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Abstract

A self-trapped potential is used to describe the formation of electric-field domains resulting

from the negative differential conductivity. The method of multiple scales, in which the electric

field profiles is separated into fast and slow spatial components, shows that the slowly varying

component satisfies the nonlinear Schrodinger equation. The well-known soliton solutions of this

equation provide a theoretical description of the electric-field domains.
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I. INTRODUCTION

Solitons in Superlattices have been attracting considerable attention in recent years. Super-

lattices are fascinating because the structures exhibit collective properties not shares by either

constituent, and these characteristics can be controlled through variation of the structural pa-

rameters[1]. Negative differential conductivity is one of the basic characteristics in superlattices.

Negative differential conductivity can result in the formation of electric-field domains. The time-

dependent oscillations of the current on GaAs/AlAs superlattices subject to DC voltage bias

have been found [2]. For large values of the photoexcitation or doping, there is a stable formation

of stationary electric field domains leading to the well-known oscillatory I-V characteristic[3].

It is well known that the fluctuation decays for positive differential Conductivity and grows

for negative differential conductivity. The negative differential conductivity leads to the growth

of a small negative charge accumulation[4]. The lower field upstream leads to an increased

rate of feeding electrons into the accumulation layer, and the high-field down-stream leads

to a decreased rate of removal from there. The spatially homogeneous electron distribution

then becomes unstable, and a travelling electron accumulation layer is formed. In this process,

a higher electron density nucleates an accumulation layer. So the formation of the electron

accumulation layer can be described by the self-trapped potential κ|ψ(x,t)|2, where ψ(x,t) is

the electron wave function, |ψ(x,t)|2 is the electron density, and Κ is a real constant[5].

The electric field profiles can been separated into fast and slow components[1,5]. The first of

these varies on the scale of the individual Layers of the superlattices and is similar to the Bloch

functions in solid-state physics. The second component varies on a much large scale and acts as

an envelope for the fast Bloch-like component.

In the present paper we use the self-trapped potential κ|ψ(x,t)|2 to describe the forma-

tion of electron accumulation-layer domains in semiconductor superlattices under DC voltage

bias. In order to find the solution for the slowly varying component of the field, we use the

method of multiple scales[6]. We show that the slowly varying component satisfies the nonlinear

Schrodinger equation which has soliton solutions. This implies that electron accumulation-layer

domains in semiconductor superlattices are soliton phenomena.

II. GENERAL DISCUSSION

The formation of electron accumulation-layer domains in semiconductor superlattices based

on the negative differential conductivity can be described by the self-trapped potential κ|ψ(x, t)|2.
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Then the Hamiltonian is

H = - ^ V2 -V{x) + eFx - κ|ψ(x, t)|2 (1)

where V(x) = V(x + a) is the periodic superlattice potential with period a, e is the electron

charge, F is the strength of the electric field.

The corresponding Schrodinger equation is

i^(x, t) + J^tl>(x, t) + V(x)tP(x, t) - FxtP(x, t) + K\tP(x, t)\2tP(x, t) = 0 (2)

in which we take h = 2m = e = 1.

The following transformations[7]:

ψ(x, t) = ${x', t') exp {-iFxt - 1iF2t3)

x = x'- Ft'2 (3)

t = t'

bring Eq.(2) to

iΦt + Φxx + V(x)Φ+ κ |Φ|2Φ = 0 (4)

where x' and t' and denoted by x and t for simplicity.

If the system is linearized (κ = 0), its solution is

^(k)(x,t)=(t>k(x)e-iu't + c.c. (5)

where φk(x) = uk(x)eikx, uk(x) = uk(x + a) is Bloch function, and c.c. designates complex

conjugation.

Now we investigate the nonlinear equation (4). We use the method of multiple scales. This

general technique calls in the present problem for the introduction of different length scales,

xα = IJ-ax (/x < < 1, α = 0,1,2,---), and time scales, tα = [iat. These new variables are

considered to be independent. Under this condition, the first spatial and temporal derivatives

can be written as
d d d o d

+ + +••• 6

OX OXQ OX 1 OX2

and
9 d d o d

di = m-0

+^Wl

+^m-2

+--- ( 7 )

from which expressions for higher derivatives follow straightforwardly. Similarly, the wave func-

tion Φ is written in a series

$ = /x$i+/x2$2 + At3$3H (8)

The Φi (i = 1,2,3, • • ) are functions of all xα and all tα. In taking V(x) to be strictly periodic,

we assume that it shows variation only on the smallest length scale (α = 0), that is V = V(X0).
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Equations (6),(7),and (8) are now substituted into Eq.(4) and terms with equal powers of/x are

collected.

As a first step we gather all terms proportional to /x and find

This is just the linear equation. It shows that the nonlinearity plays no role on the fastest spatial

and temperal time scales. From the analysis earlier in this section we know that the functions

in Eq.(5) are solutions to this equation. However, Eq.(9) only contains the variables X0 and t0,

so that Φ1 can be written as

Φ1 = a(x1,x2, • • • ; t 1 h , • , -)(f)k(xo)e-tojto + c.c. (10)

where a(x1,x2, • • •; t1, t2, • • ) is an arbitrary function of the slow variables, and we refer to it as

envelope function.

