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Dynamics of a chain of interacting parity-time-invariant nonlinear dimers is investigated. A dimer is built as a

pair of coupled elements with equal gain and loss. A relation between stationary soliton solutions of the model

and solitons of the discrete nonlinear Schrödinger (DNLS) equation is demonstrated. Approximate solutions for

solitons whose width is large in comparison to the lattice spacing are derived, using a continuum counterpart

of the discrete equations. These solitons are mobile, featuring nearly elastic collisions. Stationary solutions for

narrow solitons, which are immobile due to the pinning by the effective Peierls-Nabarro potential, are constructed

numerically, starting from the anticontinuum limit. The solitons with the amplitude exceeding a certain critical

value suffer an instability leading to blowup, which is a specific feature of the nonlinear parity-time-symmetric

chain, making it dynamically different from DNLS lattices. A qualitative explanation of this feature is proposed.

The instability threshold drops with the increase of the gain-loss coefficient, but it does not depend on the lattice

coupling constant, nor on the soliton’s velocity.
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I. INTRODUCTION

In the original works by Bender et al. [1,2], it was pointed

out that non-Hermitian Hamiltonians can have an entirely real

eigenvalue spectrum under the parity-time (PT )-symmetry

constraint. This mathematical observation can have deep

physical consequences, essentially altering the familiar prop-

erties of collective modes in the respective media combining

amplification and dissipation. Indeed, it is usually assumed

that the balance between the gain and loss uniquely selects

parameters of isolated stable modes. However, the use of

the PT symmetry makes it possible to support continuous

families of modes, allowing the dissipative media to emulate

conservative ones, up to a certain threshold level. In particular,

the effects of amplification and dissipation may stay in the

exact balance for symmetric configurations of weak fields;

hence the PT -invariant dynamics is preserved. In contrast, for

field intensities above the threshold, nonlinear self-action (if

present in the system) breaks the PT symmetry both locally

and globally, resulting in the asymmetric wave localization in

the region with amplification.

As the necessary condition for the PT symmetry of the

Hamiltonian with a complex potential, V (x), is reduced to

condition V (x) = V ∗(−x), such systems can be realized in the

most straightforward way in optics, by combining a spatially

symmetric profile of the refractive index with symmetrically

placed mutually balanced gain and loss [4] (complex potentials

may also be physically relevant in the case when they are not

subject to the PT -symmetry constraint [3]). The possibility to

realize physical systems with the PT symmetry was a moti-

vation for many theoretical [5] and experimental [6] works.

Effects of the conservative nonlinearity in PT -symmetric

systems were addressed too [7–9]. Recently, the nonlinearity

of the gain and loss, also subject to the condition of the PT

symmetry, was introduced in Ref. [10].

The simplest nonlinear PT -symmetric object can be

realized as a pair of linearly coupled optical waveguides (also

called a dimer), composed of a passive waveguide carrying

linear loss and its active counterpart imparted with a matched

compensating gain [8] (in a more general form, without

the condition of the exact equilibrium between the loss and

gain, the same system of linearly coupled active and passive

waveguiding cores was investigated for a long time in various

forms [11–15]; see also a review in Ref. [16]). A chain of

such PT -invariant couplers was studied in Ref. [9], with each

active or passive element linearly connected to an element of

the opposite sign, belonging to an adjacent coupler. In other

words, in this setting the axis of each waveguiding coupler is

perpendicular to the direction along which the chain is built.

It was demonstrated that this chain of couplers can support

stable solitons with amplitudes smaller than a threshold

amplitude.

In the present work, we propose and analyze another array

of PT -symmetric couplers with the intrinsic nonlinearity. In

the array, active and passive elements are linearly coupled to

the elements of the same sign belonging to adjacent dimers [see

Fig. 1(a)]; i.e., the axes of the couplers are aligned with the

direction of the chain composed of them. In fact, the proposed

system is quite natural in terms of the realization in optics,

as it can be built of two parallel extended waveguides, one

pumped and one lossy, if each one is segmented into an array

of individual waveguides. Our aim is to find nonlinear localized

modes (discrete solitons) in this chain, and study their stability,

mobility, and interaction.

