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We first review the recent developments of studies on solitons in higher dimensions. 

Next we extract two characteristics about solitons in higher dimensions : (i) these solitons 

are written by the special functions such as the Bessel function, (ii) existence of the transfor­

mation which connects 1 + 1d soliton equation and its cylindrical or spherical equation. We 

check that to what extent these two characteristics hold in the recently found examples of the 

various higher dimensional solitons. 

§ 1. Introduction 
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In this article, we will investigate the problems of solitons in higher dimensions. 

Solitons in one spatial plus one time dimension (abbreviated hereafter as 1 + 1d) have 

been extensively studied in the last twenty years or so, and many interesting features 

of solitons have been disclosed. 0 - 3> On the contrary, in the higher dimensional case, 

the studies of solitons are less developed and remain as one of the interesting and 

challenging, present and future research subjects. 

As to the higher dimensional generalizations of the 1 + ld soliton systems, we 

notice that there are two cases. In one case, people consider the form of one-soliton 

which is the same as that of 1 + ld system, and consider the problem of superposition 

of such solitons in arbitrarily different propagation directions in 2 + 1d or 3 + 1d. In 

the other case, people consider the one-soliton of the higher dimensional system to be 

different from the 1 + 1d soliton, for example, soliton having cylindrical symmetry or 

spherical symmetry. Our interests here are about the latter case. 

In this article, we like to make our arguments using the examples of the concrete 

physical equations as much as possible. For this purpose, we pick up widely-used 

1 + 1d model soliton equations such as the KdV equation, the Toda equation, the 

Boussinesq equation, the nonlinear Schrodinger (NLS) equation, the sine-Gordon 

equation° and the Heisenberg spin equation,4> all of which are known to be the 

so-called completely integrable systems. We will study how much the higher dimen­

sional generalizations of these widely-used 1 + 1d soliton systems are possible. 

In§ 2, for each of the above-mentioned equations, we briefly review the researches 

up to now including the numerical studies. Next we like to extract the common 

characteristics among the higher dimensional solitons. 

Concerning the properties of the higher dimensional solitons, in 1983 we have 

proposed a conjecture that the higher dimensional (2 + 1d) solitons (previously called 
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196 A. Nakamura 

as explode-decay solitons or ripplons) are described by the special functions such as 

the Bessel function. 5> At that stage, this property has been derivedfrom the three 

examples of the 2 + 1d KdV equation, the 2 + 1d Toda equation and the 2 + 1d coupled 

NLS equation. We will see that the above property holds also in many other higher 

dimensional soliton equations. In § 3, we consider the problem of the existence of 

transformations which connect the 1 + 1d soliton equation and its higher dimensional 

equation. As the first example of such transformations, in 1979 Hirota found that the 

1 + 1d KdV equation and the cylindrical KdV equation are connected by the simple 

variable transformations.6> Later we have found two more examples of the similar 

nature: the transformation which connects the 1 + 1d Toda equation and the cylin­

drical Toda equation, and the transformation which connects the 1 + 1d higher-order 

water-wave equation and its cylindrical equation. From these three examples, in 

1985 we have presented the conjecture such that there exists variable transformation 

which connects 1 + 1d soliton equation and its cylindrical equation.7l We will see 

whether or not such a transformation exists for other soliton equations whose higher 

dimensional solitons have been found recently. 

§ 2. Studies of higher dimensional solitons and their relation 

to the special functions 

As stated in the introduction, we will consider the problems using the concrete 

examples of the physical equations starting from the KdV equation. 

2.1. The KdV equation 

The KdV equation including the 1 + 1d,8> the cylindrical9>-Iz> and the spherical 

version13> is written as 

Ut +6uux+ Uxxx+(d' -1)u/(2t)=O. (2·1) 

Here and in the following, the subscripts x, t, ···represent partial derivatives (except 

the subscript n of the Toda equation which will appear later). The parameter d' 

represents the space dimension. The choice of the value d' = 1, 2 and 3 corresponds 

to the 1 + 1d, the cylindrical and the spherical KdV equations respectively. At the 

first sight of Eq. (2·1), it is not easy to immediately understand that d' corresponds to 

space dimension. It happened that the space dimension is taken into account in the 

ordinary sense in the original system of equations. Afterwards the special pertur­

bational approximation is adopted which makes the appearance of the dimensionality 

somewhat difficult to read directly in the final result of Eq. (2·1). As is well-known, 

the 1 + 1d KdV equation is completely integrable. Similarly, the cylindrical KdV 

equation has been clarified to be completely integrable. Historically this was the first 

successful example of the cylindrical generalization of the 1 + 1d soliton equation. 

