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Solitons in nonlocal nonlinear media: Exact solutions
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We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like
media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear
propagation equation in the case of weak nonlocality. We study the properties of these solitons and show their
stability.
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I. INTRODUCTION

Let us consider a phenomenological model of nonlo
nonlinear Kerr-type media, in which the refractive ind
changeDn induced by a beam with intensityI (x,z) can be
represented in general form as

Dn~ I !56E
2`

`

R~x82x!I ~x8,z!dx8, ~1!

where the positive~negative! sign corresponds to a focusin
~defocusing! nonlinearity andx andz denote transverse an
propagation coordinates, respectively. The real, localiz
and symmetric functionR(x) is the response function of th
nonlocal medium, whose width determines the degree
nonlocality. For a singular response,R(x)5d(x), the refrac-
tive index change becomes a local function of the light
tensity,Dn(I )56I (x,z), i.e., the refractive index change
a given point is solely determined by the light intensity
that very point. With increasing width ofR(x) the light in-
tensity in the vicinity of the pointx also contributes to the
index change at that point. In the limit of a highly nonloc
response Snyder and Mitchell showed that the beam ev
tion was described by the simple equation for a linear h
monic oscillator@1#. The influence of nonlocality of the non
linear response on the dynamics of beams was illustrated
the special logarithmic nonlinearity, which allows exact an
lytical treatment@2#.

While Eq. ~1! is a phenomenological model, it neverth
less describes several real physical situations. Possible p
cal mechanisms responsible for this type of nonlinear
sponse includes various transport effects, such as
conduction in materials with thermal nonlinearity@3–5#, dif-
fusion of molecules or atoms accompanying nonlinear li
propagation in atomic vapors@6#, and drift and/or diffusion
of photoexcited charges in photorefractive materials@7,8#. A
highly nonlocal nonlinearity of the form~1! has also been
identified in plasmas@9–13# and it appears as a result o
many-body interaction processes in the description of Bo
Einstein condensates@14#.

Even though it is quite apparent in some physical sit
tions that the nonlinear response in general is nonlocal~as in
1063-651X/2000/63~1!/016610~6!/$15.00 63 0166
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the case of thermal lensing!, the nonlocal contribution to the
refractive index change was often neglected@15,16#. This is
justified if the spatial scale of the beam is large compared
the characteristic response length of the medium~given by
the width of the response function!. However, for very nar-
row beams the nonlocality can be of crucial importance a
has to be taken into account. For instance, it has been sh
theoretically that a weak nonlocal contribution arrests c
lapse ~catastrophic self-focusing! of high power optical
beams in a self-focusing medium and leads to the forma
of stable two-dimensional~2D! ~diffracting in two transverse
dimensions! solitons @12,13,17,18#. On the other hand, a
purely nonlocal nonlinearity leads to formation of so-call
cusp solitons, which, however, are unstable@9#.

Some of the consequences of nonlocality in the nonlin
response have been observed experimentally. Suter and
berg reported stabilization of 2D solitary beams in atom
vapors due to atomic diffusion, which carries excitati
away from the interaction region@6#. Also, the discrepancy
between the theoretical model of dark solitons and that
served experimentally in a medium with thermal nonlinear
has been associated with nonlocality of the nonlinea
@15,16#.

Here, we investigate the propagation of one-dimensio
~1D! beams in nonlinear media having a weakly nonlo
response of the general form~1!. Our goal is to find exact
analytical solutions for bright and dark spatial solitons a
use them to determine soliton properties, such as existe
and stability. We start with the paraxial wave equation d
scribing propagation of a 1D beam with envelope functi
c5c(x,z) and intensityI 5I (x,z)5uc(x,z)u2,

i ]zc1 1
2 ]x

2c1Dn~ I !c50. ~2!

When the nonlocality is weak, i.e., when the response fu
tion R(x) is narrow compared to the extent of the beam~see
Fig. 1!, we can expandI (x8,z) around the pointx85x to
obtain

Dn~ I !56~ I 1g]x
2I !, ~3!

where the nonlocality parameterg.0 is given by
©2000 The American Physical Society10-1
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g5
1

2E2`

`

R~x!x2dx, ~4!

and where we have assumed that the response functio
normalized,*2`

` R(x)dx51. Note that forR(x)5d(x), g
50 and Eq.~3! describes the local Kerr nonlinearity. Fo
weakly nonlocal medag!1 is a small parameter.

SubstitutingDn(I ), given by Eq.~3!, into Eq. ~2! gives
the modified nonlinear Schro¨dinger equation

i ]zc1 1
2 ]x

2c6~ ucu21g]x
2ucu2!c50. ~5!