The paper is organized as follows. Section II outlines the

model. Analytical results for moving and stationary solitons

and their stability are presented in Sec. III. Results of numerical

studies are reported in Sec. IV. Section V concludes the paper.

II. MODEL

As said above, we consider a nonlinear chain, shown

in Fig. 1(a), which is described by the following set
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FIG. 1. (a) Schematic of the chain of dimers. (b) Spatiotemporal

evolution of |un(t)|2 showing the propagation of a soliton through the

chain of dimers described by Eq. (2) [the respective plot for |vn(t)|2
is nearly identical to this one]. The initial conditions were set as per

the approximate solution (6), with γ = 0.5, A = 0.37, C = 0.5, and

V = 0.2. (c) Same as in (b), but for a larger velocity, V = 2.

of equations:

dun

dt
= +γ un + iσ |un|2un + iκvn

+ iC(un+1 + un−1 − 2un),

dvn

dt
= −γ vn + iσ |vn|2vn + iκun

+ iC(vn+1 + vn−1 − 2vn). (1)

Here γ > 0 is the coefficient of the gain and loss acting on

complex variables un and vn, which correspond, respectively,

to the active and passive elements; real coefficient σ accounts

for the nonlinear frequency shift (the intrinsic nonlinearity

of each element); κ is the constant of the vertical coupling

inside the dimer; and C is a coefficient of the horizontal linear

coupling between dimers in the chain [see Fig. 1(a)]. Using ob-

vious transformations (vn → −vn, the complex conjugation,

and staggering, respectively), one can fix κ , C, and σ to be

positive. Finally, by means of rescaling, we can set κ = σ ≡ 1,

which leaves γ > 0 and C > 0 as irreducible parameters, the

final form of the equations being

dun

dt
= γ un + i|un|2un + ivn + iC(un+1 + un−1 − 2un),

dvn

dt
= −γ vn + i|vn|2vn + iun + iC(vn+1 + vn−1 − 2vn).

(2)

First, we will derive approximate solutions for moving

broad solitons, whose width is large in comparison with

the lattice spacing, and study their almost elastic collisions,

using a continuum counterpart of the discrete equations. We

will also consider the case of narrow solitons, finding such

strongly localized solutions numerically, starting from the

anticontinuum (AC) limit. It will be demonstrated that the

solitons with the amplitude exceeding a certain critical value

become unstable. Because the instability is induced by the

interplay of the gain and loss in the PT -symmetric system,

the instability threshold naturally lowers with the increase of

the strength of the gain and loss.

III. SOLITONS

A. Analytical approximations

We start with the analysis of the continuum limit (C → ∞)

of Eq. (2), which leads to the following system of partial

differential equations:

∂u

∂t
= +γ u + i|u|2u + iv + i

∂2u

∂x2
,

(3)
∂v

∂t
= −γ v + i|v|2v + iu + i

∂2v

∂x2
,

which possess exact soliton solutions:
{

u(t,x)

v(t,x)

}

= A sech

[

A
√

2
(x − V t)

]

ei(V x/2−ωt)

{

eiδ/2

e−iδ/2

}

. (4)

Here A, A−1, V , ω, and δ represent the amplitude, width,

velocity, frequency, and intrinsic phase shift of the soliton:

ω = −A2 − cos δ + V 2/4 + A2/2, sin δ = −γ,
(5)

cos δ = ±Ŵ, Ŵ ≡
√

1 − γ 2.

In the following, the case of cos δ = Ŵ will be considered.

