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Solitons in nonlocal nonlinear media: Exact solutions

Wiestaw Krdikowski
Australian Photonics Cooperative Research Centre, Laser Physics Centre, Research School of Physical Science and Engineering,
The Australian National University, Canberra ACT 0200, Australia

Ole Bang
Department of Mathematical Modelling, Building 305/321, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
(Received 31 May 2000; published 22 December 2000

We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like
media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear
propagation equation in the case of weak nonlocality. We study the properties of these solitons and show their
stability.
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[. INTRODUCTION the case of thermal lensiighe nonlocal contribution to the
refractive index change was often negleci#8,16. This is
Let us consider a phenomenological model of nonlocajustified if the spatial scale of the beam is large compared to
nonlinear Kerr-type media, in which the refractive indexthe characteristic response length of the medigimen by
changeAn induced by a beam with intensityx,z) can be the width of the response functiprHowever, for very nar-
represented in general form as row beams the nonlocality can be of crucial importance and
has to be taken into account. For instance, it has been shown
* , , , theoretically that a weak nonlocal contribution arrests col-
_RX'=x)1(x",z)dx’, () |apse (catastrophic self-focusingof high power optical
beams in a self-focusing medium and leads to the formation
where the positivénegativé sign corresponds to a focusing Of stable two-dimensiondRD) (diffracting in two transverse
(defocusing nonlinearity andx and z denote transverse and dimension$ solitons [12,13,17,18 On the other hand, a
propagation coordinates, respectively. The real, localizeddurely nonlocal nonlinearity leads to formation of so-called
and symmetric functioiR(x) is the response function of the Cusp solitons, which, however, are unstafslg
nonlocal medium, whose width determines the degree of Some of the consequences of nonlocality in the nonlinear
nonlocality. For a singular responsR(x) = 5(x), the refrac-  response have been observed experimentally. Suter and Blas-
tive index change becomes a local function of the light in-berg reported stabilization of 2D solitary beams in atomic
tensity,An(l)==1(x,2), i.e., the refractive index change at vapors due to atomic diffusion, which carries excitation
a given point is solely determined by the light intensity ataway from the interaction regiof6]. Also, the discrepancy
that very point. With increasing width d®(x) the light in-  between the theoretical model of dark solitons and that ob-
tensity in the vicinity of the poink also contributes to the Served experimentally in a medium with thermal nonlinearity
index change at that point. In the limit of a highly nonlocal has been associated with nonlocality of the nonlinearity
response Snyder and Mitchell showed that the beam evoldd5.1 . ) ) ) ]
tion was described by the simple equation for a linear har- Here, we investigate the propagation of one-dimensional
monic oscillatof 1]. The influence of nonlocality of the non- (1D) beams in nonlinear media having a weakly nonlocal
linear response on the dynamics of beams was illustrated fé€sponse of the general for). Our goal is to find exact
the special logarithmic nonlinearity, which allows exact ana-@nalytical solutions for bright and dark spatial solitons and
lytical treatment2]. use them to determine s_ohton properties, such as existence
While Eq. (1) is a phenomenological model, it neverthe- anq _stablllty. We start with the paraxu_all wave equation Qe—
less describes several real physical situations. Possible phy&§icribing propagation of a 1D beam with envelope function
cal mechanisms responsible for this type of nonlinear re#=#(x,z) and intensityl =1(x,2)=|¢(x,2)|?,
sponse includes various transport effects, such as heat ) 12
conduction in materials with thermal nonlineari8~5], dif- 19+ 35+ An(l)=0. v
fusion of molecules or atoms accompanying nonlinear light
propagation in atomic Vapo{ﬁ]’ and drift and/or diffusion When the nonlocaliw is weak, i.e., when the response func-
of photoexcited charges in photorefractive mateiii@l§]. A tion R(x) is narrow compared to the extent of the be@®me
highly nonlocal nonlinearity of the fornl) has also been Fig. 1), we can expand(x',z) around the poink’=x to
identified in plasmag9-13) and it appears as a result of obtain
many-body interaction processes in the description of Bose-
Einstein condensatg44]. An(h)==(1+ydl), (©)
Even though it is quite apparent in some physical situa-
tions that the nonlinear response in general is nonl@=ln  where the nonlocality parametgr>0 is given by
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FIG. 1. Intensity profilel (x')=1(x’,z) and response function -6 -4 -2 0 2 4 6

R(x’'—x) in the weakly nonlocal limit. Spatial coordinate

1 FIG. 2. Intensity profiles of bright solitons with unit amplitudes
= §f R(X)dex, 4) po=1 for different degrees of nonlocality.

