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Solitons in dispersion-inverted AlGaAs 
nanowires  

 
R. El-Ganainy, S. Mokhov, K. G. Makris, and D. N. Christodoulides 

College of Optics & Photonics-CREOL & FPCE, University of Central Florida, Orlando, Florida, 32816 

 

R. Morandotti 

Institut national de la recherché scientifique, Université du Québec, Varennes, Québec, Canada J3X 1S2 

 

Abstract:  We demonstrate that optical solitons can exist in dispersion-
inverted highly-nonlinear AlGaAs nanowires. This is accomplished by 
strongly reversing the dispersion of these nano-structures to anomalous over 
a broad frequency range. These self-localized waves are possible at very low 
power levels and can form in millimeter long nanowire structures. The 
intensity and spectral evolution of solitons propagating in such AlGaAs 
nanowaveguides is investigated in the presence of loss, multiphoton 
absorption and higher-order dispersion. 

                ©2006 Optical Society of America  

                 OCIS codes: (190.5530) pulse propagation and solitons, (190.4370) Nonlinear optics, fibers,       
(260.2030) Dispersion. 
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1. Introduction 

The interaction of light with matter on a nanometer scale opens up new opportunities which 
may have far reaching implications in telecommunications, computation, biophotonics, and 
sensing technologies [1]. Lately, single-mode sub-wavelength waveguides or nanowires have 
been realized in several material systems [2-11]. Such optical nanowire structures are capable 
of providing superior light confinement and are thus ideal for nonlinear optics applications 
[12]. Clearly, of interest will be to fabricate such nanowires using high contrast, highly 
nonlinear materials, such as AlGaAs-known to exhibit a nonlinearity that is three orders of 
magnitude higher than that of silica glass [13,14]. Apart from being highly nonlinear, AlGaAs 
nanowires are also highly promising in terms of applications since they can be integrated with 
other optoelectronic components on the same wafer and thus can serve as information 
conduits among miniaturized devices.  Quite recently, enhanced spectral broadening or SPM 

has been observed for the first time in 700µm long AlGaAs nanowires [15]. An important 
question associated with this particular system is whether optical solitons are possible in 
AlGaAs nanowaveguides. This is of relevance since solitons can be used to either overcome 
dispersion effects or to achieve pulse compression in such nanostructures. We note that so far, 
optical solitons have only been observed in multi-layer AlGaAs structures in which the 
dispersion can be engineered [16,17]. Yet, in primitive weakly guiding AlGaAs waveguides 
such solutions are not possible since this material system exhibits appreciable normal 

dispersion in the spectral region of interest [18], i.e. for mm µλµ 7.11.1 << .  Here we 

theoretically demonstrate, that, because of high contrast, the dispersion of an air-clad AlGaAs 
nanowire can become strongly anomalous (becomes inverted), thus overcoming material 
dispersion limitations. This in turn may allow optical soliton formation in millimeter long 
structures. These solitons are possible at very low power levels (at ~5 W) in spite of the fact 
that the AlGaAs nanowires can exhibit anomalous dispersion that is a thousand times higher 
than that of silica glass. The intensity and spectral evolution of these solitons is investigated in 
AlGaAs nanowaveguides in the presence of loss, multi-photon absorption, and higher-order 
dispersive and nonlinear effects. 

2. AlGaAs Nanowire dispersion properties 

To analyze the dispersion properties of AlGaAs  nanowires, let us consider for example an 

AsGaAl 8.02.0
nanorod of core radius a  as shown in Fig.1(a).  This particular composition 