Note that Ŵ � 1, and this solution exists for γ � 1. In the

limit of the vanishing gain and loss, γ → 0, Eqs. (3) become

tantamount to the well-known model of dual-core nonlinear

optical fibers. In that case, soliton (4) with cos δ = Ŵ ≡ +1

reduces to the symmetric soliton in the dual-core fiber, which

loses its stability through the symmetry-breaking bifurcation

at a finite value of the energy [17]. For the comparison with the

discrete system introduced in the present work, it is important

to mention that a similar symmetry-breaking instability of two-

component solitons in the discrete counterpart of the dual-core-

fiber model (in fact, this discrete system may also be readily

implemented in optics) was found in Ref. [18].

Although Eqs. (3) are dissipative, they are Galilean invari-

ant; hence the soliton may move at an arbitrary velocity V . It

is also worthy to note that the amplitude of the soliton may be

arbitrary; i.e., the present solutions form a continuous family,

unlike formally similar approximate [11,13,15] and exact [12]
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soliton solutions previously found in the above-mentioned

models of dual-core systems with the gain applied in one core

and loss acting in the other. Those models were considered

without the condition of the balance between the gain and

loss in the general case (although the case of equal gain and

loss had a special purport in that context too); therefore, they

support solitons with two discrete values of the amplitude, one

stable and one unstable.

For sufficiently wide solitons, i.e., for A ≪
√

C, the

following approximate solution to the discrete Eq. (2) can

be deduced from the continuum solution (4):
{

un(t)

vn(t)

}

= A sech

[

A
√

2

(

n − x0√
C

− V t

)]{

eiδ/2

e−iδ/2

}

× exp

{

i

[(

A2

2
+ Ŵ −

V 2

4

)

t +
V (n − x0)

2
√

C

]}

,

(6)

where x0 is shift along the lattice. An example of the soliton

propagation, generated by simulations of Eq. (2) with the

initial conditions taken as per approximation (6), is displayed

in Fig. 1(b). In this case, A/
√

2C = 0.37, i.e., the soliton is not

very wide; nevertheless, approximation (6) yields good initial

conditions for the soliton. The moving soliton practically does

not radiate energy in the form of small-amplitude waves. On

the contrary, Fig. 1(c) demonstrates that the soliton with a large

velocity loses energy through the emission of radiation.

For narrow solitons, with A �
√

C, the approximation

based on the continuum limit is obviously irrelevant. In this

case, solitons can be constructed numerically, starting from

solutions which are exact ones in the anticontinuum limit, that

correspond to C = 0 in Eq. (2):

{

u0

v0

}

= A

{

eiδ/2

e−iδ/2

}

e−iωt ,

(7)
un = vn = 0 for n �= 0,

where A is an arbitrary amplitude, while the frequency and

phase shift between the two components are given by

ω = −A2 − cos δ, sin δ = −γ, cos δ = ±Ŵ. (8)

In the following the case cos δ = Ŵ will be considered,

following the choice adopted above for the broad solitons.

It follows from Eq. (8) that this solution does not exist at

γ > 1 or ω < −Ŵ. (9)

On the other hand, for C �= 0, one has the continuous-wave

(CW) solution to Eq. (2), i.e., the wave with a constant

amplitude, in the form of

un = u0, vn = v0, (10)

for all n, where u0 and v0 are defined by Eqs. (7) and (8).

We stress that, as well as the exact soliton solutions (4) and

approximate solutions (6), the AC and CW solutions, given

by Eqs. (7) and (10), respectively, form continuous families

in spite of the fact that they exist in the dissipative system.

This is a fundamental manifestation of the PT symmetry in

the present system.