whereC is an integration constant. For exponentially local-
and where we have assumed that the response function ized solutionaC=0. Using thatu(x) has its maximunu, at
normalized, [”  R(x)dx=1. Note that forR(x)=48(x), y  the centerx=0 we further obtain the well-known relation
=0 and Eq.(3) describes the local Kerr nonlinearity. For between the propagation constdhtind the amplitudei,
weakly nonlocal medg/<1 is a small parameter. )
SubstitutingAn(l), given by Eq.(3), into Eq. (2) gives ug=2I" C)

the modified nonlinear Schdinger equation . o
Equation(8) can therefore be simplified to

: 12,4 2 20 112Y .
107t 3 = ([l + vl ¥l*) y=0. (5) (3,02~ (= )1+ 4p02). 10
The weak nonlocality appears thus as a perturbation to the ) o

local nonlinear refractive index change. For a single peaknterestingly, had the local and nonlocal contributions been
beam in a self-focusing medium this perturbation is of nega®f opposite signs, i.ey<<0 (as can happen for intense laser
tive sign in the central part of the beam, where it serves t#€ams in plasmasthen a solution to Eq(10) would only
decrease the refractive index change. Hence, even for veXist if the peak intensity,=ug is less than the critical
narrow and sharp intensity distributions, the resulting selfvaluep=1/47| (see alsd11]). A final integration leads to
induced waveguide will be wide and a smooth function of

the transverse coordinates. In some sense, this is similar to +x= itanhfl
saturation of the nonlinearity. One may therefore expect that T U
certain features of solitons of E¢p) will be reminiscent of

those exhibited by solitons in saturable nonlinear mgtigd. ~ Where we have defined the intensjy=u” and the normal-

It transpires, however, that nonlocality also results in newized intensityo?=(po—p)/(1+4yp). This implicit relation
effects, especially for self-defocusing nonlinearities. In thegives the profile of bright spatial solitons propagating in
following we consider separately the case of self-focusingveakly nonlocal Kerr-like media. In the local limity=0,

+\aytan Y(Vayo), (11

g
Uo

and self-defocusing nonlinearities. we recover from Eg.(11) the well-known profile u(x)
=ug sech(igx) of the 1D bright soliton in a Kerr medium.
Il. BRIGHT SOLITONS In Fig. 2 we show the intensity profile of the soluti@il)

_ . _ _ ~ for different values of the nonlocality parameter Evi-
~ For a self-focusing nonlinearity the sign of the refractive dently, an increase in the degree of nonlocality results in an
index change is positive. We search for a stationary brightncrease of the soliton width—nonlocality smooths out the

soliton solution to Eq(5) of the form refractive index profile thereby leading to a broadening of
_ the beam. This effect is more clearly seen in Fig. 3 where we
P(x,2)=u(x)expil'z), (6)  plot the width of the bright solitongull width at half maxi-

mum of the intensity profileversus the degree of nonlocality
v for different peak intensities; the soliton width increases
monotonically with the degree of nonlocality.
An important aspect of any family of soliton solutions is
@) their stability properties. For single-peak solitons stability is
determined by the dependence of the power

where the profileu=u(x) is real, symmetric, and exponen-
tially localized and the propagation constdht-0 is posi-
tive. For this solution Eq(5) reduces to

dzu+2(u—T)u+2yudiu?=0,
which can be integrated once to give the equation )
P= x,2)|?dx, 12
(1+4yu?)(deu)?+(u?—2I')u?=C, (8) fﬁxlt/f( )| (12)
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FIG. 3. Soliton width versus degree of nonlocaligyfor peak
intensitiespp=1 (solid) and py= 10 (dashed

on the propagation constarif. Solitons are stable if
dP/dI'>0 and unstable otherwi4@0]. For the model con-
sidered herd>(I") can be found analytically to

FIG. 4. Collision of unit amplitude bright solitons in a weakly

nonlocal Kerr-like medium withy=0.1.
1+4ypg

P=\po+ ———tan X(vV4ypy), (13

Jay
) o We now consider the impact of weak nonlocality in the
by using Eq(10). For weakly nonlocal media witly<<1 the  case of a self-defocusing nonlinearity, which corresponds to

Ill. DARK SOLITONS

power is approximately given by a negative sign in Eq(3). We introduce a spatial variable
{=x—Vz, with V being the soliton transverse velocity, and
P=Py(1+ % ypo— %y2pg+ S, (14) look for stationary solutions of the form
p(x,z)=\p(exdiT'z+ip(L)], (15

whereP,=2/p, is the soliton power in the limit of a local
response withy=0. The derivativedP/dI" can easily be
found from Eq.(13) and it transpires that the power is a
monotonically increasing function of the propagation con-
stant(for y>0), indicating that the solitons are stable. )=