The cylindrical KdV equation was first proposed by Maxon and Viecelli in 1974 

together with the numerical simulation,9> its Lax pair was found by Dryuma,10> and the 

derivation of soliton solutions with the inverse scattering method was performed by 

Calogero and Degasperis in 1978, 11> and with the Backlund transformation method by 

the present author in 1980.12> The one-soliton solution of the cylindrical KdV equa-
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Solitons in Higher Dimensions 

tion is written as11>'12> 

u=(2log f)xx, 

f = 1 + €/(!> , e= arbitrary constant, 

/(1)=(12t)-1'31"" ds'Ai2(s'), 

s=(x+xi)(12t)-113 , x1=arbitrary constant. 
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(2·2) 

(2·3) 

(2·4) 

(2·5) 

The symbol Ai represents the Airy function whose differential equation and the 

Bessel function relation are given by 

(d2/dx2)Ai(x)=xAi(x), 

Ai(x)=(1/3)x112U-II3(z)- J1,3(z)}, 

Ai( -x)=(1/3)x112{]II3(z)+ l-I13(z)}, z=(2/3)x312 , (2·6) 

where In and In are respectively the Bessel and the modified Bessel functions of order 

n.14>'15> We note that for the 1 + 1d KdV equation, the one-soliton solution has the 

same form up to Eq. (2·3) but Eq. (2·4) becomes simply j<l)=exp(kx-k3t) with k 

being an arbitrary constant. It often happens that the analytical expressions for the 

higher dimensional solitons have more complicated form than the 1 + 1d solitons. 

Compared with the well-clarified case of the cylindrical KdV equation, the study 

of the spherical KdV equation has been very limited. In 1974, Maxon and Viecelli 

presented the spherical KdV equation together with the numerical simulation of the 

propagation of the soliton-like wave.13> Since then no exact analytic solution to the 

spherical KdV equation has been reported. It still remains as an open unsolved 

problem. 

For the higher dimensional generalizations of the KdV equation, there are 

another approaches. Besides the x and t derivatives of the 1 + 1d KdV equation, we 

can add y and z derivative terms as follows : 

(2·7) 

Here a and b are constants. The cases a=\=0, b=O, and a=\=0, b=\=0 respectively 

correspond to the 2 + 1d KdV (also called as KP16>) equation and the 3 + 1d KdV 

equation. At first sight, Eqs. (2 ·1) and (2 · 7) look very different. However they are 

directly related by the variable transformations. For simplicity, we take a=1, b=1 

when a, b are nonzero. Consider the variable transformation 

X=x+y2/(12t), 

u(x, y, t)= U(X, t). 

(2·8) 

(2·9) 

Equation (2·9) indicates that we assume the dependence of u upon x and y to be 

permitted only through the particular form of X given by Eq. (2·8). Then by the 

direct calculation we have 

(ut+6uux+ Uxxx)x+3Uyy={Ut+6UUx+ Uxxx+ U/(2t)}x. (2·10) 
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198 A. Nakamura 

This indicates that the solution of the cylindrical KdV equation provides us a solution 

of the 2 + 1d KdV equation by the way of Eqs. (2 · 8) and (2 · 9). This means that the 

2+ 1d KdV (KP) equation has not only the 1 + 1d type soliton solution but also the Airy 

function type soliton solution. The solution can be written as Eqs. (2·2)~(2·4) with 

s given by 

(2·11) 

where X1 and Y1 are arbitrary constants. Since this soliton solution has not precise 

cylindrical symmetry, instead of the word "cylindrical" soliton we previously called 

it "explode-decay" soliton or "ripplon".17) 

Similarly we can consider the variable transformation 

X=x+(y 2 +z2)(12t)-1 , 

u(x, y, z, t)= U(X, t). 

Then by the direct calculation we have 

(2·12) 

(2·13) 

(2·14) 

We have seen that indeed the 2 + 1d KdV equation and the 3 + 1d KdV equation are 

related respectively to the cylindrical and the spherical KdV equation by the variable 

transformation. 

It is known that the 2+ 1d KdV (KP) equation is completely integrable. How­

ever very little is known about the method to solve the 3 + 1d KdV equation. The 

extension of the 2+ 1d KdV (KP) equation to the 3+ 1d KdV equation in the form of 

Eq. (2·7) is physically very natural, but seems to be difficult to solve mathematically. 