The weak nonlocality appears thus as a perturbation to
local nonlinear refractive index change. For a single pe
beam in a self-focusing medium this perturbation is of ne
tive sign in the central part of the beam, where it serves
decrease the refractive index change. Hence, even for
narrow and sharp intensity distributions, the resulting s
induced waveguide will be wide and a smooth function
the transverse coordinates. In some sense, this is simila
saturation of the nonlinearity. One may therefore expect
certain features of solitons of Eq.~5! will be reminiscent of
those exhibited by solitons in saturable nonlinear media@19#.
It transpires, however, that nonlocality also results in n
effects, especially for self-defocusing nonlinearities. In
following we consider separately the case of self-focus
and self-defocusing nonlinearities.

II. BRIGHT SOLITONS

For a self-focusing nonlinearity the sign of the refracti
index change is positive. We search for a stationary bri
soliton solution to Eq.~5! of the form

c~x,z!5u~x!exp~ iGz!, ~6!

where the profileu5u(x) is real, symmetric, and exponen
tially localized and the propagation constantG.0 is posi-
tive. For this solution Eq.~5! reduces to

]x
2u12~u22G!u12gu]x

2u250, ~7!

which can be integrated once to give the equation

~114gu2!~]xu!21~u222G!u25C, ~8!

FIG. 1. Intensity profileI (x8)5I (x8,z) and response function
R(x82x) in the weakly nonlocal limit.
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whereC is an integration constant. For exponentially loca
ized solutionsC50. Using thatu(x) has its maximumu0 at
the centerx50 we further obtain the well-known relatio
between the propagation constantG and the amplitudeu0

u0
252G. ~9!

Equation~8! can therefore be simplified to

~]xu!25u2~u0
22u2!/~114gu2!. ~10!

Interestingly, had the local and nonlocal contributions be
of opposite signs, i.e.,g,0 ~as can happen for intense las
beams in plasmas!, then a solution to Eq.~10! would only
exist if the peak intensityr05u0

2 is less than the critica
valuercr51/u4gu ~see also@11#!. A final integration leads to

6x5
1

u0
tanh21S s

u0
D1A4g tan21~A4gs!, ~11!

where we have defined the intensityr5u2 and the normal-
ized intensitys25(r02r)/(114gr). This implicit relation
gives the profile of bright spatial solitons propagating
weakly nonlocal Kerr-like media. In the local limit,g50,
we recover from Eq.~11! the well-known profile u(x)
5u0 sech(u0x) of the 1D bright soliton in a Kerr medium.

In Fig. 2 we show the intensity profile of the solution~11!
for different values of the nonlocality parameterg. Evi-
dently, an increase in the degree of nonlocality results in
increase of the soliton width—nonlocality smooths out t
refractive index profile thereby leading to a broadening
the beam. This effect is more clearly seen in Fig. 3 where
plot the width of the bright solitons~full width at half maxi-
mum of the intensity profile! versus the degree of nonlocalit
g for different peak intensities; the soliton width increas
monotonically with the degree of nonlocality.

An important aspect of any family of soliton solutions
their stability properties. For single-peak solitons stability
determined by the dependence of the power

P5E
2`

`

uc~x,z!u2dx, ~12!

FIG. 2. Intensity profiles of bright solitons with unit amplitude
r051 for different degrees of nonlocalityg.
0-2
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SOLITONS IN NONLOCAL NONLINEAR MEDIA: . . . PHYSICAL REVIEW E 63 016610
on the propagation constantG. Solitons are stable if
dP/dG.0 and unstable otherwise@20#. For the model con-
sidered hereP(G) can be found analytically to

P5Ar01
114gr0

A4g
tan21~A4gr0!, ~13!

by using Eq.~10!. For weakly nonlocal media withg!1 the
power is approximately given by

P5P0~11 4
3 gr02 16

15 g2r0
21••• !, ~14!

whereP052Ar0 is the soliton power in the limit of a loca
response withg50. The derivativedP/dG can easily be
found from Eq.~13! and it transpires that the power is
monotonically increasing function of the propagation co
stant~for g.0), indicating that the solitons are stable.

Interestingly again, hadg been negative, then the brigh
solitons would exist for sufficiently low-peak intensities,r0
,1/u4gu, but be unstable forr0.0.7/u4gu, for whichdP/dG
is negative~see again@11#!.

