (4.12) admits three possibilities.

i) If larl > 1 , one root of (4.12) is larger than one in

magnitude, and the other is smaller. From (4.11), these

correspond to Bloch eigenfunctions that grow without bound,

either as x - + or as x - --. These are said to be

"unstable".

ii) If Iarl < 1 , we may define ar(X) - cosp(X) , and show that

u " exp(ip) . (4.14)

LI,
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These represent "stable" eigenfunctions.

iii) If ar! I , i.e.,

a 1 , (4.15)

then l = ±1 and the eigenfunctions are either periodic or

antiperiodic functions of x . Thus, (4.15) identifies the

periodic solutions of (4.6).

These possibilities may be summarized on a "Floquet diagram",

in which ar is plotted as a function of X for fixed xo , as

shown in Figure 7. The regions in which [arl > 1 are called Fg.t

"unstable bands". Necessarily, each unstable band lies between two

successive roots of (4.15), numbered X2n and n . One may show

(by oscillation theorems; cf., Magnus and Winkler, 1979) that

X 2n > X2n-1 ' and that X 2n+l _> X2n Moreover, one stationary

point of ar occurs in each unstable band, and none occur elsewhere.

Unstable bands that consist of a single point (if X2n = A2n+l) are

called "degenerate".

Following Dubrovin and Novikov (1974), we now assume that u(x)

generates ar(xo, X) with only a finite number (N) of non-degenerate

bands. (Roughly, this corresponds to approximating a periodic

function with a finite Fourier series.)

Next, we define two spectra for (4.6). These may be defined

either by attaching boundary conditions to (4.6), or by imposing

conditions on the monodromy matrix.

i) The main spectrum is defined by (4.15) or by requiring that

(4.6) admit periodic solutions. Points of this spectrum

(X1, X2,...) occur at the edges of the unstable bands. Note

that periodic solutions of (4.6) are independent of xo

ii) The auxiliary spectrum (y1, Y, .) is defined by

ai + bi - I , (4.16)
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or by requiring that there be a solution of (4.6) that satisfies

Y(xo; x0, X) = 0 = Yoxox+L; xo, ) . (4.17)

It follows from (4.10) and (4.16) that a 2 1 at each of these

points, which must therefore lie in the unstable bands. One may show

that each unstable band contains exactly one point of the auxiliary

spectrum. By assumption, at most N of these points of the auxiliary

spectrum do not coincide with points of the main spectrum.

Given u(x) and xO , determination of {j} and {yj}

completes the direct scattering problem. The inverse mapping

requires knowledge of the analytic properties of the monodromy matrix,

as one might expect by analogy with the inverse problem on the

infinite interval. The final result is miraculously simple:

2N+l N

u(xo )  k U + U .•4.17)
j=l j-I

Now it remains only to find how the two spectra depend on xo , and

on time.

The boundary conditions that define {Xj} and {yj) suggest

that the main spectrum should be independent of xo , but that the

auxiliary spectrum should not be. This turns out to be the case. One

shows that

= 0, (4.18a)ax
o

___i = [2 R i ) afl 0 -Yk] j N

(4.18b)

where o = ±1 and

t
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R). 2 : - j) . 418c)
j=l

The x.- deendence of -j } is as frightening as (4.17) was appealing.

One is faced in 4.18b) with the integration of N coupled, nonlinear,

ordinarz -ifferertial equations, even before time-dependence is

brought into the picture! Fortunately, another miracle occurs, and

there is a change of variables (involving hyperelliptic functions) that

permits one to integrate (4.18b) by quadrature. Thus although (4.18b)

looks foreboding, it represents a straight-line motion when viewed

appropriately. The cost of acquiring this simple picture is that

one must introduce hyperelliptic functions.

The time-dependence of the two spectra parallels their

xo-dependence. For the KdV equation,

J = 0 , (4.19a)
5t

= 8i [k 7 j h [k -'k [k ,k] R(j
)

j 1 ,N , (4.19b)

where + l ±, and R(X) was defined by (4.18c). Again, the

integration in (4.19b) may be reduced to quadrature by introducing

hyperelliptic functions.