( AsGaAl 8.02.0
) is deliberately chosen since in the neighborhood of mµλ 55.1=  it is known 

to exhibit relatively low two-photon absorption [19]. In addition, we assume that the nanowire 
is air-cladded. We note that even though completely air-clad structures are rather difficult to 
develop these days, it is yet possible to fabricate waveguides that are mostly surrounded by 
air, with characteristics very similar to the one analyzed here. At this wavelength the 
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refractive index of AsGaAl 8.02.0
 is approximately 3.27, and the nanorod is operated at or close 

to the single-mode regime. In general, the nanowire dispersion relation is given by [20]: 
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In Eq.(1) )(uJm
is a Bessel function of the first kind and of order m  and  similarly )(wK m

 is a 

modified Bessel function, and primes represent derivatives with respect to the argument. 
22

effcoreo
nnaku −= , 22

cladeffo nnakw −=  where λπ /20 =k  is the free space wavevector and 

effn  is the effective refractive index of the mode [20]. 
coren  is the core index and 1=cladn  since 

the exterior medium is air. The wavelength dependence of the refractive index is accounted by 

using the Sellmeier expansion of AsGaAl xx −1
, i.e  [18]: 
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In general, the constants A , 
0C , 

1C , 
0E  and 

1E  depend on the Al  composition )(x , the 

temperature T , and  the free space wavelength λ . Here all calculations were carried out at 
room temperature. 

The dispersion properties of the fundamental mode 
11HE of such a nano-structure are 

obtained by numerically solving Eq. (1) for 1=m , with the core index evaluated at each 

frequency step from Eq. (2). The dispersion coefficient 22" / ωββ dd=  of an AsGaAl 8.02.0
 

nanowire is shown in Fig.1(b) in units of mps /2  for different core radii. In this same figure, 

the bulk AsGaAl 8.02.0
 dispersion is also included for comparison. 

 

                       

 

Fig. 1. (a) a nanowire structure; (b) group velocity dispersion "β  of an  Al0.2 Ga 0.8 As  nanowire 

when its radius    is (A) 160, (B) 175 and (C) 193 nm. Bulk dispersion of Al0.2 Ga 0.8 As  is also 
shown. 

 
It is important to note that because of the strong index contrast of the AlGaAs  nanowaveguide 
and the resulting field confinement, the waveguide dispersion dominates and as a result the 
dispersion can become inverted and strongly anomalous [4,21]. In fact for nma 193= , the 

dispersion of such a nanorod can reach very high values, as high as mps /12 2− , which is 

310 times higher than that of a standard silica fiber at 1.55 mµ .  
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     Parenthetically, we would like to point out that these same structures can also lead to very 
high normal dispersion. Figure 2(a) depicts the total dispersion of an AsGaAl 8.02.0

 nanorod when 

its radius is nma 160= . As one can see, the anomalous dispersion of this structure (also shown 

in Fig. 1(b) for mµλ 4.1≤ )  is followed by a region of strong normal dispersion especially at 

1.55 mµ . In fact around 1.55 mµ  the dispersion is approximately mps /80 2" =β . Thus the 

dispersion of a cm2  long AlGaAs  nanorod will be sufficient to cancel that arising from a 

km25.1  long anomalously dispersive fiber with group velocity dispersion nmkmpsD ./1= . In 

addition Fig. 2(b) shows the group index 
gg cn υ/= and the effective index effn  of an 

AsGaAl 8.02.0
 nanowire of radius nma 175=  as a function of wavelength. Note that the group 

index in this case can be as high as 52.5≈gn  around 1.55 mµ , which indicates “slow” light 

transport (because of waveguide dispersion) in spite of the fact that  bulk index is 3.27 and 

56.1=effn  . 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. (a) group velocity dispersion 
"β when nma 160= , (b) group and effective refractive 

indices of an  AsGaAl 8.02.0
  nanowire when  nma 175= . 

     
     For the subsequent discussion, we chose two operating points based on the designs (C) and 
(B) shown in Fig. 1(b).  In particular the design (C) is used at 1.55 mµ  where the third-order 

dispersion is very small whereas design (B) is used at 1.5 mµ  where cubic dispersive effects 

become appreciable. The nanowire of case (C) is single-moded for mµλ 57.1≥ whereas that of 

(B) is monomode for mµλ 42.1≥ .  

