
Solo-fast Universal Constructions
for Deterministic Abortable Objects?

Claire Capdevielle, Colette Johnen, and Alessia Milani

Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France (firstname.lastname@labri.fr)

1 Introduction

In this paper we study efficient implementations for deterministic abortable objects. Proposed by Hadzi-
lacos and Toueg [8] a deterministic abortable object ensures that if several processes contend to operate
on it, it may return a special response abort to indicate that the operation failed. And it guarantees
that an aborted operation does not take effect. Operations that do not abort return a response which is
legal w.r.t. the sequential specification of the object. Similarly to obstruction-free objects, the behavior
of abortable objects degrades when there is contention. On the other hand, abortable objects always
return the control to the caller of an operation, and when this happens the caller knows if the operation
took place or not. This is an ideal behavior for shared objects [3].

Since they deal with correctness and progress separately, we expect simple and efficient algorithms to
implement deterministic abortable objects. Attiya et al. proved that it is impossible to implement these
objects only with read/write registers, [3]. Thus, we study implementations that use only read/write
registers when there is no contention and use stronger synchronization primitives, e.g., CAS, when
contention occurs. These implementations are called solo-fast and are expected to take advantage of the
fact that in practice contention is rare. The notion of solo-fast was defined in [3] for step contention :
There is step contention when the steps of a process are interleaved with the steps of another process. In
the same paper, they prove a linear lower bound on the space complexity of solo-fast implementations
of obstruction-free objects. This result also holds for deterministic abortable objects.

We consider an asynchronous shared-memory system where n processes communicate through lin-
earizable base objects and can fail by crashing, i.e.; a process can stop taking steps while executing an
operation. In this model we study the possibility to implement deterministic abortable objects with a
better space complexity than linear if a process is allowed to use strong synchronization primitives even
in absence of step contention, provided that its operation is concurrent with another one. This notion of
contention is called interval contention [1]. Step contention implies interval contention, the converse is
not true. Also, we consider implementations where a crashed process can cause only a finite number of
concurrent operations to abort. This property, called non-triviality, is formally defined in [2].

Unfortunately, we prove that some abortable object implementation should have Ω(n) space com-
plexity [4]. The proof of the lower bound is similar to the one presented in [3] and it is not provided in
this paper for lack of space. Here we present a solo-fast universal construction for deterministic abortable
objects whose space complexity is O(n) if the implemented object has constant size. A universal con-
struction [9] is a methodology for automatically transform any sequential object in a concurrent one.

In the following we provide the main ideas of our construction (A detailed description is in Section
2) : Writing operations are applied one at the time. Each process makes a local copy of the object and
computes the new state locally. We associate a sequence number to each state. A process that wants
to modify the ith state has to compete to win the i + 1th sequence number. A process that does not
experience contention uses only read/write registers, while a CAS register is used in case of contention
to decide the new state. It may happen that (at most) one process p behaves as if it was running solo,
while other processes were competing for the same sequence number. In this case, we use a lightweight
helping mechanism to avoid inconsistency : any other process acquires the state proposed by p as its new
state. If it succeeds to apply it, it notifies the process p that its state has been applied. Then the helping
process aborts.

An implementation resulting from our universal construction is wait-free [9], linearizable [11], non-
trivial [2], and non-trivial solo-fast (a process p applies some strong primitive when performing an

? This work was partially supported by the ANR project Displexity.



instance of operation op, only if op is concurrent with some other operation and an operation that remains
incomplete does not justify the application of strong primitives by infinitely many other operations). Also
it guarantees that operations that do not modify the object always return a legal response; And in case
of contention, at least one writing operation succeeds to modify the object. We ensure that if a process
crashes while executing an operation, then it can cause at most two operations per process to abort.

Our construction uses O(n) read/write registers and n+ 1 CAS objects. Also it keeps at most 2n+ 1
versions of the object. If t is the worst time complexity to perform an operation on the sequential object,
then Θ(t+ n) is the worst time complexity to perform an operation on the resulting object.
Related work. Attiya et al. were the first to propose the idea of shared objects that in case of contention
return a fail response [3]. Few variants of these objects have been proposed [3, 2, 8]. The ones proposed
in [3, 2] differ from deterministic abortable objects in the fact that when a fail response is returned the
caller does not know if the operation took place or not.