What are the consequences of introducing hyperelliptic functions?

One may show that for an N-band solution of the KdV equation (i.e.,

whose auxiliary spectrum contains only N nondegenerate points),

u(x, t) = 2 - Zn Ne, 21, . ... N
) 

+ constant , (4.20a)

where

I



j i (kj X -j t) , (4.20b)

each ki and is constant, and ON is the theta function, an

analytic function that is periodic in each of its N variables

separately (cf., Siegel, 1971, Vol. II). It follows that the motion

described by an N-band solution of the KdV equation may be thought of

as uniform translation of a point along a straight-line path on an

N-dimensional torus. Because any such solution has only N degrees

of freedom, rather than infinitely many as (4.1) suggests a priori,

it has a relatively short recurrence time tnat may be estimated from

a knowledge of IN in (4.20b). This is apparently the

explanation of the relatively short recurrence time observed

numerically by Zabusky and Kruskal (1965). [Recently, Thyagaraja

(1979) proposed another explanation of the short recurrence times in

the periodic KdV problem. His method is based on counting the

number of Fourier modes, rather than the number of unstable bands,

required to describe a KdV solution. His method provides a rigorous

upper bound on the recurrence time, but it seems not to give an

accurate estimate of the true recurrence time.]

In an abstract sense, this theory of the periodic KdV problem

(or its generalization by McKean and Trubowitz, 1976) is complete.

In a practical sense, it is difficult to extract from the theory the

numbers that one needs to make comparisons with experiments. [The

difficulty here is simply that hyperelliptic functions have not yet

been reduced to a practical engineering tool.] Here are some of the

practical problems for which satisfactory answers are not yet

available.

(1) Given an N-band solution of (4.1), what is its recurrence time?

(2) Given appropriate initial data for (4.1), estimate its

recurrence time.

(3) Zabusky (1969) defined Tb to be the time of breakdown of

1
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the solution of

Ut + uux  = 0 (4.21)

that evolves from u(x, 0) = sin (2Tx/L). He found empirically

that the recurrence time of the corresponding solution of

ut + uux + 52Uxxx  = 0 (4.22)

was

Tr (0,71/5)Tb (4.23)

Can this formula be derived theoretically?

(4) "Solitons" have come to mean special solutions of problems

solvable by IST on the infinite interval. Each soliton is

associated with a discrete eigenvalue in that formulation.

Kowever, the word was coined by Zabusky and Kruskal (1965) to

describe phenomena observed in the periodic problem. What

were the "solitons" they observed? How does the band

structure of a solution of the periodic problem relate to the

number of solitons that one would observe numerically?

Ii'
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Part V

Deterministic and Chaotic Models

In the course of these lectures, I have tried to survey the

theory of nonlinear evolution equations ("soliton theories") that can

be solved by IST. If one were asked to identify the single feature of

these equations that ientifies them as special, one might choose the

predictability of their solutions as their common identifying feature.

This property may be stated in several ways.

i) These equations are deterministic, not only for some finite

time, but for all time.

ii) Their solutions are (neutrally) stable with respect to

perturbations in the initial data.

iii) Their solutions are predictable.

All of these notions are closely related to each other, and they

amount to saying that for these special equations, the initial-value

problem makes sense in a practical, real-world way. Because of their

predictability, these completely integrable equations may be regarded

as prototypes of deterministic problems.

As models of physical systems, they contrast sharply with

stochastic models, which require a certain amount of unpredictability.

This unpredictability may come from a variety of sources; one

possibility is that the dynamics themselves may be unpredictable. An

example of this inherent unpredictability may be seen in a system of

coupled ordinary differential equations known as the "Lorenz model":

x = o(y- x) ,

+ y - -x(z-r) , (5.1)

- xy - bz ,

'if I
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where ') = d( )/dt , and (a, r, b) are parameters. In their

original context these equations modelled a problem in convection, and

o represented the Prandtl number, r the Rayleigh number, and b was

a measure of a length scale. For this discussion, however, we may

regard them simply as a dynamical system with parameters.

Lorenz (1963) chose certain values of the parameters

( 1 10, b = 8/3, r = 28), and integrated the equation numerically.