To demonstrate the stability of the bright solitons forg
.0 we numerically integrated Eq.~5! using the split-step
Fourier method and the exact soliton solution as an ini
condition. In all simulations~for both bright and dark soli-
tons! we used a steplength ofdz50.001 and a transvers
resolution ofdx50.05. Results of the numerical simulation
are shown in Fig. 4 where we demonstrate propagation
collision of two bright solitons with unit amplituder051. It
is evident that the solitons propagate in a stable manner.
collision, on the other hand, is not completely elastic a
causes the soliton amplitude and width to oscillate slight

The bright solitons of the nonlocal nonlinear Schro¨dinger
Eq. ~5! were considered by Davydova and Fischuk in t
context of focusing of upper hybrid waves in plasma@13#. In
particular, the existence of bright soliton solutions and th
stability was reported by these authors. However, the exp
expression~11! was not given and no numerical confirmatio
was presented.

FIG. 3. Soliton width versus degree of nonlocalityg for peak
intensitiesr051 ~solid! andr0510 ~dashed!.
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III. DARK SOLITONS

We now consider the impact of weak nonlocality in th
case of a self-defocusing nonlinearity, which corresponds
a negative sign in Eq.~3!. We introduce a spatial variabl
z5x2Vz, with V being the soliton transverse velocity, an
look for stationary solutions of the form

c~x,z!5Ar~z!exp@ iGz1 if~z!#, ~15!

wherer(z) is the soliton intensity andf(z) its phase. Sub-
stitution of this form into Eq.~5! yields

]z@r~]zf2V!#50, ~16!

2r~124gr!]z
2r2~]zr!224r2~]zf!218Vr2]zf

28r2~G1r!50. ~17!

We are interested in dark solitons, i.e., solutions with
intensity dip on a constant background. Integrating the s
tem ~16!,~17! once we obtain that the soliton backgroun
intensityr05u0

2 determines the soliton propagation consta
G and that the center intensityr15u1

2 determines the trans
verse velocityV, through the relations

V25r1 , G52r0 , ~18!

which are exactly the same as those obtained for a pu
local response. We further find that the soliton intensityr(z)
is governed by the equation

~]zr!254~r2r1!~r02r!2/~124gr!. ~19!

Obviously, a solution to Eq.~19! exists only if the back-
ground intensity does not exceed a certain critical value,

FIG. 4. Collision of unit amplitude bright solitons in a weak
nonlocal Kerr-like medium withg50.1.
0-3
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WIESŁAW KRÓLIKOWSKI AND OLE BANG PHYSICAL REVIEW E 63 016610
r0,rcr51/u4gu, ~20!

which coincides with the critical peak intensity above whi
bright solitons does not exist in a focusing nonlocal medi
wheng,0, as discussed above.

It can be shown that the relation~20! represents the sta
bility condition for the plane wave solution to Eq.~5! with a
defocusing nonlinearity. For background intensities lar
thanrcr the plane-wave solutions become modulationally u
stable@21#.

Integrating Eq.~19! once more we obtain

6z5
1

d0
tanh21S d

d0
D1A4g tan21~A4gd!, ~21!

which is an implicit relation between the soliton intensityr
and the spatial coordinatez, with the normalized intensity
now given by d2(r)5(r2r1)/(124gr) and d05d(r0).
For the soliton phase we obtain

6f5tan21S d

u1
D2u1A4g tan21~A4gd!, ~22!

where we have used the gauge invariance of Eq.~2! to re-
move a constant phase contribution~phase in the center!. In
Fig. 5 we present examples of the intensity profile of t
dark solitons for different values of the nonlocality para
eter g. These graphs show that increasing nonlocality
creases the width of the soliton. To better illustrate this eff
we plot in Fig. 6 the width of the dark solitons„defined as
the distance between points where the intensity isr0
1r1)/2… versusg for several values of the soliton contra
a5(r02r1)/r0.

We see that unlike saturation, which tends to increase
width of dark solitons, nonlocality has the opposite effe
This is due to the fact that nonlocality causes the nonlin
index change to advance towards regions of lower light
tensity. In the case of bright solitons this effect leads to s
ton expansion. The plots in Fig. 6 also indicate the intere
ing effect that for strong nonlocality, all dark solitons acqu
the same width. Actually, in this limit, i.e., wheng ap-

FIG. 5. Intensity profiles of dark solitons withr051 and r1

50.1 for different values of the nonlocality parameterg.
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proaches the critical valueg51/(4r0) the relation~21! can
be inverted leading to a simple expression for the soli
intensity profile

r5H r0@12a cos2~u0z!#, uu0zu<p/2

r0 , uu0zu>p/2.
~23!

The solution~23! confirms that in this limit all dark solitons
have the same widthzcr5p/(2u0) independent of the con
trast.