There are other types of the generalizations of the 2+ 1d KdV (KP) equation. 

The cylindrical KP equation was considered by Johnson in 1980 for surface waves in 

a fluid which are characterized by small deviation from axial symmetry and is written 

as18
' 

{Ut +6uux+ Uxxx+(d' -1)u/(2t)}x+3aUyy/(2t2)=0, (2·15) 

where a is an arbitrary constant and the value of d' is taken to d'=2. This equation 

was shown to fit into the inverse scattering method and the one-soliton written by the 

Airy function has been obtained by Dryuma in 1983.19' For Eq. (2·15), so far no one 

has considered the value of d' other than d'=2. Here we take the value d'=3 and 

call it the "spherical KP" equation. We have found that the spherical KP equation 

thus defined also has the one-soliton solution written by the Airy function. We leave 

the details of the derivations to Appendix A. As shown there, the one-soliton solu­

tion of the cylindrical KP equation is given by Eqs. (2·2)~(2·4) with s given by 

(2·16) 

where c is an arbitrary constant. The one-soliton solution of the spherical KP 

equation is given by Eq. (2·2) with I given by 
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Solitons in Higher Dimensions 199 

I= 1'"' ds' Ai2(s') , 

s=x(12t)-113_ y2t(6a)-1(12t)-113. (2 ·17) 

Before concluding this subsection, we mention about the classical Boussinesq equa­

tion or Kaup's higher-order water-wave ( = HOWW) equation.20> This equation 

corresponds to the generalization of the KdV equation in the following sense. The 

equation contains the smallness parameters in the coefficients. In the small limit of 

the smallness parameters together with time stretching, the equation reduces to the 

KdV equation. As the cylindrical generalization of this equation, we can consider 

the cylindrical HOWW equation which reduces to the cylindrical KdV equation in the 

same limiting procedure. The cylindrical HOWW equation is written as21> 

Pt-(pqx-Qxxx)x+P/t=O, 

P- Qt + (qxY/2=0, 

(2·18) 

(2·19) 

where the smallness parameters are taken to be unity. The HOWW equation corre­

sponds to the above coupled equations with the last term of Eq. (2 ·18), Pit, dropped. 

We have found that the cylindrical HOWW equation has the one-soliton solution 

given by21> 

P= -2(log ff*)xx, q= -2i log(///*), 

!=B2(s)- i(sgn t)[s2B 2(s)+{dB(s)/ds)Z], 

s=x/ J.TitT, 

d 2B(s)/ds2+s2B(s)=O, 

B(s)=b+B+(s)+b-B-(s), B±(s)=s112]±1!4(s2/2), 

b+ , b- =arbitrary constants . 

In Eq. (2·20), the star indicates complex conjugate. 

2.2. The Toda equation 

(2·20) 

(2·21) 

(2·22) 

(2·23) 

(2·24) 

The Toda lattice equations are written in the 1 + 1d, 2+ 1d and 3+ ld as 

L1;Un -exp(- Un+ Un-l)+exp(- Un+l + Un)=O, (i=1, 2, 3) (2·25) 

where L11, L12 and L13 are 1d, 2d and 3d Laplacian operators respectively. In Eq. 

(2 · 25), the subscript n represents not the derivative but the integer number such as the 

lattice site number in the original Toda lattice equation.22> We can introduce Vn by 

Vn=exp(-un+Un-1)-1 and rewrite Eq. (2·25) as 

(2·26) 

As well-known, the Laplacian operators can be written either in the rectangular 

coordinates or the cylindrical and spherical coordinates. We introduce the usual 

cylindrical coordinates r, 8 with the relations r=(x2+ y 2 ) 112, 8=arctan(y/x) and the 
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200 A. Nakamura 

spherical coordinates r, () and ¢with the relations r=(x2+ y2+ z2)112, O=arccos(z/r) 

and ¢ = arctan(y/x ). As usual, we have the expressions of the Laplacian operators as 

L11 = i? ;ax2, 

L12= a2 ;ax2+ a2 jay2= a2 /ar2+ Y-Iajar + Y-2a2 ja(}2, 

L13= a2 /ax2+ a2 jay2+ a2 /az2= a2 /ar2+2r-Iajar 

+ r-2( ~ ja02 +cot oa;ao +sin -2 Oa2 /a¢2) . 