His results are described in detail in his original work, and may be

summarized by saying that the solutions he computed were unpredictable.

These equations have become a popular model of a dynamical system

exhibiting chaotic behavior. Based on a great deal of numerical

work following that of Lorenz, the current consensus is that the

solutions of these equations are ergodic, although no proof has been

found. [The original notion of an ergodic trajectory, due to

Boltzmann, was that in the course of time it should wander everywhere

in the available phase space. Some technical revisions have been

required since then, but the original notion still is close to being

correct. For a more complete account, see Arnold and Avez (1968)

or Arnold (1978).]

We may regard the Lorenz model with the particular parameters

chosen by Lorenz as a prototype of a "chaotic model". Its features

may be characterized in the following ways.

i) The equations are deterministic for a finite time (i.e., given

finite initial data, a unique solution exists). However, the

solution becomes less and less determined by the initial data

as time increases without bound.

ii) The solution is unstable with respect to perturbations of the

initial data.

iii) Given any initial data, the solution is unpredictable over a

long time scale in any practical sense.

I"'
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Now we have two kinds of dynamical systems. The Lorenz model is

chaotic, and one might imagine using statistical methods to analyze

the problem further. Soliton theories are deterministic, and

statistical methods would only obscure matters there. Thus, a

fundamental question is "How does one know whether a given model will

be chaotic or deterministic?"

This same question arises in the foundations of statistical

mechanics, and of the theory of turbulence. Perhaps the first context

in which the question arose was theology. In that context,

deterministic theory was called "predestination", while evidence of

unpredictable behavior was attributed to "free will". A corresponding

debate, with somewhat different names, is now in progress in

psychology.

No attempt will be made here to classify all dynamical systems on

the basis of how chaotic their solutions are. We will examine a

narrower question, which may be regarded as a first step in

constructing such a grand classification scheme.

a: What determines whether a given partial differential

equation can be solved by IST?

This question has been the motivation of recent work by Ablowitz,

Ramani and Segur (1978, 1980a,b). The answer seems to be related to

what we may call the "Painlevg property" (which will be defined

shortly).

After this rather long introduction, we may finally outline the

lecture. First, we must define the Painlevd property for ordinary

differential equations (ODEs), because everything else follows from

it. Next we may show that ODEs with the Painlevd property are

related to evolution equations solvable by IST. Our conjecture about

characterizing these nonlinear partial differential equations (PDEs)

then is almost obvious: they must reduce to ODEs of Painlevf type.

What is less obvious is how to prove the conjecture, but a partial

proof is available. The notion that ODEs of P-type are closely

Lti
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related to IST and complete integrability may be used in a variety of

ways. We will look at two: (i) to test whether a given POE can be

solved by IST; and (ii) to find conditions under which the Lorenz model

is completely integrable.

1.

The Painlevd Property

Consider first a linear ordinary differential equation, say of

second order:

d
2
w + p(z) dw + q(z)w 0 (5.2)d Z
2  dz ~ ~ 52

For suitable p(z) and q(z) , this equation may be viewed in the

complex plane, and the singularities of the solution of (5.2) are

found by examining p(z) and q(z) (e.g., Ince, 1956, Ch. 15). In

particular, the general solution has two constants of integration,

w(z; A,B) = Awl(z) + Bw2 (z) , (5.3)

and the location in the complex plane of the singularities of w(z)

do not depend on A or B. The singularities of a linear differential

equation are said to be fixed, because they do not depend on the

constants of integration.

Nonlinear differential equations lose this property. A very

simple example of a nonlinear ODE is

dw + W2 - 0, (5.4)
dz

its general solution is

w(z; zo ) = - Iz- (5.5)

Here zo  is the constant of integration, and it also defines the

location of the singularity. This singularity is movable, because its
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location depends on the constant of integration.

So linear differential equations have only fixed singularities,

nonlinear equations can have both fixed and movable singularities.

About 100 years ago, mathematicians asked the following question:

Q: Which nonlinear ODEs admit no movable branch points

or essential singularities?