Interestingly again, had' been negative, then the bright 9ep(9:p=V)]=0, (18

wherep(¢) is the soliton intensity ane(¢) its phase. Sub-
stitution of this form into Eq(5) yields

solitons would exist for sufficiently low-peak intensitigs, _ 2 2_ 4.2 2 2
<1/|4+|, but be unstable faw,>0.7/4+|, for whichd P/dT 2p(1=4yp)dip=(9;p) = A4p™(9:4)"+8Vp d;¢
is negative(see agaii11]). —8p%(I'+p)=0. (17)

To demonstrate the stability of the bright solitons fpr
>0 we numerically integrated Ed5) using the split-step We are interested in dark solitons, i.e., solutions with an
Fourier method and the exact soliton solution as an initiaintensity dip on a constant background. Integrating the sys-
condition. In all simulationgfor both bright and dark soli- tem (16),(17) once we obtain that the soliton background
tons we used a steplength afz=0.001 and a transverse intensity po,=u3 determines the soliton propagation constant
resolution ofdx=0.05. Results of the numerical simulations I and that the center intensin/l:uf determines the trans-
are shown in Fig. 4 where we demonstrate propagation angerse velocityV, through the relations
collision of two bright solitons with unit amplitude,=1. It
is evident that the solitons propagate in a stable manner. The V2=p,, T'=-—pg, (18
collision, on the other hand, is not completely elastic and
causes the soliton amplitude and width to oscillate slightly. which are exactly the same as those obtained for a purely
The bright solitons of the nonlocal nonlinear Safirmer  local response. We further find that the soliton intengity)
Eq. (5) were considered by Davydova and Fischuk in theis governed by the equation
context of focusing of upper hybrid waves in plasfid]. In
particular, the existence of bright soliton solutions and their ((9§p)2=4(p—pl)(po—p)zl(l—47p). (19
stability was reported by these authors. However, the explicit
expressior{11) was not given and no numerical confirmation Obviously, a solution to Eq(19) exists only if the back-
was presented. ground intensity does not exceed a certain critical value,
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FIG. 5. Intensity profiles of dark solitons withy=1 and p, FIG. 6. Width of dark solitons versus degree of nonlocality
=0.1 for different values of the nonlocality parameter for pg=1 and different contrasts= (pg—p1)/po-
po<pe=1/4y|, (200  proaches the critical valug=1/(4p,) the relation(21) can

be inverted leading to a simple expression for the soliton

which coincides with the critical peak intensity above whichintensity profile

bright solitons does not exist in a focusing nonlocal medium

when y<0, as discussed above. po[1—acog(Upd)], |upd|=m/2
It can be shown that the relatid20) represents the sta- pP= 0, lup|= /2.

bility condition for the plane wave solution to E() with a

defocusing nonlinearity. For background intensities Iarger_l_he solution(23) confirms that in this limit all dark solitons

tsrzggl;;c[rzt;l]e plane-wave solutions become modulationally UNYave the same widthi, = /(2u) independent of the con-

Integrating Eq.(19) once more we obtain trast. o .

’ With a nontrivial phase structure, these dark solitons can
be represented in the complex plane describing the real and
+\aytam(J4ys), (21) imaginary part of the soliton amplitudg(Z)=p exp().

Any soliton solution is then represented by a trajectory in
o o ) o ) this plane. Figure 7 shows such a phase diagram(@.1) for
which is an implicit relation between the soliton intensity  several values of the soliton contrast. The circle represents
and the spatial coordinat, with the normalized intensity the packground intensitpo=1 and nonlocal soliton solu-
now given by 6%(p)=(p—p1)/(1—4yp) and &=8(po).  tions are plotted using solid lines. The dashed line corre-
For the soliton phase we obtain sponds to the same contrast soliton solution in the purely
5 local case ¢=0). The total phase change across the soliton
B 9 is given by the angle subtended by two lines connecting the
u_l> ul\/4_ytan (\/4_7/6)’ (22) origin with points of intersection of the soliton curve and the
circle. One can see directly from Fig. 7 that the total phase
where we have used the gauge invariance of @pto re- change across the soliton in a nonlocal medium is always
move a constant phase contributigghase in the centgrin
Fig. 5 we present examples of the intensity profile of the 1.0[~ '
dark solitons for different values of the nonlocality param-
eter y. These graphs show that increasing nonlocality de-
creases the width of the soliton. To better illustrate this effect
we plot in Fig. 6 the width of the dark solitor(slefined as
the distance between points where the intensity gg (
+p41)/2) versusy for several values of the soliton contrast
a=(po—p1)/po-