(2·27) 

(2·28) 

(2·29) 

The 1 + 1d Toda equation is known to be completely integrable.23> Similarly, the 

2 + 1d Toda equation has been clarified to be completely integrable.24>-26> However, 

up to now, the exact solutions of the 3+ 1d Toda equation have been obtained only in 

the special cases.27>'28> Much remains unknown about the 3+ 1d Toda equation. 

The one-soliton solution of the cylindrical Toda equation was found by the 

present author and is given by 

!n=1 + €/n<1>, €=arbitrary constant, 

(2·30) 

(2·31) 

(2·32) 

where ]n is the Bessel function of order n.14>'15> This solution has been derived both 

by Hirota's bilinear method and the inverse scattering method.26> The cylindrical 

one-soliton given by Eqs. (2·30)~(2·32) represents the cylindrical localized wave 

which is decreasing in any directions of nand r (or x, y). The B~cklund transforma­

tion for the cylindrical Toda equation has been obtained by Saitoh et al.29> 

Very recently we have obtained a generalization of the solution (2·30)~(2·32) 

which represents the exact quasi-cylindrical soliton solution satisfying the periodic 

boundary condition Vn= Vn+N with N being an arbitrary integer.30> This solution is 

deformed from pure cylindrical symmetry (has dependence also upon ¢)when N is 

finite, and reduces to the cylindrical one-soliton, Eqs. (2·30)~(2·32), when N is 

infinity. The expression is written as Eqs. (2·30) and (2·31) with fn<I> given by30> 

(2·33) 

/n°'3>= '£ '£ 'fln+Nk'-k(r)]n+Nk'-k+Nfi(r)2cos(Nk0). 
fi=Ik'=-ook=O 

(2·34) 

It was shown that in the limit of N infinity, both fn< 1' 2> and fn< 1'3> vanish while /n°'1> 

remains non-zero and that the solution in this limit is equivalent to the solution (2·30) 

~(2·32). 

We note that from the known cylindrical one-soliton of the 2 + 1d Toda equation, 

we can obtain exact one-soliton solution of the 3 + 1d Toda equation of the following 
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form: 

Solitons in Higher Dimensions 

.Jslog(1 + Vn)- Vn+l +2 Vn- Vn-1=0, 

.Js= 02 /ox 2+ 02 /oy2 - 02 /ot 2, 
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(2·35) 

(2·36) 

by the Lorentz transformation. Namely, in the solution (2·30)~(2·32), we replace 

r=(x2 +y2) 112 by the Lorentz transformed form, say, with the constant velocity v in 

the x-direction [ {(x- vt)(1- v2)- 112)2+ y 2 ]!12, and the resultant form satisfies Eqs. (2· 35) 

and (2·36). It is worthy to investigate collisions of two such running cylindrical 

solitons for the 3+ 1d Toda equation, (2·35) and (2·36). However so far no studies 

have been done including the numerical simulations. 

Next we consider the 3+ 1d Toda equation given by Eq. (2·25) or (2·26) with i=3. 

We consider in the spherical coordinates. We assume the solution to have the form 

(2·37) 

Under this simplifying assumption, the 3+ 1d Toda equation (2·26) reduces to the 

form 

(o2/ofP+cot8o/o8+sin-2 8o2 /a¢i)log{1 + Vn(e, ¢)} 

- Vn+l(e, ¢)+2 Vn(e, ¢)- Vn-1(8, ¢)-2=0. (2·38) 

The one-soliton solution of Eq. (2·38) depending only upon the variable e has been 

recently found.27l The solution is written as 

In= In co>+ Eln <1> , € =arbitrary constant , 

ln<0>=an-1an-z···a-N, ak=-(N-k)(N+k+1), 

lnn>={PNn(cos8)Y+ an-1{pNn-1(cos8)Y+ an-1an-z{PNn-2(cos8))2+ .... 

(2·39) 

(2·40) 

(2·41) 

Here N is an arbitrary integer constant and pNn represents the associated Legendre 

function. 14>' 15> It was shown that by taking the limit of large N and small angle e 
properly with r being fixed to the constant, the solution (2·39)~(2·41) reduces to the 

cylindrical one-soliton of the 2+1d Toda equation given by Eqs. (2·30)~(2·32).27l 

There is one point to be noticed about the boundary condition. The solution (2·39) 

~(2·41) satisfies the so-called "Toda molecule" boundary condition or 1 + Vn=O when 

n=finite integer Nand - N. It remains unsolved to find the 3+ 1d solution under the 

"infinite lattice" boundary condition or Vn=constant when n=±oo. We also note 

that for the 3+ 1d Toda equation, it is interesting to obtain soliton-solution which has 

pure spherical symmetry namely the solution depending only on the variable r, Vn 

= Vn(r). The solution of this type is not known so far. The situation is somewhat 

similar to the spherical KdV case. 