Movable poles are allowed, as are fixed singularities of any kind. We

will refer to this property as the Painlevd-property, and equations

that possess it will be said to be of Painlev6-type, or P-type.

It turns out that the only first order equations with the

Painlevd-property are generalized Riccati equations

dw = po(Z) + p1 (z)w + p2(z)w
Z  

(5.6)dz

(A complete review of the nineteenth century work in this field may be

found in Ince, 1956, Ch. 12-14.)

Painlev6 and his coworkers were able to answer the question

comprehensively for second-order equations of the form

dw -W F( L, w , , (5.7)

where F is rational in dw/dz and w, and analytic in z . They

showed that out of all possible equations of the form (5.7) only

50 canonical equations have the Palnlevt property of no movable branch

points or essential singularities. Further, they showed that 44 of

these equations can be reduced to something already known, such as

elliptic functions. That left six equations that defined new

transcendental functions, called the Painlevd transcendents. The

first three of these are:

d
2
w . 6w

2 
+ z Pl

IA
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d
2
w 2w

3 
+ zw + ol PI

d~w I 1~w\2  
_1( dw\ + (aW2+ )+ I+ ~ p

0 z lZ) z w III

There are three more.

The question of which equations have the Painlevt-property is

appropriate at any order, but comprehensive results are available only

at the first and second order.

2.

Relation to IST

A relation between ODEs of P-type and the inverse scattering

transform is formulated in the following:

Conjecture (Ablowitz, Ramani, and Segur, 1978)

Every nonlinear ODE obtained by an exact reduction

of a nonlinear PDE solvable by some inverse scattering

transform has the Painlevf-property.

Here are some examples. The Boussinesq equation

utt = Uxx + + I uxxxx (5.8)

is a nonlinear POE solvable by IST (Zakharov, 1973). An exact

reduction to an ODE may be obtained by looking for a traveling wave

solution:

u(x, t) = w(x - Ct) = w(z) (5.9)

Then (5.8) becomes

(l -c 2) w' + +) w 0 , (5.10)
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which can be integrated twice. Depending on the constants of

integration, the result after rescaling is either

w" + 2w
2 
+ a = 0 or w" + 2w2 + z = 0. (5.11)

The first possibility defines an elliptic function, whose only

singularities are poles. The second possibility is the equation for

PI * In either case, the ODE has the Painlev6 property. So the PDE

solvable by inverse scattering reduces to an ODE of P-type.

Another example is the modified KdV equation

ut - 6u
2 u

x + Uxx x  = 0 , (5.12)

which can be solved by IST (Wadati, 1972). An exact reduction to an

ODE may be obtained by looking for a self-similar solution:

u(x, t) = (3t)-
2 3

w(z) ; z = x/(3t)
3

,

(5.13)

W." - 6w'w' - (zw)' = 0

This can be integrated once

w" = 2w
3 

+ zw + a. PII

Again, the ODE is of P-type.

The sine-Gordon equation

Uxt = sinu (5.14)

can be solved by IST (Ablowitz, Kaup, Newell and Segur, 1973). It has

a self-similar solution

u(x, t) - f(z) , z xt (5.15)

If we set w(z) exp(if), then

( (w') + -(w - ) Pll

Again, the ODE is of P-type.
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By now the pattern is evident, and I may simply state that there

is a nonlinear evolution equation solvable by IST that reduces to PIV

and another that reduces to PV" The point is not that the evolution

equation must reduce to one of the six Painlevd transcendents, which

are all of second order, but that it must reduce to an ODE of P-type.

We have checked an enormous number of examples. In every case

checked, PDEs that can be solved by IST reduce to ODEs of P-type and

PDEs that are not solvable by IST (e.g., this may be determined by

observing numerically that two solitary waves do not interact like

solitons) reduce to ODEs that are not of P-type.