B. Stability analysis

The next step of the analysis is the consideration of the

stability of the AC solution (7) and CW solution given by

Eq. (10). In the latter case, the perturbed CW state is looked

for as
{

ũn

ṽn

}

=
{

(A + ǫ1e
αt−ikn)eiδ/2

(A + ǫ2e
αt−ikn)e−iδ/2

}

e−iωt , (11)

where ǫ1 and ǫ2 are complex amplitudes of infinitesimal per-

turbations with eigenvalue α and wave number k. Substituting

this expression into Eq. (2) and performing the linearization

with respect to the perturbations yields four branches of the

dispersion relation,

α1,2 = ±2
√

C(1 − cos k)[A2 − C(1 − cos k)]

≡ ±2
√

χ, (12)

α3,4 = ±2
√

χ + Ŵ[−Ŵ + A2 − 2C(1 − cos k)]. (13)

The CW solution is stable if condition Re{α} � 0 holds for all

four eigenvalues at all k. For C �= 0 it is sufficient to analyze

this condition for α3,4, as inequality Re{α1,2} � 0 follows from

Re{α3,4} � 0. The subsequent consideration demonstrates that

the CW solution might be stable only if condition

A2 � C(1 − cos k) (14)

holds for all k, which is impossible at A �= 0. Thus, for C �= 0,

all the CW solutions (10) are modulationally unstable. This

result also suggests that dark solitons are unstable in the dimer

chain, because the corresponding CW background cannot be

stable.

However, in the case of periodic boundary conditions, rather

than the infinite chain, the CW state can be stable for C �=
0 if the ring-shaped chain is sufficiently short. As follows

from Eq. (14), unstable are the modulational perturbations

with wavelengths

λ ≡
2π

k
>

2π

arccos (1 − A2/C)
.

Thus, if the number of dimers in the chain with periodic

boundary conditions satisfies condition

N �
2π

arccos(1 − A2/C)
, (15)

which makes the length of the chain smaller than the

wavelength of the shortest unstable perturbation, the CW

solution (10) is stable. Because N cannot be smaller than

2, the constraint

A2 � 2C (16)

follows from Eq. (15).

The stability analysis for the AC solution Eq. (7) can be

performed by substituting Eq. (11) into Eq. (2) with C = 0.

In this case, Eqs. (12) and (13) reduce to α1,2 = 0 and α3,4 =
±2

√

Ŵ(−Ŵ + A2), from which it follows that the AC solution

is stable for

A2 �
(

A(0)
max

)2 ≡ Ŵ. (17)

These solutions, stable in the AC limit, are used below to

construct numerical solutions for narrow solitons.
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IV. NUMERICAL RESULTS

Discrete evolution equations (2) were integrated numer-

ically, using a modification of an implicit, unconditionally

stable Crank-Nicholson scheme with accuracy ∼τ 4, where

the time step was taken as τ = 2 × 10−5. Zero boundary

conditions were employed, except for Sec. IV A, where the

periodic boundary conditions were used.

A. Unstable CW dynamics in the chain with periodic

boundary conditions

Interesting dynamics was observed in the chain with

periodic boundary conditions for the initial conditions taken

as per CW solution (10), in the case when the chain’s length

N is only slightly greater than the critical value specified by

Eq. (15), while conditions (16) and (17) are satisfied.

The instability of the system results in periodic appearance

and disappearance of weakly localized states. This dynamics

is illustrated by Fig. 2 for γ = 0.5, A = 0.3, C = 0.3, and

N = 8 (the corresponding CW solution is stable for N � 7).

Figure 2(c) displays the time variation of the localization

parameter defined as

l =

(

N−1
∑

n=0

|un|

)−2 (

N−1
∑

n=0

|un|2
)

. (18)

(a) (b)

(c)

FIG. 2. Unstable dynamics in a compact (N = 8) ring-shaped

chain of dimers with initial conditions corresponding to the CW

state (10) with amplitude A = 0.3 and model’s parameters γ = 0.5

and C = 0.3. (a) Sites (dimers) in the (n,t) plane with intensity

greater than 1.1 A2 are shown in black, while others are not shown.

(b) Evolution of intensity |un(t)|2 [the picture for |vn(t)|2 is identical

to this one, within the numerical accuracy]. (c) Evolution of the

localization parameter l, defined as per Eq. (18).

Note that when |un| = const, as in the unperturbed CW state,

Eq. (18) yields l = 1/N . This is the minimal possible value,

which tends to zero with the increase of N . On the other

hand, when single |un| is different from zero, the localization

parameter attains its maximal value, l = 1.