A universal construction for deterministic abortable objects is presented in [8]. This construction is
derived from the universal construction presented in [9] and can be easily transformed into solo-fast by
using the solo-fast consensus object proposed in [3]. This construction has unbounded space complexity,
since it stores all the operations performed on the object. Also operations that only read the state of the
object modify the representation of the implemented object and may fail by returning abort.

Several universal constructions have been proposed for ordinary wait-free concurrent objects. A good
summary can be found in [5]. These constructions could be transformed in solo-fast by replacing the
strong synchronization primitives they use with their solo-fast counterpart. To the best of our knowledge
no solo-fast LL/SC or CAS register exist. Luchangco et al. presented a fast-CAS register [12] whose
implementation ensures that no strong synchronization primitive is used in execution without contention.
But, in case of contention, concurrent operations can leave the system in a state such that a successive
operation will use strong synchronization primitives even if running solo. So, their implementation is not
solo-fast. Even using the solo-fast consensus object by Attiya at al., which has Θ(n) space complexity,
we cannot easily modify existing universal constructions to make them solo-fast for abortable objects
while ensuring all the good properties of our solution.

On the other hand, some of the ideas of our construction are similar to previous algorithms. The closest
to our solution is the universal construction presented in [5] where operations can exit if requested by the
invoking process and not already linearized. As our solution they use a sequence number to decide the
order of operations. But their solution does not differentiate between read-only and writing operations.
Also they use a CAS object to store the sequence number together with the process id of the corresponding
operation. So the universal construction in [5] is not solo fast.

Abortable objects behave similarly to transactional memory, [10]. Transactional memory enables pro-
cesses to synchronize via in-memory transactions. A transaction can encapsulate any piece of sequential
code. This generality costs a greater overhead as compared to abortable objects. Also transactional
memory is not aware of the sequential code embedded in a transaction. A hybrid approach between
transactional memory and universal constructions has been presented by Crain et al. [6]. Their solution
assumes that no failures occur. In addition they use a linked list to store all committed transactions.
Thus, their solution has unbounded space complexity. Finally, our algorithm ensures multi-version per-
missiveness and strong progressiveness proposed for transactional memory respectively in [13] and in [7]
when conflicts are at the granularity of the entire implemented object.

2 A Non-trivial Solo-fast Universal Construction (NSUC)

We suppose to know if an operation op may change the state of the shared object, or if it cannot. In the
last case we say that op is read-only. This information is specified in the input. The algorithm assumes a
function APPLYT (s, op, arg) that returns the response matching the invocation of the operation op in
a sequential execution of op with input arg from state s for the object of type T . APPLYT (s, op, arg)
also returns the new state of the object.

The algorithm uses the following shared variables :

– An array A of n single writer multireader (SWMR) registers. Each register contains a sequence value.
In particular, process pi announces its intention to change the current state of the shared object,
by writing into location A[i] the sequence that will be associated to the new state if pi succeeds its

2



operation. Our algorithm guarantees that each state of the object is univocally associated with a
sequence. Initially, A[j] = 0 for j = 1..n.

– An array F of n SWMR registers. Each register contains a sequence and the pointer to a state of the
shared object. The process pi writes < seq, σ > in F [i] if it has detected that it is the first process
to announce its intention to define the state for the sequence seq, σ is the proposed state. Initially,
F [j] =< 0,⊥ > for j = 1..n.

– An array OS of n SWMR registers. If there is no contention process pi writes < seq, state > into
OS[i] where state is the pointer to the new state of the shared object computed by pi while executing
its operation and seq is the associated sequence value. Initially, OS[j] =< 0,⊥ > for j = 1..n.

– A single CAS register OC which contains a sequence, an identifier of a process and a pointer to a
state of the shared object. It is used in case of contention to decide the new state of the object among
the ones proposed by the concurrent operations.
In particular, if a process pi detects the contention, it tries to change the state of the CAS register
into a tuple (< seq, id, newState >) where id is the identifier of the process that proposes the state
newState associated to the sequence seq.
id may be different than i if process pi detects that another process pid is concurrently executing an
operation and both are trying to propose a new state for the same sequence value. pi then helps the
other process to apply its changes. Initially, OC =< 0, 0, σ > where σ is the pointer to the initial
state of the shared object.