We see that unlike saturation, which tends to increase the
width of dark solitons, nonlocality has the opposite effect.
This is due to the fact that nonlocality causes the nonlinear
index change to advance towards regions of lower light in- -1.0 .
tensity. In the case of bright solitons this effect leads to soli-
ton expansion. The plots in Fig. 6 also indicate the interest-
ing effect that for strong nonlocality, all dark solitons acquire  FIG. 7. Real and imaginary part of dark solitons with=1 in
the same width. Actually, in this limit, i.e., whey ap-  a weakly nonlocal medium witly=0.1.

(23

1 s
t§=5—0tanh 5—0

+¢=tan !

Imy(%)

e
=3

0.0 1.0
Rey(t)
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FIG. 8. MomentumQ of dark solitons withpy=1 versus veloc-
ity V for different degrees of nonlocality.

less than in the local case. Furthermore, the soliton phase

profile closely resembles that of a threshold nonlinearity FIG. 9. Propagation and collision of identical dark solitons with
[22]. po=10p;=1 in a weakly nonlocal medium with=0.1.

The linear stability of dark solitons can be determined by
considering the conserved quantities of the nonlinear Schro

dinger Eq. (5) with defocusing nonlinearity, namely the collision of two |dent|cal_ dark ;olltons Wltb(?:lOpl:l. n
renormalized Hamiltonian a weakly nonlocal medium witly=0.1. While the solitons

propagate in a stable fashion, their collision is clearly inelas-

1 (= tic with radiation being emitted from the impact area.
H:QJ_OC[|¢9><¢|2+(|¢|2_P0)2_7(5x|¢|2)2]dx (249 In conclusion, we have studied the properties of bright
and dark one-dimensional spatial solitons in a general
and the renormalized momentum weakly nonlocal Kerr-like medium, in which the change in

refractive index due to local and nonlocal contributions are
Po of the same sign. We have found an exact analytical solution
e dx. (29 for both bright and dark solitons and used it to find the ex-
istence and stability regions of both solutions.
A soliton solution propagating with velocity corresponds S_table bright sollto_n solutions were found to exist in fo-
to an extremum of the Hamiltonian for fixed momentum, €USiNg nonloca! media for_ all parameter values. Although
8(H—VQ)=0. It has been shown that the stability criterion they were previously predicted the solution was never ex-

for dark solitons is determined by the dependence of th®!iCitly written down. The effect of nonlocality is in some
momentum on the velocityd=Q(V) [23]. For dark solitons  S€NS€ equivalent to that of saturation, to smooth out the index

to be stable the derivative of the momentum with respect t@"ofile and thereby increase the soliton width.

i ee]
Q= Ef_x((/faxw — &x¢)< 1-

the velocity must be positive Previously unknown dark soliton solutions were found to
' exist in defocusing nonlocal media for background intensi-
dQ/dVv>0. (26)  ties below a certain critical value, which correspond to the

intensity at which the plane-wave solutions become unstable.
In the case of a nonlocal nonlinearity the expression for th&Ve found that nonlocality leads to narrowing of the dark
momentum can be evaluated analytically to solitons, with all dark solitons acquiring the same width in
the strongly nonlocal limit, independent of the soliton con-
\/E trast. The total phase change across the dark soliton was
+(po—p1) S found to be less than that in the purely local case, with the
phase profile resembling that of a threshold nonlinearity.
o1 Both nonlocal bright and dark spatial solitons appear to be
+H[1+4y(2po—p1) ]\ 7 tan Y(\aydy). (27)  stable under propagation. Preliminary studies of soliton col-
Y lision revealed their inelastic character in analogy to colli-
The dependence of the momentum on the velocity of dariions of solitons of nonintegrable models.
solitons with background intensigy,=1 is shown in Fig. 8
for several degrees of nonlocalify The monotonic increase
of this function indicates that the dark solitons are stable. ACKNOWLEDGMENTS
This conclusion is confirmed by direct numerical simula-
tions of Eg.(5) with initial conditions given by the exact 0O.B. acknowledges support from the Danish Technical
solution (21),(22). Figure 9 illustrates the propagation and Research Council under Talent Grant No. 9800400.

o
Q=—2p0tan1<—O

V1
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