2.3. The Boussinesq equation 

The 1 + 1d Boussinesq equation is written as 

Utt -3(u2)xx- Uxxxx=O. (2·42) 
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202 A. Nakamura 

In Eq. (2·42), if necessary the term- Uxx can be added by replacing u by u+ 1/6. We 

can extend the 1 + 1d Boussinesq equation to higher dimension as 

(2·43) 

Note that Eq. (2 · 43) is formally symmetric with t, y and z. We introduce the 

variable r by r=(t2+Y2+z2)112 and assume u to be u=u(r, x). Then Eq. (2·43) 

reduces to 

(2·44) 

which we called the spherical Boussinesq equation. We have found that Eq. (2 · 44) 

has soliton solutions.31) Hirota found that each order of solutions can be expressed 

by each order of Wronskians consisting of the Hermite function. 32> The simplest 

one-soliton solution of Eq. (2·44) is given by Eq. (2·2) with f given by30•32> 

4 I H3(S) HlS) I 
!=4s +3cx: d/dS H3(S) d/dS H2(S) ' 

(2·45) 

S=/2s, (2·46) 

Here Hn is the Hermite function (polynomial) of order n. 14>'15> About the 3+ 1d 

Boussinesq equation, so far the above studies31 >'32> are the only one we know. 

We can consider the 2+1d Boussinesq equation given by Eq. (2·43) with the last 

term Uzz dropped. So far nothing has been reported about the cylindrical Boussinesq 

solitons corresponding to such 2 + 1d Boussinesq equation. It is also an unsolved 

open problem. 

2.4. The nonlinear Schrodinger ( = NLS) equation 

The simplest form of the NLS equations can be written in the respective form of 

the 1 + 1d, 2+ 1d and 3+ 1d as 

(j=1, 2, 3) (2·47) 

where L11, L12, and L1s are the same as before given by Eqs. (2·27) _....___ (2·29). As is well 

known, the 1 + 1d NLS equation is completely integrable.1> However the solutions to 

the higher dimensional NLS equation in the form of Eq. (2 · 4 7) are mostly unknown. 

In the cylindrical symmetric case of the 2+ 1d NLS equation of the type (2·47), the 

numerical simulation was performed by Lomdahl et al. Their results indicate that 

(i) the outward ring waves either expand infinitely or reach a maximum size and then 

shrink depending on the energy, ( ii) inward waves collapse in a finite time.33> As to 

the exact analytic solutions, it is known that the 2 + 1d NLS equation (2 · 4 7) has 

one-dimensionally alligned explode-decay type solution.34> We consider a set of the 

variable transformations as 

u(x, y, t)= U(X, Y, T)r 1exp{i(x2 + y 2)/(4t)}, 

X=x/t, Y=y/t, T=-1/t. 

Then from Eqs. (2·48) and (2·49) we have the relation 

(2·48) 

(2·49) 
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Solitons in Higher Dimensions 203 

iut+Uxx+Uyy+u*uu=(iUT+ Uxx+ Uvv+ U*UU)t- 3exp{i(x2 +y2)/(4t)}. 

(2·50) 

Equation (2·50) indicates that if U is the solution of the 2+ 1d NLS equation then u 

is also the solution and the converse is true. If U is taken to be the ordinary 

hyperbolic secant (sech) type 1 + 1d soliton, then via Eqs. (2·48) and (2·49), we obtain 

the solution u which is one-dimensionally alligned explode-decay type (due to the 

factors x/t and t- 1) soliton solution. Except this particular case, so far very little is 

known about the analytic solutions of the 2+ 1d and 3+ 1d NLS equations of the type 

(2·47). 

As a more tractable model, we have the 2 + 1d coupled NLS equation 

(2·51) 

where {3, r and o are real constants. This equation is known to be completely 

integrable and have various explode-decay type solitons expressed by the Hermite 

function, the Airy function and the Bessel function of order ±1/4.5> 

2.5. The sine-Gordon equation 

The sine-Gordon equations are written in 1 + 1d, 2 + 1d and 3 + 1d as 

L1;u-utt-sin u=O, (i=1, 2, 3) (2·52) 

where L1;'s are the same as before. The 1 + 1d sine-Gordon equation is known to be 

completely integrable.!) For the studies of the cylindrical or spherical solitons of 

Eq. (2·52), only a few numerical simulations are known which reported the behaviors 

more or less similar to the case of the cylindrical NLS equation mentioned after Eq. 