– An array S of n CAS registers. Before trying to apply its changes to the CAS register OC, a process
stores the sequence value stored in OC in S. Precisely, if the value of OC is < seq, i, state >, S[i]
will be set to seq. This is necessary to ensure that a process whose operation completes thanks to
another process is aware that its operation succeeded. Thus, if S[i] = seq process i knows that its
operation which computed the state associated to seq succeeded.
Initially, S[j] = 0 for j = 1..n.

Description. At any configuration the state of the object is the value with the highest sequence stored
either in the CAS register OC or in the array OS. When a process pi wants to execute an operation
op on an object of type T , it first reads the current state of the object and the corresponding sequence
seq (line 1). Then, pi locally applies op to the read state (line 2). If the operation op cannot change the
state of the object, pi immediately returns the response (line 3 to 5). Otherwise, after incrementing the
sequence value seq (line 6), pi announces its intention to modify the state of the object by writing value
seq + 1 into the register A[i] (line 7). After announcing its intention to modify the object, pi checks if
some other process is concurrently executing a non trivial operation on it. This is done by reading the
other entries of the array A and looking for sequences greater than or equal to seq + 1.

Then, three cases can be distinguished.

– A greater sequence is found. Then some other process already decided the state for seq + 1 and pi
aborts.

– pi detects that it is the first process announcing a proposal for the sequence seq + 1 (no read
sequence is greater than or equal to pi’s one, i.e. LEV ELA(i) < seq + 1). So pi writes its proposal,
(seq + 1, newstate) into the register F [i] (line 20) and checks again for concurrent operations (line
21). If pi is still the only process to announce a proposal for seq + 1, it writes its proposal into the
register OS[i] (lines 21-22). This means that the state of the object associated to seq + 1 is the one
proposed by pi. This is because any other process competing for the same sequence will read that pi
is the first process to propose a new state for seq+ 1 and will help pi to complete its operation (lines
15-17 and line 19). Finally, pi returns the response of the operation (line 23).

– pi reads seq + 1 in one of the other entries. Then it detects that another process is concurrently
trying to decide the state for this sequence. If the detection is done on line 13, then pi checks the
presence of a process pj competing for the sequence seq+ 1 and which has seen no contention (i.e. pj
has written its proposal in F [j]) in line 14. If this process exists, pi will help pj to apply its changes
to the state of the object (lines 15 to 18). In particular, since there is contention pi will try to write
pj ’s proposal into the CAS register OC (lines 26 to 31). Then it will return abort (lines 32 to 35).
Otherwise pi continues to compete for its own proposal. It tries to write the proposed state into OC
(lines 26 to 31) until a decision is taken for the sequence seq+1. If a process (pi or a helper) succeeds
to perform a CAS in OC with pi’s proposal then pi returns the response of its own operation (line
35). Otherwise it aborts. We have a similar behavior if a process detects the contention on line 21.

3



Code for process pi to apply operation op with input arg on a DA object :

1 < seq, state >← STATE() ; //Find the last state and the sequence corresponding

2 < newState, res >← APPLYT (state, op, arg);
3 if op is read-only then return res end
4 seq ← seq + 1 ; //New sequence

5 A[i]← seq ; //The process announces its intention

6 idnew ← i;
7 seqA ← LEV ELA(i);
8 if seqA > seq then return ⊥ end //A state is already decided for this sequence

9 if seqA = seq then //There is an interval contention

10 < idF , newStateF >←WHOS FIRST(seq);
11 if newStateF 6= ⊥ then newState← newStateF ; idnew ← idF ; end //Presence of a first

process

12 else
13 F [i]←< seq, newState >;
14 if LEV ELA(i) < seq then OS[i]←< seq, newState >; return res end //The process is alone

15 end
16 < seqOC , idOC , stateOC >←READ(OC);
17 while seqOC < seq do
18 OLD WIN(seqOC , idOC);
19 CAS(OC,< seqOC , idOC , stateOC >,< seq, idnew, newState >);
20 < seqOC , idOC , stateOC >←READ(OC);