So there is some kind of relation between partial differential

equations solvable by IST and ordinary differential equations of

P-type. This relation can be used to examine either the ODEs or the

PDEs. To see how it helps in the study of the ODEs, consider the

mKdV equation and P III Recall that the last step of IST, the inverse

scattering part, goes as follows. F(x, t) satisfies a linear

partial differential equation

Ft + Fxx x  = 0 (5.16)

subject to some boundary and initial conditions. Then K(x, y; t)

satisfies a linear integral equation of the Gel'fand-Levitan-Marchenko

type,

K(x,y) = F(x+y) + fjr K(x,z) F(z+s) F(s+y) dzds y > x

X X

(5.17)

Once K is known, then q(x, t) = K(x, x; t) satisfies mKdV:

qt - 6q
2
qx + qxxx = 0 . (5.18)

In the full IST treatment, F depends on the initial data of

q(x, 0) through the direct scattering problem. Here we simply start

) __
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with F, and force everything to be self-similar:

= x/(3t)
z3 

, n = y/(3t)
v  

,

F(x, t) = (3t)-l" F(r) , K(x, y; t) = (3t)-I
3
K( ' K )

(5.19)

Then (5.16) becomes a linear ODE

"'( ) - (IF)' = 0 (5.20)

and a one-parameter family of solutions is

Fr('' + r Ai(+) (5.21)

where Ai(;) is the Airy function. The integral equation (5.17)

becomes:

K( ,n) = r Ai + f K(e, ) Ai;+) Ai" dde

> (5.22)

The Airy function decreases rapidly as its argument becomes large, so

the integral term in (5.22) is very well-behaved. Therefore, it is

relatively easy to solve (5.22) for n > . On n = , the solution

of (5.22) satisfies the self-similar form of mKdV, viz., P1I:

d2
di- K(', ) = 2K( ,{) + &K(& . (5.23)

(Two different proofs of this fact are given by Ablowitz, Ramani and

Segur, 1978, 1980a.) The point here is that (5.22) is an exact

linearization of P II: every solution of the linear integral equation

also solves P1I I The general solution of (5.23) involves two

arbitrary constants; the linear integral equation gives a one parameter
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(r) family, which includes all of the bounded real solutions of

(5.23).

Next let us sketch a partial proof of why this test actually

works. Consider a linear equation of tne form

K(x,y) = F(x+y) + K(x, z) N(x; z,y)dz , y x , (5.24)
x

where F vanisnes rapidly for large values of the argument and N

depends on F. For example, in (2.16), N(x, z,y) = F(z+y) . In

(5.22), we had

N(x, z,y) f F(z+s) F(s+y) ds . (5.25)

x

Other choices are also possible. We want to show that every solution

of a linear integral equation like (5.24) must have the Painlev6

property. Then if K also satisfies an ODE, the family of solutions

of the ODE obtained via (5.24) necessarily has the Painlevd property

as well. So the Painlevd property is not out of the blue, it is a

consequence of the linear integral equation.

Very roughly, the proof goes like this (for details, see

Ablowitz, Ramani and Segur, 1980a; also McLeod and Olver, 1980).

i) F satisfies a linear ODE, and therefore has no movable

singularities at all.

ii) If F vanishes rapidly enough, then the Fredholm theory

of integral equations applies. It follows that (5.24) has

a unique solution in the form:

K(x,y) F(x+y) + ( F(x+z) D(x, zY) dz . (5.26)
f D2(x)

where D, and D are entire functions of their arguments. Then the

I"
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singularities of K can only come from the fixed singularities of F,

or the movable zeros of D2. But 02 is analytic, so these movable

singularities must be poles.

3.

Here are two examples of how the conjecture may be used.

Example:

In (1 +1) dimensions, the nonlinear Schrbdinger equation is

iut = uxx + aIu! 2 
U . (5.27)

It can be solved by IST (Zakharov and Shabat, 1972). A natural

generalization to (2+1) dimensions is

iut = V'u + alu 2 u . (5.28)

We claim this equation cannot be solved by IST, because (5.28) has a

similarity solution in the form

u(x, y, t) = R(/xT+y; X) exp(iXt) , (5.29)

and the ODE for R(r) is not of P-type. So the nonlinear Schr6dinger

equation is solvable in (1+1) dimensions, but not in (2+1)

dimensions, or in (3+1) dimensions. On the same grounds, we claim

that the equation for water waves in deep water,

iut + Ux - uyy + Cluj
2
u - 0 ( (5.30)

cannot be solved by IST.