In the simulations, the only source of perturbations destabi-

lizing the CW state (10) was rounding errors of the numerical

code. In this case, the deviation of the solution from the

initial unstable configuration becomes visible at t ≈ 900.

The unstable dynamics at t > 900 results in quasi-periodic

localizations and delocalizations of |un|2, as seen in Fig. 2(c).

The maximum of |un|2 gradually moves along the chain with

a nearly constant velocity, as seen in Figs. 2(a) and 2(b).

A similar effect of the periodic in time and space localiza-

tion of the unstable CW solution, subject to periodic boundary

conditions, was observed in the model of a diatomic chain of

atoms [19]. A simple analytical model describing this effects

was proposed in Ref. [20].

B. Strongly localized onsite solitons

Sharp (tightly localized) onsite solitons were constructed

starting from the AC-limit solution (7), which is valid for

C = 0. After setting the initial conditions, the coupling

constant was increased linearly in time from C = 0 at t = 0

to C = 0.15 at t = 400 and then kept constant. The total

duration of the numerical run was t = 1000. With such a

slow increase of C, nearly stationary solitons were readily

created (details of the stationary shape of the solitons are given

below). The initial amplitude of the soliton in the AC limit was

A = 0.6. This amplitude satisfies the AC stability condition

(17) for three considered values of the gain/loss parameter,

γ = 0, 0.3, and 0.9. The chain was composed of 21 dimers,

which was sufficient for constructing tightly localized solitons.

Results of the simulations can be summarized as follows:

(i) The loss-gain coefficient γ does not affect the profile

and amplitude of the soliton, |un|2 and |vn|2. This can be seen

in Fig. 3, where the shapes of the solitons constructed for γ =
0, 0.3, and 0.9 practically overlap. Coefficient γ only affects

the phase difference between complex quantities un and vn

and the frequency of the soliton.

The fact that the profiles of stationary solitons do not

depend on γ can be explained by noting that if yn = Wne
−iωt

FIG. 3. Soliton profiles obtained from the anticontinuum limit by

the slow increase of coupling constant C at three different values of the

gain-loss parameter, γ = 0, 0.3, and 0.9. Intensities |un|2and |vn|2
do not depend on γ , while the soliton’s frequency and phase shift

between un and vn depend on γ , as explained in the text.

046609-4



SOLITONS IN A CHAIN OF PARITY-TIME-INVARIANT . . . PHYSICAL REVIEW E 84, 046609 (2011)

is a stationary solution of the standard discrete nonlinear

Schrödinger (DNLS) equation

dyn

dt
= −iyn + i|yn|2yn + iC(yn+1 + yn−1 − 2yn), (19)

then a stationary solution of Eq. (2) can be written as
{

un

vn

}

= Wne
−iωteit(1−

√
1−γ 2)

{

eiδ/2

e−iδ/2

}

, (20)

where δ is defined by Eq. (8). It is clear that solution (20)

with γ �= 0 differs from a stationary solution to Eq. (19),

with γ = 0, only by the frequency and phase shift, while their

intensities are same. Thus, the discrete system based on Eq. (2),

although being dissipative, supports the continuous family

of solitons, being in that respect similar to the conservative

DNLS equation, and different from generic discrete dissipative

systems, such as the discrete complex Ginzburg-Landau

equation [21].

(ii) To check that the numerically found solitons are

stationary ones, we calculated the measure of nonstationarity

at site n, Sn ≡ d(|un|2)/dt , for three solitons constructed from

the AC limit at γ = 0, 0.3, and 0.9. We found that the result

does not depend on γ , as expected in view of the above

comment. In the considered examples, the nonstationarity of

the constructed solitons is weak (max{Sn} does not exceed

0.0003), and it gets weaker for the solitons constructed with

the use of C increasing still slower in time.