Then the second step we consider all terms proportional to /x2 and obtain

J i A A A = 0 (11)i J $ 2 + i $ 2 + V(x0)Φ2 + i $ 1 + 2
dto 8XQ dt\ dx0 dx\

In order to solve this equation we make the following ansatz for Φ2:

$2 = 2 ^ h ' ( x i , x 2 , • • •; h, t2, • • •)<t>k'{xo)e-luJ[-k>to + c.c. (12)
w

where bk>(xi,X2, • • • ;t1,t2, • • ) is a new set of envelope functions. Substituting Eq.(12) into

Eq.(11), we find

^\u(k)-u(k/)]bu>6w(xn)+i— -1 f~ ^ ' * 9 a d M X o )[LO{K) - LO{K )\bk'(pk'(xo) + t^—(pk{Xo) + 2 - = 0 (13)
fc'

Now we project onto the subspace spanned by the eigenfunction φk(x0) (= uk(x0)eikx°). The first

term of Eq.(13) then vanishes and the following condition for envelope function a(x1,x2, • • •; t1, t2, • • )

is found:

( i ^ + 2<fc |^ |A:>^)a = 0 (14)

dt\ dxo dx\

or

^2L =
 l — ^ (15)

9a; 1 vk(x0) dti

Where the orthogonality relations of Bloch functions were used, and
- <k\-—\k >=vk(x0)| dx

is the group velocity in the eigenfunction φk(x0). Let

z1 = x1 - 2 < k|—|A; >h=xi- vk(x0)t1
i dxo



It follows that the slowly varying function a(x1,x2, • • ; ;h,t2,- • ) cannot depend on x1 and t1

independently but only on their linear combination. This brings us to the important conclusion

that, to this level of approximation, the envelope travels with the group velocity. This conclusion

reflects the fact that the nonlinearity has not entered the discussion yet.

Now we finally collect all the terms proportional to /x3. It is only at this level that the

nonlinearity explicitly enters the discussion. The result can be written as

L dt0 dx2 • v U / J ° ' L dh ' dxodxt1 "

d d d d2 I 2 _

dt2 dx0 dx2 dx\

Like the analysis of Eq.(11), we use a similar ansatz as Eq.(12) for Φ3:

(16)

Φ3 = E fic(xi,X2, •••;h,t2,-- •)^k'(x0)e-l^t° + c.c. (17)
k>

Substituting Eq.(17) into Eq.(16) and projecting onto the subspace spanned by φk(x0), we find

.dbk ^dbk' f d<t>w{x

da , . da d2a 2 f \ , / WA 1 1 \

+ 2 — - + ivk{xo)- h TT^- + na a |0fc(a?o)| dxo = 0 (18)
Ul2 OX2 OX\ 1

Now we analyze and rewrite Eq.(18) in a more practical form. To do so, we project Eq.(13)

onto the space spanned by the remaining eigenfunctions (f>k'(%o) (k'unequalk). Using the or-

thogonality relation of Bloch functions, we find an expression for the by in terms of the envelope

function a(x1,x2, • • ; t1,t2, • • ). It reads:

h -2 < * ' & > da
bh
bk> u(k)-u(k>)

It follows from this expression that the envelopes by travel with the group velocity as well. If

we interpret z1 as our (slow) spatial coordinate (in the frame moving with the group velocity),

we look for solutions for which d/dx2 = 0. And t2 can be identified as the (slow) time. After

some algebraic manipulations, the result is then

k'unequalk ω ( k ' l

At last, it is reduced to the nonlinear Schrodinger equation:

dt2 dz(

where

da .d2a „, l 2 , •,

+A—A +B|a|2a = 0 (21)
dz(

4| < k'\-£r\k > | 2

. ω(k) — ui(k )
k'unequalk ω ( k )



The coefficient B represents the effective nonlinearity seen by the envelope function. The non-

linear Schrodinger equation (NLS) and its solutions have been widely studied[8]. One of the

best known properties of this equation is the existence of soliton solutions.

III. CONCLUSION AND DISCUSSION

Electric-field domains in semiconductor superlattices have been Extensively studied by exper-

imental techniques. The negative differential Conductivity in weakly coupled narrow-miniband

semiconductor superlattices results in the formation of electric-field domains. Experimentally,

electric-field domains appear at high doping densities. Self-sustained current oscillations oc-

cur in weakly-coupled superlattices. Frequencies reach GHz regime, even at room temperature

observation is possible.

We use the self-trapped potential to describe the formation of electric-field domains resulted

from the negative differential conductivity. The electric field profiles can been separated into

fast and slow components. Using the method of multiple scales, we present the results that the

slowly varying component satisfies the nonlinear Schrodinger equation (21). It is well known

that the nonlinear Schrodinger equation (21) for real B has the soliton solution[9]. This implies

that solitons are observed as envelopes of the linearized wave functions which is corresponding

to the electric-field domains in semiconductor superlattices.
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