Example:

If the Painlevd property is as closely tied to complete

integrability as we have claimed, it ought to identify values of the

parameters for which the Lorenz model (5.1) is completely integrable.

o! ,1

P
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Thus, we may ask whether the Lorenz model is ever of P-type. The

answer is that there are exactly four choices of (_, r, b) for which

(5.1) is of P-type.

i) 
= 
0. In this case the equations are effectively linear, and

therefore deterministic. Certainly the solutions exhibit no

chaotic behavior.

ii) : = 1/2, b = 1 , r = 0. The equations have two exact

integrals:

y
2 

+ z_ = A
2 
exp(-2t) , (5.31)

xz - z = B exp(-t) , (5.32)

after which the third integration may be obtained by quadrature,

or the solution may be expressed in terms of elliptic functions.

The solutions may be considered generalizations of the periodic

orbits identified by Lorenz.

iii) o = 1 , b = 2 , r = 1/9. A first integral is

x
2 
- 2z = C exp(-2t) . (5.33)

After an involved change of variables, the resulting second-order

equation becomes P II* Again, the problem is deterministic.

iv) c 1/3, b = 0 , r arbitrary. (The analysis of this case is

due to A. Ramani.) We may write y - 3i+x from (5.1a), and

replace (5.1) with a third-order equation for x. It has a

first integral:

x- 2 + C exp(- 4/3 t). (5.34)4

With the substitution,

T = exp(-t/3), x(t) - T4(T), (5.35)

i'1
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(5.34) reduces to PIll with a = B 0 . Thus the Lorenz model

(5.1) has at least one integral, and reduces to a classically

known equation of lower order, whenever the coefficients

(c, r, b) are chosen so that (5.1) is of P-type.

These isolated points of parameter space are embedded in larger

regions in which the equations have first integrals, although they

m.y not be completely integrable.

v) If b = 1, r = O, then (5.31) obtains for any o. The

existence of this integral precludes ergodic trajectories.

vi) If b = 2o, then for any (r,c),

x' - 2az = C exp(-2ct). (5.36)

Again, ergodic trajectories are impossible.

These different possibilities are shown in a map of parameter

space in Figure 8. The point here is that although the Lorenz model Fg.8

may be chaotic for some values of the parameters, it is completely

integrable for others, and looking for the Painlevd property provides

an effective means of identifying points of deterministic behavior.

Of course, this notion is not restricted to the Lorenz model.

I !



-56-

Acknowledqements

This work was supported by the U.S. Office of Naval

Rese+-ch and by the U.S. Army Research Office.

Fijiv eCaRotons

1. Physical configuration, showing notation for (1.9).

2. Typical long-time solution of (2.1), with the wave-train spreading

to the left. Modulations of the wave-train are determined by the

initial data.

3. Soliton solution of the KdV equation (2.7).

4. Typical long-time KdV solution. The solitons are determined by

the discrete spectrum [K2 and rj in this case], while the

radiation is associated with the continuous spectrum [b(k)3.

5. Measured packet of monochromatic (frequency = I Hz) surface waves

of small amplitude. The theoretical shape of the appropriate

envelope soliton solution of (3,16) is given by the dashed line.

From Ablowitz and Segur (1979).

6. Cnoidal wave solution of the KdV equation (4.1) with k = 1/2 and

udx a 0.

7. Floquet diagram for a particular u(x) in (4.7). In this

example there are four unstable bands.

8. Map of parameter space for Lorenz model (5.1), showing where

equations have Painlevf property (P1 - P4 ) and where they admit

exact integrals.