(2·47) of the previous subsection.35> So far we have no exact analytic studies about 

the 2+ 1d and 3+ 1d of Eq. (2·52). 

2.6. The Heisenberg spin equation 

The Heisenberg spin equations are written in 1 + 1d, 2 + 1d and 3 + 1d as 

St- s X L1;s=0, (i=1, 2, 3) 

(2·53) 

where L1/s are the same as before, s1, sz and sa are scalers, e1, ez and e3 are three­

dimensional orthogonal unit vectors satisfying the relations e1 X ez = - ez X e1 = ea, 

e1 x e1 =0 and the similar relations with cyclic rotations of indexes 1, 2 and 3. Laksh­

manan showed in 1977 that the 1 + 1d case of Eq. (2 ·53) is equivalent to the 1 + 1d NLS 

equation, thus is completely integrable.4> Mikhailov and Yaremchuk have found the 

cylindrical solitons to this system in 1982.36> We do not know whether or not their 

cylindrical soliton is related to some special function. At present we have no studies 

about the exact soliton solutions of the 3 + 1d Heisenberg spin equation. 
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204 A. Nakamura 

2.7. List of relations between higher dimensional solitons and the special functions 

We have seen that most of the cylindrical or spherical solitons are indeed written 

by the special functions. For the known cases described in this section, we make a 

list. In this list, we write the name of the equations and the related special functions 

which appear in the one-soliton solution of the corresponding equation. 

(1) cylindrical KdV eq. 

(2) KP eq. 

(3) cylindrical KP eq. 

(4) spherical KP eq. 

(5) cylindrical higher-order 

water-wave eq. 

(6) cylindrical Toda eq. 

(7) 2+ 1d periodic Toda eq. 

(8) 3+ 1d Toda eq. 

(9) spherical Boussinesq eq. 

(10) 2+ 1d coupled NLS eq. 

Ai(Jl/3) , 

Ai, 

Ai, 

Ai, 

]1,4, 

]n, 

]n, 

pNn' 

Hn, 

Hn , Ai(Jl/3) , ]1,4 . 

From this list, we see that the conjecture about the higher dimensional solitons and the 

special function mentioned in the introduction seems to hold fairly well. 

§ 3. Transformations which connect soliton equations of 

· different dimensions 

In this section, we study the existence of the transformations between soliton 

equations of different dimensions. 

3.1. The cases of the KdV related equations 

We consider the following variable transformation : 

u(x, t)=x/(6t)+a2 r 2 U(X, T), 

a= arbitrary constant . 

Algebraic manipulations of Eqs. (3·1) and (3·2) lead to the relation 

Ut+6uux+Uxxx=(a/t)5{UT+6UUx+ Uxxx+ U/(2T)}. 

(3·1) 

(3·2) 

(3·3) 

This shows that if u satisfies the 1 + 1d KdV equation then U satisfies the cylindrical 

KdV equation and the converse is true. This was found by Hirota in 1979 (the 

notation was slightly different).6> Similarly we consider the variable transformation 

u(x, y, t)=x/(6t)+a2 r 2 U(X, Y, T), (3·4) 

X=axr\ Y=by, T=-a 3(2t 2)-\ a, b=arbitrary constants. (3·5) 

Algebraic manipulations of Eqs. (3·4) and (3·5) lead to the relation 
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Solitons in Higher Dimensions 205 

=a6 r 6[{UT+6UUx+ Uxxx+ U/(2T)}x+(3/4)aa2 b2 Uvv/T 2]. (3·6) 

Here a is a constant. Equation (3·6) shows that the KP equation and the cylindrical 

KP equation given by Eq. (2 ·15) are connected by the variable transformation which 

is essentially the same as the one connecting ,the 1 + 1d KdV equation and its cylin­

drical version. 

Next we consider the case of the HOWW equation. We consider the variable 

transformation 

q(x, t)= -x2 /(2t)+ Q(X, T), 

X=ax/t, a= arbitrary constant . 

Equations (3·7) and (3·8) lead to the relation 

Pt-(pqx-qxxx)x=(a/t)4{PT-(PQx- Qxxx)x+ P/T}, 

p-qt+q//2=(a/t)2{P-QT+Qx2 /2}. 