With a nontrivial phase structure, these dark solitons c
be represented in the complex plane describing the real
imaginary part of the soliton amplitudec(z)5Ar exp(if).
Any soliton solution is then represented by a trajectory
this plane. Figure 7 shows such a phase diagram (g50.1) for
several values of the soliton contrast. The circle represe
the background intensityr051 and nonlocal soliton solu
tions are plotted using solid lines. The dashed line cor
sponds to the same contrast soliton solution in the pu
local case (g50). The total phase change across the soli
is given by the angle subtended by two lines connecting
origin with points of intersection of the soliton curve and t
circle. One can see directly from Fig. 7 that the total pha
change across the soliton in a nonlocal medium is alw

FIG. 6. Width of dark solitons versus degree of nonlocalityg
for r051 and different contrastsa5(r02r1)/r0.

FIG. 7. Real and imaginary part of dark solitons withr051 in
a weakly nonlocal medium withg50.1.
0-4



a
rit

b
hr
e

m
n
th

t t

th

ar

.
la
t
d

as-

ht
ral
in
re

tion
x-

o-
gh
ex-
e
dex

to
si-
he
ble.
rk
in
n-
was
the

be
ol-
lli-

cal

ith

SOLITONS IN NONLOCAL NONLINEAR MEDIA: . . . PHYSICAL REVIEW E 63 016610
less than in the local case. Furthermore, the soliton ph
profile closely resembles that of a threshold nonlinea
@22#.

The linear stability of dark solitons can be determined
considering the conserved quantities of the nonlinear Sc¨-
dinger Eq. ~5! with defocusing nonlinearity, namely th
renormalized Hamiltonian

H5
1

2E2`

`

@ u]xcu21~ ucu22r0!22g~]xucu2!2#dx ~24!

and the renormalized momentum

Q5
i

2E2`

`

~c]xc* 2c* ]xc!S 12
r0

ucu2
D dx. ~25!

A soliton solution propagating with velocityV corresponds
to an extremum of the Hamiltonian for fixed momentu
d(H2VQ)50. It has been shown that the stability criterio
for dark solitons is determined by the dependence of
momentum on the velocity,Q5Q(V) @23#. For dark solitons
to be stable the derivative of the momentum with respec
the velocity must be positive,

dQ/dV.0. ~26!

In the case of a nonlocal nonlinearity the expression for
momentum can be evaluated analytically to

Q522ro tan21S d0

Ar1
D 1~r02r1!SAr1

d0
D

1@114g~2r02r1!#Ar1

4g
tan21~A4gd0!. ~27!

The dependence of the momentum on the velocity of d
solitons with background intensityr051 is shown in Fig. 8
for several degrees of nonlocalityg. The monotonic increase
of this function indicates that the dark solitons are stable

This conclusion is confirmed by direct numerical simu
tions of Eq. ~5! with initial conditions given by the exac
solution ~21!,~22!. Figure 9 illustrates the propagation an

FIG. 8. MomentumQ of dark solitons withr051 versus veloc-
ity V for different degrees of nonlocality,g.
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collision of two identical dark solitons withr0510r151 in
a weakly nonlocal medium withg50.1. While the solitons
propagate in a stable fashion, their collision is clearly inel
tic with radiation being emitted from the impact area.

In conclusion, we have studied the properties of brig
and dark one-dimensional spatial solitons in a gene
weakly nonlocal Kerr-like medium, in which the change
refractive index due to local and nonlocal contributions a
of the same sign. We have found an exact analytical solu
for both bright and dark solitons and used it to find the e
istence and stability regions of both solutions.

Stable bright soliton solutions were found to exist in f
cusing nonlocal media for all parameter values. Althou
they were previously predicted the solution was never
plicitly written down. The effect of nonlocality is in som
sense equivalent to that of saturation, to smooth out the in
profile and thereby increase the soliton width.

Previously unknown dark soliton solutions were found
exist in defocusing nonlocal media for background inten
ties below a certain critical value, which correspond to t
intensity at which the plane-wave solutions become unsta
We found that nonlocality leads to narrowing of the da
solitons, with all dark solitons acquiring the same width
the strongly nonlocal limit, independent of the soliton co
trast. The total phase change across the dark soliton
found to be less than that in the purely local case, with
phase profile resembling that of a threshold nonlinearity.

Both nonlocal bright and dark spatial solitons appear to
stable under propagation. Preliminary studies of soliton c
lision revealed their inelastic character in analogy to co
sions of solitons of nonintegrable models.
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FIG. 9. Propagation and collision of identical dark solitons w
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