21 end
22 if (seqOC = seq ∧ idOC 6= i) ∨ (seqOC > seq ∧READ(S[i]) 6= seq) then res← ⊥; end
23 return res

Code for the function STATE(), which returns the current state of the shared object and

its sequence :

24 seqmax ← 0; σmax ← ⊥ ;
25 for j = 1..n do
26 < seqOS , σ >← OS[j];
27 if seqOS > seqmaxthen seqmax ← seqOS ; σmax ← σ; end

28 end
29 < seqOC , idOC , σOC >←READ(OC);
30 if seqOC < seqmax then return < seqmax, σmax > end
31 return < seqOC , σOC >

Code for the function LEV ELA(i), which returns the highest sequence written into A by a

process other than pi :

32 seqmax ← 0;
33 for j = 1..n | j 6= i do
34 seqA ← A[j];
35 if seqmax < seqA then seqmax ← seqA; end

36 end
37 return seqmax

Code for the function WHOS FIRST (seq), which returns the couple (j, σ) where j is the

first process (if any) to propose a new state for seq and σ is the proposed stated :

38 for j = 1..n do
39 < seqF , σF >← F [j];
40 if seq = seqF then return < j, σF > end

41 end
42 return < 0,⊥ >

Code for the function OLD WIN(seqOC , idOC), which ensures that a slow process p is aware

if its operation was successfully executed. In fact, it may happen that p did not take

steps while another process completed its operation and, then another operation overwrote

its changes by writing into OC. Then, p can recover the state of its operation checking

into its location in S and return the correct response.

43 seqS ← READ(S[idOC ]);
44 if seqOC > seqS then CAS(S[idOC ], seqS , seqOC); end

Algorithm 1: NSUC - Code for process pi

4



References

1. Afek, Y., Stupp, G., Touitou, D.: Long lived adaptive splitter and applications. Distributed Computing 15(2),
67–86 (2002), http://dx.doi.org/10.1007/s004460100060

2. Aguilera, M.K., Frolund, S., Hadzilacos, V., Horn, S.L., Toueg, S.: Abortable and query-abortable objects
and their efficient implementation. In: the 26th ACM Symposium on Principles of Distributed Computing
(PODC’07). pp. 23–32 (2007), http://doi.acm.org/10.1145/1281100.1281107

3. Attiya, H., Guerraoui, R., Kouznetsov, P.: Computing with reads and writes in the absence of step contention.
In: the 19th International Conference on Distributed Computing (DISC’05). pp. 122–136 (2005)

4. Capdevielle, C., Johnen, C., Milani, A.: Solo-fast universal constructions for deterministic abortable objects.
Tech. Rep. 1480-14, LaBRI (may 2014)

5. Chuong, P., Ellen, F., Ramachandran, V.: A universal construction for wait-free transaction friendly data
structures. In: the 22nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’10). pp.
335–344 (2010), http://doi.acm.org/10.1145/1810479.1810538

6. Crain, T., Imbs, D., Raynal, M.: Towards a universal construction for transaction-based multiprocess pro-
grams. Theor. Comput. Sci. 496, 154–169 (2013)

7. Guerraoui, R., Kapalka, M.: The semantics of progress in lock-based transactional memory. In: the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’09). pp. 404–415 (2009)

8. Hadzilacos, V., Toueg, S.: On deterministic abortable objects. In: the 2013 ACM Symposium on Principles
of Distributed Computing (PODC’13). pp. 4–12 (2013), http://doi.acm.org/10.1145/2484239.2484241

9. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1), 124–149 (1991),
http://doi.acm.org/10.1145/114005.102808

10. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data structures. In: the
20th Annual International Symposium on Computer Architecture (ISCA’93). pp. 289–300 (1993)

11. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. ACM Transactions
on Programming Languages and Systems 12(3), 463–492 (1990)

12. Luchangco, V., Moir, M., Shavit, N.: On the uncontended complexity of consensus. In: the 17th International
Symposium on Distributed Computing (DISC03). pp. 45–59 (2003)

13. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In: the 29th ACM Symposium
on Principles of Distributed Computing (PODC’10). pp. 16–25 (2010)

5