(3·7) 

(3·8) 

(3·9) 

(3·10) 

Equations (3·9) and (3·10) show that the HOWW equation and its cylindrical version 

Eqs. (2·18) and (2·19), are connected by the variable transformation.21> 

3.2. The case of the Toda equation 

We consider the variable transformation 

un(x)= -2nx+ Un(R), (3·11) 

Equation (3·11) leads to the relation 

Un, =-exp(- Un+ Un-I)+exp(- Un+J + Un) 

=R2{(a2 /aR 2 + R-1a/aR)Un-exp(- Un+ Un-I)+exp(- Un+I + Un)}. (3·12) 

Equation (3 ·12) shows that the 1 + 1d Toda equation and its cylindrical version are 

connected by the variable transformation. This was found by the present author in 

1985.7> The above transformation can be equivalently rewritten as 

(3·13) 

a2 jax2log(1 + Vn)- Vn+! + 2Vn- Vn-1 

(3·14) 

Very recently, Hirota has found the transformation between the 2+1d Toda 

equation and the quasi-spherical Toda equation (2·38). He considers the transfor­
mation28> 

x=log tan(B/2)=(1/2)log{(1-cosB)/(1 +cosO)}, 

Un(X, y)= -2n log sinO+ Un(B, ¢). 

We note that Eq. (3 ·15) gives the relation 

y=¢, (3·15) 

(3·16) 
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206 A. Nakamura 

a2 jax2 + a2 jay2 =(sin2 B)(a2 jaB 2 +cotBajae +sin-2 Ba2 /a¢i) . 

Equations (3 ·16) and (3.17) lead to the relation 

(a2 jax2 + a2 /ay 2)un-exp(- Un+ Un-t)+exp(- Un+I + Un) 

=(sin2 B){(a2 /aB 2 +cotea;ae +sin-2 Ba2 ja¢2 ) Un(B, ¢) 

-exp(- Un+ Un-t)+exp(- Un+l+ Un)+2n}. 

(3·17) 

(3·18) 

This shows that the 2+1d Toda equation (2·25) and the quasi-spherical Toda equa­

tion are connected by the variable transformation. Instead of Eq. (3·16), we can 

equivalently consider the transformation 

1 + Vn(X, y)=(sin2 B){1 + Vn(B, ¢)} (3·19) 

with Eq.-(3·15) unchanged. Then Eqs. (3·15) and (3·19) lead to the relation 

(azjax 2 + azjay2)log(1 + Vn)- Vn+! +2vn- Vn-t 

=(sin2 B){(a2 /aB2 +cotea/aB+sin-2 Ba2 /a¢2)log(1 + Vn) 

(3·20) 

This shows the connection between the 2 + 1d Toda equation, Eq. (2 · 26) , and the 

quasi-spherical Toda equation, Eq. (2·38). 

3.3. The case of the Boussinesq equation 

At present the transformation which connects the 1 + 1d Boussinesq equation 

(2·42) and the spherical Boussinesq equation given by Eq. (2·44) is unknown. 

Therefore we will be satisfied with less general arguments. We consider the similar­

ity reductions of the two equations. We assume that u appearing in Eqs. (2 · 42) and 

(2·44) are of the form u=r 1v(s), s=xr 112 and u=r- 1 v(s), s=xr-112 respectively. 

Then we have the similarity-reduced 1 + 1d Boussinesq equation and the similarity­

reduced spherical Boussinesq equation respectively as 

S2Vss+7svs+8v-12(v2)ss-4Vssss=O, 

S 2Vss+3svs-12(v 2)ss-4Vssss=O. 

We consider the transformation 

S=as. 

Algebraic manipulations of Eq. (3·23) lead to 

(3·21) 

(3·22) 

(3·23) 

S2Vss+7svs+8v-12(v 2)ss-4Vssss= -3/3i[S2 Vss+3SVs-12( V 2)ss-4 Vssss]. 

(3·24) 

Equation (3·24) shows that the two equations (3·21) and (3·22) are connected by the 

variable transformation. 

3.4. The case of the NLS equation 

For the 2+1d NLS equation (2·47), we put u(x, y, t)=v(x, t)exp{iy2 /(4t)}. 
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Solitons in Higher Dimensions 

Then the 2 + 1d NLS equation reduces to the equation34> 

i{vt+v/(2t)}+vxx+v*vv=O. 