,



Z, w

II, Si



-4

* -. F

V

I

4

K

I

I

- LL~

K 17.71



-4
-I -. ~

I
I

~xt)

I

-2 -~ 0 2 ur(x-4wm t-x0)

I

*

I

I

~



Iu(x.t)
b(k~t)



I

00 0 00
- 9 0 0 -

6 0 0 0 0 0

I
j



cc4

0/



,~ ~~'r-

I

.3 u(a~t) I

.2 pa

.1

pCx-ct)
I -

x(k)

-.1

-.2

£ -.3

*

i
V

)

'K hr



aa

II



r

-cra 0
Linear
System

IP

r.0£ -2



References

General References

By the time the Proceedings of this school appear in print, a

number of books on the theory of equations with solitons also will

have appeared in print, including:

G. Lamb, Elements of Soliton Theory, Wiley, 1980.

V. E. Zakharov, S. V. Manakov, S. P. Novikov, et al., (title

unknown, in Russian), 1980.

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering

Transform, SIAM, 1981.

Most of the material in these lectures was drawn from this last

reference.

I. Plysical Meaning of Equations with Solitons

Benjamin, T. B., J. Fluid Mech., vol. 25, p. 241, 1966.

Gibbon, J. D., I. N. James and I. M. Moroz, Proc. Roy. Soc.

London A, vol. 367, p. 219, 1979.

Hammack, J. L. and H. Segur, J. Fluid Mech., vol. 65, p. 289,

1974.

, . Fluid Mech., vol. 84, p. 337, 1978.

Hasimoto, H. and I. Ono, J. Phys. Soc. Japan, vol. 33, p. 805,

1972.

Kadomtsev, B. B. and V. I. Petviashvili, Sov. Phys. Doklady,

vol. 15, p. 539, 1970.

fI



Korteweg, D. J. and G. deVries, Phil._MA2., ser. 5, vol. 39,

p. 422, 1895.

Lamb, H., Hydrodynamics, Dover, N.Y., 7932.

Ono, H., J3. Phys. Soc. Japan, vol. 39, p. 1082, 1975.

Rayleigh, Lord (J. W. Strutt), Phil. Mag., ser. 5, vol. 1,

p. 257, 1876.

Stoker, J. J., Water Waves, Interscience, N.Y., 1957.

Wehausen, J. V. and E. V. Laitone, "Surface Waves" Handbuch der

Physik, vol. 9, Springer-Verlag, 1960.

Yuen, H. C. and B. M. Lake, Phs Fluids, vol. 18, p. 956, 1975.

Zakharov, V. E., Sov. Phys. J. App. Mech. and Tech. Phys., vol. 4,

p. 190, 1968.

11. Introduction to the lnverseScatterin rnfr

Ablowitz, M. J., D. J. Kaup, A. C. Newell and H. Segur, S-tud.

A App.Math., vol. 53, p. 249, 1974.

Calogero, F. and A. Degasperis, Nuovo Cimento, vol. 323, p. 201,

1976.

Oeift, P. and E. Trubowitz, Cormm. Pure and App. Math., vol. 32,

p. 121, 1979.

Gel'fand, 1. M4. and B. M. Levitan, Izv. Akad., Nauk SSSR, ser.

mat. 15, p. 309, 1951; translated in Amer. Math. Soc. Trans., ser. 2,

vol. 1, p. 253, 1955.

Gardner, C. S., J. M. Greene, M4. D. Kruskal and R. M4. tMiura,

Phys. Rev. Lett,, vol. 19, p. 1095, 1967; also Con, ue p.Mt.

vol. 27, p. 97, 1974.



Stoker, J. J., Water Waves, Interscience, N.Y., 1957.

Whitharn, G. B., Linear and Nonlinear Waves, Wiley-Interscience,

N.Y., 1974.

Zakharov, V. E. and A. B. Shabat, Soy. Phys. JETP, vol. 34,

p. 62, 1972.

III. More Inverse Scattering on the Infinite Interval

Ablowitz, M. J., D. J. Kaup, A. C. Newell and H. Segur, Stud.

App. Math., vol. 53, p. 249, 1974.

Ablowitz, M. J. and H. Segur, J. Math. Phys., vol. 17, p. 710,

1976.

J. Fluid Mech., vol. 92, p. 691, 1979.

Arnold, V. I., Mathematical Methods in Classical Mechanics,

Benjamin, N.Y., 1978.

Benjamin, T. B. and J. E. Feir, J. Fluid Mech., vol. 27,

p. 417, 1967.