(iii) The tightly pinned onsite-centered soliton remains

stable if its amplitude is not too large to break the PT

symmetry. This conclusion is justified by monitoring the long-

term dynamics of the discrete solitons constructed according

to the protocol outlined above.

C. Instability of intersite and twisted tightly localized solitons

In contrast to the stable onsite-centered discrete solitons,

outlined above, the analysis has revealed that all the intersite-

centered solitons are unstable. We attempted to construct

such solitons by starting, in the AC limit, with two adjacent

excited sites, n = 0 and 1, using Eq. (7) with A = 0.6 as initial

conditions, gradually increasing C from C = 0 at t = 0 to

C = 0.15 at t = 400, and keeping then C constant.

In Fig. 4 we present the evolution of the intersite mode

in the course of the increase of C. This mode is stable only

in the absence of the coupling, C = 0. At C �= 0, one site

spontaneously sucks the energy from the other, which ends

with the establishment of a stable onsite-centered soliton. Note

(a) (b)

FIG. 4. Evolution of the intersite-centered soliton, grown from

the AC initial conditions, following the increase of C at two different

values of γ . Eventually, one site spontaneously sucks the energy from

the other one. The parameters are A = 0.6, C = 0.15, and N = 16.

(a) γ = 0.2. (b) γ = 0.6.

that in the examples presented in Fig. 4 this happens at t ≈ 50,

i.e., before C reaches the target constant value of 0.15. We

thus conclude that the intersite soliton is unstable. This result

seems very plausible in view of the above-mentioned relation

of stationary solitons in this system to those in the conventional

DNLS equation (19), where all the intersite-centered solitons

are unstable too [22].

We also attempted to excite twisted (antisymmetric) soli-

tons, by starting, in the AC limit, with two adjacent excited

sites, at n = 0 and 1, using Eq. (7) with A = 0.6 and

introducing the phase shift of π between the sites. This mode

too turns out to be unstable at C > 0. In the usual lattices

of the DNLS type, twisted solitons usually exist at large

amplitudes [22], but the soliton’s amplitude in the present

PT -symmetric chain is limited by condition (17), which is

a possible reason of the failure in looking for stable twisted

solitons.

D. Instability due to the PT -symmetry breaking

According to the stability condition for the soliton in the

AC limit, given by Eq. (17), increase in γ results in a decrease

of the critical value of the amplitude, A(0)
max, above which the

localized mode becomes unstable. For the solitons in the chain

with C > 0, the corresponding critical value was determined

numerically. To this end, we took, as the initial condition, a

soliton constructed as described above (using the slow increase

of coupling constant C), and then switched on a weak net pump

of the energy into the soliton, by introducing a small mismatch

ǫ in the gain/loss balance. In this case, Eq. (2) assumes the

following form:

i
dun

dt
= +(γ + ǫ)un + i|un|2un

+ iC(un+1 + un−1 − 2un) + ivn,
(21)

i
dvn

dt
= −(γ − ǫ)vn + i|vn|2vn

+ iC(vn+1 + vn−1 − 2vn) + iun.

In the stable regime, the field intensities in all dimers remain

equal for the active and passive elements, both slowly increas-

ing due to small excess gain, ǫ > 0. The system becomes

unstable when the soliton’s amplitude attains some critical

value, Amax. An example of the unstable behavior of the central

dimer (n = 0) is shown in Fig. 5. In the unstable regime, the

intensity in the active element sharply increases, while in its

passive counterpart the intensity decays.

In Fig. 6 we compare the dependence of A2
max on γ , as

found numerically in this way, to the analytical result for the

local mode in the AC limit, (A(0)
max)2, as defined by Eq. (17).

It is seen that they are in a good agreement, despite the fact

that A2
max pertains to the chain with C �= 0. The numerical

value is somewhat higher than the analytical estimate, which

may be explained by a particular criterion of the instability

adopted in the numerical study: the soliton was assumed to

become unstable when the largest (over n) relative difference

between |un|2 and |vn|2 attained the level of maxn[||un|2 −
|vn|2|/(|un|2 + |vn|2)] > 0.01.