3. Soliton effects in AlGaAs nanowires 

Nonlinear pulse propagation in such nanowire structures is modeled using the evolution 
equation [22]: 
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In Eq.(3),ϕ  represents the pulse envelope, gztT υ/−= ,α is the linear loss coefficient, 

mmm ωββ ∂∂= /)( is the 
th

m  order dispersion coefficient evaluated at the carrier angular 

frequency λπω /20 c= , )2/()( 22 onnn η
⌢

=  where Wcmn /103.1 213

2

−×=
⌢

 is the 
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nonlinear Kerr coefficient and n is the linear refractive index of AlGaAs ( oη is the free space 

wave impedance). 
215

2 /105.6 Vm
−×=α and 

4331
3 /1063.5 Vm

−×=α are the two-

photon and three-photon absorption coefficients respectively at mµλ 55.1≈ [19]. In all cases, 

the dispersion curve is incorporated in Eq.(3) using a dispersion Taylor series over a broad 
spectral range (greatly exceeding the pulse spectrum). Here the linear loss for the field is taken 

to be
125. −= cmα . 

     Figure 3(a) shows the intensity evolution of a fs200 (FWHM) hyperbolic secant optical 

pulse when is launched into a mm5  long AsGaAl 8.02.0
 nanowire of core radius nma 193=  

(corresponding to curve (C) of Fig.1(b)) at mµ55.1 . For this design, the quadratic dispersion 

( mps /12 2'' −=β ) dominates the propagation process (the higher-order dispersion terms are 

negligible) and the dispersion length is mm5.1≈ , i.e., is very small. The pulse peak power in 

this case is approximately W5.5  (with a 75% confinement factor), corresponding to the 

fundamental soliton in this nanowire structure.  As Fig. 3(a) clearly indicates, this soliton can be 
sustained over approximately 3-4 dispersion lengths, i.e. up to a distance that is ultimately 
determined by the linear loss of the system. Fig. 3(b) on the other hand depicts soliton 
compression under similar conditions when the input power of the pulse is 8 W.  For this power 
level, at 2 dispersion lengths, the FWHM pulsewidth becomes fs175 . Figure 3(c) and (d) 

demonstrate similar results when an AlGaAs nanowire corresponding to curve (B) of Fig.1(b), is 

used at mµ5.1 . Even in this case, in spite of appreciable third-order dispersion effects and 

multi-photon absorption, a fs200  soliton forms at W2 , as shown in Fig. 3(c). Soliton 

compression is also shown for this case in Fig. 3(d) when the input power is W8.2 . It is 

important to note that in all cases ultrashort solitons in these nanowires can form within 
millimeters and at very low power levels. 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 3 Intensity evolution of a 200 fs soliton propagating in a 193 nm (radius) AlGaAs 
nanowire when the peak power is (a) 5.5 and (b) 8 W. Similarly, (c) and (d) depict soliton 
propagation and compression in a nanowire of radius 175 nm when the peak power is 2 and 2.8 
W respectively. 
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Figure 4 depicts the power spectra that may result in an AsGaAl 8.02.0
nanowaveguide of 

radius nma 193=  when is excited at mµ55.1  with a 200fs FWHM optical pulse. When the 

input peak power is enough to establish an optical soliton (5.5 W) the power spectrum remains 
essentially invariant during propagation as shown in Fig. 4(a). At a higher power (8W) the 
pulse undergoes compressions and thus its spectrum broadens (Fig. 4(b)). Figures 4(c) and (d) 
on the other hand depict the expected spectra and intensity profile of a higher order soliton at 

mmL 5≈ . In this latter case, the peak power is 50 W and thus corresponds to an 3=N  

higher order soliton solution. The splitting behavior observed in Fig. 4(d) is attributed to 
multi-photon absorption.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. (a)  Input and output soliton power spectra corresponding to the case shown in (a)  Fig.3 
(a) ; (b) Fig.3.(b) ;     (c) and (d) spectral generation and intensity profile for an 3=N  soliton 

(50 W peak power) at mmL 5≈  

 

In conclusion we have shown that optical solitons can exist in dispersion-inverted highly-
nonlinear AlGaAs  nanowires. These soliton waves are possible at very low power levels in 
spite of strong dispersion and can form in millimeter long nanowire structures. The intensity 
and spectral evolution of solitons propagating in such AlGaAs  nanowaveguides was 
investigated in the presence of loss, multiphoton absorption and higher-order dispersion. 
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