Gel'fand, I. M. and B. M. Levitan, Izv. Akad. Nauk SSSR, ser.

mat. 15, p. 309, 1951; translated in Amer. Math. Soc. Trans., ser. 2,

vol. 1, p. 253, 1955.

Goldstein, H., Classical Mechanics, Addison-Wesley, Reading,

Mass., 1950.

Muskhelisvili, N. I., Singular Integral Equations, Noordhoff,

Groningen, Holland, 1953.

Segur, H., J.ath. Phs. vol. 17, p. 714, 1976.

Zakharov, V. E. and L. D. Faddeev, Funct. Anal , vol. 5,

p. 280, 1971.

kd (.._



Zakharov, V. E. and S. V. Manakov, Sov. Phys. JETP, vol. 44,

p. 106, 1976.

Sov. Phys. Reviews, vol. 1, p. 133, 1979.

Zakharov, V. E. and A. B. Shabat, Sov. Phys. JETP, vol. 34, p. 62,

1972.

IV. The Korteweg-deVries Equation with Periodic Boundary Conditions

Byrd, P. F. and M. D. Friedman, Handbook of Elliptic Integrals,

Springer-Verlag, N.Y., 1971.

Dubrovin, B. A. and S. P. Novikov, Soy. Phys. JETP, vol. 40,

p. 1058, 1975.

Fermi, E., J. Pasta and S. Ulam, "Studies of Nonlinear Problems",

Los Alamos Rep't LA 1940, 1955; reprinted in The Collected Papers of

Enrico Fermi, U. of Chicago Press, 1965.

Gardner, C. S., J. M. Greene, M. D. Kruskal and R. M. Miura,

Phys. Rev. Lett., vol. 19, p. 1095, 1967; also Comn Pure App. Math.,

vol. 27, p. 97, 1974.

Korteweg, D. J. and G. deVries, Phil. Mag., ser. 5, vol. 39,

p. 422, 1895.

Magnus, W. and S. Winkler, Hill's Equation, Dover, N.Y., 1979.

McKean, H. P. and E. Trubowitz, Comm. Pure App. Math., vol. 29,

p. 143, 1976.

Miura, R. M., C. S. Gardner and M. D. Kruskal, J. Math. Phys.,

vol. 9, p. 1204, 1968.

Siegel, C. L., Topics in Complex Function Theory, vol. II,

Wiley-Interscience, N.Y., 1971.

I i



Thyagaraja, A., Phys. Fluids, vol. 22, p. 2093, 1979.

Zabusky, N. J., J. Phys. Soc. Japan, vol. 26, supplement 196,

1969.

Zabusky, N. J. and M. D. Kruskal, Phys. Rev. Lett., vol. 15,

p. 240, 1965.

V. Deterministic and Chaotic Models

Ablowitz, M. J., D. J. Kaup, A. C. Newell and H. Segur, Phys.

Rev. Lett., vol. 30, p. 1262, 1973.

Ablowitz, M. J., A. Ramani and H. Segur, Lett. Nuovo Cim.,

vol. 23, p. 333, 1978.

, J. Math. Phys., vol. 21, p. 715, 1980.

, . Math. Phys., vol. 21, p. 1006, 1980.

Arnold, V. I., Mathematical Methods in Classical Mechanics,

Benjamin, N.Y., 1978.

Arnold, V. I. and A. A. Avez, Ergodic Problems in Classical

Mechanics, Benjamin, N.Y., 1968.

Ince, F. L., Ordinary Differential Equations, Dover, N.Y., 1956.

Lorenz, E. N., J. Atm. Sci., vol. 20, p. 130, 1963.

McLeod, J. B. and P. J. Olver, "The Connection between Completely

Integrable Partial Differential Equations and Ordinary Differential

Equations of Painlevd-Type", preprint.

Wadati, M., J. Phys. Soc. Japan, vol. 32, p. 1681, 1972.

Zakharov, V. E., Soy. Phys. JETP, vol. 38, p. 108, 1974.

Zakharov, V. E. and A. B. Shabat, Soy. Phys. JETP, vol. 34,

p. 62, 1972.

i ~,

tj