Results presented in Figs. 5 and 6 were obtained for the

interdimer coupling constant C = 0.15. Similar results were
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FIG. 5. Intensities of the fields at the central dimer, n = 0, as

functions of time, for the soliton in the chain of dimers with a small

gain-loss mismatch: ǫ = 10−5, γ = 0.4, and C = 0.15. Thick and

thin lines pertain, respectively, to the elements with gain and loss,

i.e., |un|2 and |vn|2. The abrupt growth of |un|2 signalizes the onset

of the instability.

obtained for other values, up to C = 0.5. In all the cases

considered, the numerically found instability threshold A2
max

was very close to (A(0)
max)2 predicted by Eq. (17) for the AC-limit

soliton. Thus, the threshold practically does not depend on

the coupling constant C. This result demonstrates a drastic

difference in the dynamical properties of the discrete solitons

in the PT -symmetric chain from its counterparts in the usual

DNLS equation, where the instability of various soliton modes

is solely determined by C [22].

The dynamical blowup of unstable solitons is displayed in

Fig. 7. Initial conditions were set using approximation (6) with

x0 = 0. In this case, A2 = 0.81 > Ŵ =
√

1 − γ 2 ≈ 0.436;

hence the AC stability condition Eq. (17) is violated. The result

displayed in Fig. 7(c) suggests that, for t < 40, the difference

� ≡ ||u0(t)|2 − |v0(t)|2| increases with time exponentially,

and then it starts to grow still faster. This change in the unstable

dynamics is due to a qualitative change in the soliton’s profile,

that can be seen in Figs. 7(a) and 7(b). At t < 40, intensities

FIG. 6. Critical amplitude A2
max, above which the soliton’s insta-

bility sets in, as a function of the loss-gain strength γ . The thick

line is the numerical result for the solitons at C = 0.15. The thin

line represents the critical amplitude (A(0)
max)2 = Ŵ, as predicted by

the stability condition (17) for the soliton in the anticontinuum limit

(C = 0).

(a) (b)

(c)

FIG. 7. Soliton dynamics in the unstable regime. Panels (a) and

(b) display |un(t)|2 and |vn(t)|2, respectively. (c) Difference in the

intensities between the active and passive elements at the central

dimer (n = 0), � = ||u0|2 − |v0|2|, as a function of time. Parameters

are γ = 0.9, C = 2.3, A = 0.9, and V = 0.

|u0|2 and |v0|2 grow with time, but, after the difference between

them becomes sufficiently large, |u0|2 starts to grow faster,

while |v0|2 begins to decrease.

Results presented in Fig. 7 were obtained for the quiescent

soliton (V = 0). We have also studied the influence of the

soliton’s velocity, 0 < V � 0.5, on the onset and development

of the instability. It was found that the growth rate of � in the

unstable regime and the critical soliton amplitude A2
max do not

depend on V .

This instability can be explained by comparison with the

system of two linearly coupled DNLS equations, where the

symmetric discrete soliton is destabilized by the symmetry-

breaking bifurcation [18]. It seems plausible that the spon-

taneous trend to the symmetry breaking, due to the self-

attraction in each chain, explains the onset of the instability

in the present setting. However, there is a drastic difference

from the dual-core DNLS system, where the symmetry

breaking replaces the original destabilized soliton by stable

asymmetric ones; in the PT system this is impossible, as

asymmetric modes cannot maintain the balance between the

gain and loss, and instead exhibit the blowup, as shown in

Fig. 7. A similar mechanism explains a stability limit for

solitons in the model based on continual equations (3) [23].