207 

(3·25) 

This equation is not the cylindrical equation in the sense of 2d Laplacian Eq. (2·28). 

However the appearance of the term Vt + v/ (2 t) is the same as in the cylindrical KdV 

equation or Eq. (2·1) with d'=2. Thus we may call Eq. (3·25) as "quasi-cylindrical 

NLS equation". We consider the variable transformation 

u(x, t)= U(X, T)r1exp{ix2 /(4t)}, 

X=x/t, T= -1/t. (3·26) 

Then we have 

iut+Uxx+u*uu={iUr+ Uxx+ U*UU + iU/(2T)}t-3exp{ix2/(4t)}. (3·27) 

Equation (3·27) shows that the 1 + 1d NLS equation and the "quasi-cylindrical" NLS 

equation are connected by the variable transformation. This was found by Leclert et 

al, in 1979. 

3.5. Summary 

We have seen the known examples of the variable transformations between 

soliton equations of different dimensions. In the following, we write the names of the 

two related equations together with the line. The line indicates the existence of the 

connecting transformation. 

(1) 1 + 1d KdV eq. 

(2) 1 + 1d KP eq. 

(3) 1 + 1d HOWW eq. 

(4) 1 + 1d Toda eq. 

(5) 2+ 1d Toda eq. 

(6) similarity-reduced 1 + 1d 

Boussinesq eq. 

(7) 1 + 1d NLS eq. 

cylindrical KdV eq. 

cylindrical KP eq. 

cylindrical HOWW eq. 

cylindrical Toda eq. 

quasi-spherical Toda eq. 

similarity-reduced spherical 

Boussinesq eq. 

quasi-cylindrical NLS eq. 
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Appendix A 

--Derivation of the One-Soliton Solutions of the Cylindrical 

and the Spherical KP Equation by the Bilinear Method --

For Eq. (2 ·15) , we consider the dependent variable transformation given by 

Eq. (2 · 2) . Then the equation reduces to the following bilinear equation : 

(A·1) 
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208 A. Nakamura 

Here the operator Dx is defined for arbitrary functions a(x) and b(x) as 

(A·2) 

and similarly for Dt and Dy. We introduce the similarity variable s defined by 

Eq. (2·16) for d'=2 and by Eq. (2·17) for d'=3 respectively. 

In Eq. (A ·1), we assume that I depends only on the similarity variable s. Then 

both of two different expressions of Eq. (A ·1) with the different choices of d' =2 and 

d' =3 reduce to the same one equation 

(A·3) 

We see that both the cylindrical KP and the spherical KP equation reduce to the same 

ordinary differential equation. It is worthy to note that the cylindrical KdV equation 

which corresponds to the choice of parameters d' = 2 and a= 0 in Eqs. (2 ·15) and 

(A·1), also reduces to the same equation (A·3) if we consider the similarity variable 

given by Eq. (2·16) with a=c=O or s=x(12t)- 113• Equation (A·3) has the solution 

I= lo, l1, l2· · · given by 

lo=1, l1 =Ai(s), 

l2= la> ds'A£2(s')= -{sA£2(s)- Ai'2(s)}= -~~~~s;) Ai'(s) I 
Ai"(s) · 

(A·4) 

The solutions l1 and l2 can be checked by substituting the relations N'=sA£, N3>=Ai 

+sAi', N 4>=s2Ai+2Ai' and h'=-Ai2, l2"= -2AiAi', N 3>= -2(Az"'2+sA£2), N 4> 
= -2(Ai2 +4sA£At) into Eq. (A ·3). The solution l2 gives the solution of the spher­

ical KP equation written in Eq. (2·17). We note that the solution l2 in Eq. (A·4) has 

no constant term. In the case of the cylindrical KP equation (d'=2), we can obtain 

more general type of solution as follows. We assume the solution form Eq. (2 · 3) with 

j<ll given by j<ll=t-113 f(l>(s). We substitute it into Eq. (A·1) and separate each order 

of € .. 0 (€0) is trivial and 0 (€2) becomes same as Eq. (A ·3) with I replaced by 

f(l)(s), which has the solution f(l>(s)= l2=f';ds'A£2(s'). 0 (e1) reduces to the linear 

equation, {(a/as) 4 -4s(a/as)2-2(a/as)} J<ll(s)=O, which has the same solution f(l>(s) 

= k Thus the solution (2 · 2)- (2 · 4) with s given by Eq. (2 ·16) is actually the exact 

solution of the cylindrical KP equation. 
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