E. Peierls-Nabarro potential

The effect of the Peierls-Nabarro (PN) potential in the

chain of dimers is demonstrated by simulations presented in

Fig. 8, where the initial conditions were set by using Eq. (6)

with x0 = 0. The parameters were chosen so as to produce a
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FIG. 8. Effect of the Peierls-Nabarro (PN) potential on the soliton

dynamics. The initial momentum imparted to the soliton is not

sufficient to overcome the PN potential barrier; therefore, the soliton

oscillates near a local minimum of the potential. The parameters are

A = 0.6, V = 0.02, γ = 0.5, and C = 0.2.

relatively sharp soliton when the PN barrier is noticeable. The

soliton was kicked with a relatively small velocity (V = 0.02).

The momentum given to the soliton was not sufficient to

overcome the PN barrier; therefore, instead of propagating

(a)

(b)

(c)

FIG. 9. Examples of quasielastic collisions between solitons for

γ = 0.5, C = 2, A = 0.5, and velocities V = ±0.3. The phase shift

between the solitons in panels (a)–(c) is, respectively, π , π/2,

and 0.

along the chain, the soliton oscillates in a local well of the

potential.

F. Collisions between moving solitons

The existence of moving solitons suggests a possibility to

study collisions between them. Examples of collisions between

identical solitons with opposite velocities (V = ±0.3) are

presented in Fig. 9. In this case, the solitons are relatively wide,

hence the approximate solution (6) can be used for setting the

initial conditions. The collisions are seen to be nearly elastic,

with the solitons almost completely recovering their original

shapes.

The solitons with phase shift π in Fig. 9(a) repel each other,

while the in-phase ones in Fig. 9(c) interact attractively. The

collisions of the repelling out-of-phase solitons do not result

in an overlap of their cores. For the phase shifts different

from π , the overlap takes place; hence the largest intensity

at the collision point is greater than in isolated solitons

[see Fig. 9(b)], attaining the maximum for the in-phase

collisions, as can be seen in Fig. 9(c). It is worthy to note

that, although the instantaneous value of the amplitude at the

collision point may be considerably larger than the critical

amplitude defined by Eq. (17), this does not result in the onset

of the instability, as the collision time is insufficient for that.

V. CONCLUSIONS

We have introduced a model describing an array of linearly

coupled PT -symmetric dimers. Each dimer consists of lin-

early coupled active and passive elements with balanced gain

and loss. The nonlinearity is represented by the conservative

cubic term in the equation of motion for each element.

Using numerical simulations and analytical approxima-

tions, it was demonstrated that, in the regime of the sufficiently

strong interchain coupling, the weakly discrete chain supports

the free motion of solitary waves. At sufficiently small

velocities, the moving solitary waves do not radiate energy

and collide practically elastically, while solitons moving with

large velocities emit radiation.

The chain of dimers was demonstrated to support tightly

localized (sharp) stationary solitons in the regime of weak

interdimer coupling (strong discreteness). Naturally, these

strongly pinned solitons are immobile. A relation between the

stationary solutions in the chain of dimers and the solutions

to the standard discrete nonlinear Schrödinger equation was

established.

Both wide and sharp solitons develop an instability if

their amplitudes exceed the critical value, which leads to

the blowup. This is a specific feature of the PT -symmetric

chain, making the dynamical properties of the discrete solitons

different from those in the usual DNLS system, in spite of the

similarity in their shapes. An explanation to this feature, based

on the trend to the spontaneous symmetry breaking, induced by

the intrinsic self-attraction in the parallel chains, was proposed.

The critical value decreases with the increase of the gain-loss

parameter. Above the instability threshold, the PT -symmetry

breaking occurs, resulting in the divergence of the intensity

at the active element and decay of the intensity at the lossy

one. A noteworthy finding is the independence of the critical

046609-7



SUCHKOV, MALOMED, DMITRIEV, AND KIVSHAR PHYSICAL REVIEW E 84, 046609 (2011)

amplitude on the lattice coupling constant and the soliton’s

velocity.

To continue the work in this direction, it would be

interesting to study the chains consisting of more complex

PT -symmetric elements (such as those with the nonlinearity

of the gain and loss [10]) and to extend the analysis for

two-dimensional lattices.
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