
SOLOv2: Dynamic and Fast Instance Segmentation

Xinlong Wang1 Rufeng Zhang2 Tao Kong3 Lei Li3 Chunhua Shen1

1The University of Adelaide, Australia 2Tongji University, China 3ByteDance AI Lab

Abstract

In this work, we design a simple, direct, and fast framework for instance segmen-
tation with strong performance. To this end, we propose a novel and effective
approach, termed SOLOv2, following the principle of the SOLO method [32].
First, our new framework is empowered by an efficient and holistic instance mask
representation scheme, which dynamically segments each instance in the image,
without resorting to bounding box detection. Specifically, the object mask genera-
tion is decoupled into a mask kernel prediction and mask feature learning, which
are responsible for generating convolution kernels and the feature maps to be
convolved with, respectively. Second, SOLOv2 significantly reduces inference
overhead with our novel matrix non-maximum suppression (NMS) technique. Our
Matrix NMS performs NMS with parallel matrix operations in one shot, and yields
better results. We demonstrate that the proposed SOLOv2 achieves the state-of-the-
art performance with high efficiency, making it suitable for both mobile and cloud
applications. A light-weight version of SOLOv2 executes at 31.3 FPS and yields
37.1% AP on COCO test-dev. Moreover, our state-of-the-art results in object
detection (from our mask byproduct) and panoptic segmentation show the potential
of SOLOv2 to serve as a new strong baseline for many instance-level recognition
tasks. Code is available at https://git.io/AdelaiDet

1 Introduction

Generic object detection aims at localizing individual objects and recognizing their categories. For
representing the object locations, bounding box stands out for its simplicity. Localizing objects
using bounding boxes have been extensively explored, including the problem formulation, network
architecture, post-processing and all those focusing on optimizing and processing the bounding
boxes. The tailored solutions largely boost the performance and efficiency, thus enabling wide
downstream applications recently. However, bounding boxes are coarse and unnatural. Human vision
can effortlessly localize objects by their irregular boundaries. Instance segmentation, i.e., localizing
objects using masks, pushes object localization to the limit at pixel level and opens up opportunities
to more instance-level perception and applications. To date, most existing methods deal with instance
segmentation in the view of bounding boxes, i.e., segmenting objects in (anchor) bounding boxes.
How to develop pure instance segmentation including the supporting facilities, e.g., post-processing,
is largely unexplored compared to bounding box detection and instance segmentation methods built
on top it.

We are motivated by the recently proposed SOLO framework (Segmenting Objects by LOcations) [32].
SOLO formulates the task of instance segmentation as two sub-tasks of pixel-level classification,
solvable using standard FCNs, thus dramatically simplifying the formulation of instance segmentation.
It takes an image as input, directly outputs instance masks and corresponding class probabilities, in a
fully convolutional, box-free and grouping-free paradigm. However, three main bottlenecks limit the
performance of SOLO: a) inefficient mask representation and learning; b) not high enough resolution
for finer mask predictions; c) slow mask NMS. In this work, we eliminate the above bottlenecks all at
once.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://git.io/AdelaiDet

C
O

C
O

 M
as

k
 A

P

0 25 50 100 125
25

30

35

40

Inference time (ms)

150

Real-time

SOLOv2

SOLO

Mask R-CNN

TensorMask

YOLACT

PolarMask

BlendMask

(a) Accuracy vs. Speed

Mask R-CNN

SOLOv2

(b) Segmentation Detail Comparison

Figure 1 – Comparison of instance segmentation performance by SOLOv2 and other methods on the COCO
test-dev. (a) The proposed SOLOv2 outperforms a range of state-of-the-art algorithms. All methods are
evaluated using one Tesla V100 GPU. (b) SOLOv2 obtains higher-quality masks compared with Mask R-CNN.
Mask R-CNN’s mask head is typically restricted to 28× 28 resolution, leading to inferior prediction at object
boundaries.

We first introduce a dynamic scheme, which enables dynamically segmenting objects by locations.
Specifically, the mask learning process can be divided into two parts: convolution kernel learning and
feature learning (Figure 2(b)). When classifying the pixels into different location categories, the mask
kernels are predicted dynamically by the network and conditioned on the input. We further construct
a unified and high-resolution mask feature representation for instance-aware segmentation. As such,
we are able to predict high-resolution object masks, as well as learning the mask kernels and mask
features separately and efficiently.

We further propose an efficient and effective matrix NMS algorithm. As a post-processing step for
suppressing the duplicate predictions, non-maximum suppression (NMS) serves as an integral part in
state-of-the-art object detection systems. Take the widely adopted multi-class NMS for example. For
each class, the predictions are sorted in descending order by confidence. Then for each prediction, it
removes all other highly overlapped predictions. Such sequential and recursive operations result in
non-negligible latency. For mask NMS, this drawback is further magnified. Compared to bounding
box, it consumes more time to compute the IoU of each mask pair, thus leading to huge overhead.
We address this problem by introducing Matrix NMS, which performs NMS with parallel matrix
operations in one shot. Our Matrix NMS outperforms the existing NMS and its varieties in both
accuracy and speed. As a result, Matrix NMS processes 500 masks in less than 1 ms in simple python
implementation, and outperforms the recently proposed Fast NMS [2] by 0.4% AP.

With these improvements, SOLOv2 outperforms SOLO by 1.9% AP while being 33% faster. The
Res-50-FPN SOLOv2 achieves 38.8% mask AP at 18 FPS on the challenging MS COCO dataset,
evaluated on a single V100 GPU card. A light-weight version of SOLOv2 executes at 31.3 FPS and
yields 37.1% mask AP. Interestingly, although the concept of bounding box is thoroughly eliminated
in our method, our bounding box byproduct, i.e., by directly converting the predicted mask to its
bounding box, yields 44.9% AP for object detection, which even surpasses many state-of-the-art,
highly-engineered object detection methods.

We believe that, with our simple, fast and sufficiently strong solution, instance segmentation can be
a popular alternative to the widely used object bounding box detection, and SOLOv2 may play an
important role and predict its wide applications.

1.1 Related Work

Instance segmentation. Instance segmentation is a challenging task, as it requires instance-level
and pixel-level predictions simultaneously. The existing approaches can be summarized into three
categories. Top-down methods [20, 12, 25, 14, 6, 2, 4, 38] solve the problem from the perspective
of object detection, i.e., detecting first and then segmenting the object in the box. In particular,
recent methods of [4, 38, 35] build their methods on the anchor-free object detectors [31], showing
promising performance. Bottom-up methods [27, 9, 24, 10] view the task as a label-then-cluster

2

problem, e.g., learning the per-pixel embeddings and then clustering them into groups. The latest
direct method (SOLO) [32] aims at dealing with instance segmentation directly, without dependence
on box detection or embedding learning. In this work, we appreciate the basic concept of SOLO and
further explore the direct instance segmentation solutions.

We specifically compare our method with the recent YOLACT [2]. YOLACT learns a group
of coefficients which are normalized to (−1, 1) for each anchor box. During the inference, it
first performs a bounding box detection and then uses the predicted boxes to crop the assembled
masks. While our method is evolved from SOLO [32] through directly decoupling the original mask
prediction into kernel learning and feature learning. No anchor box is needed. No normalization
is needed. No bounding box detection is needed. We directly map the input image to the desired
object classes and object masks. Both the training and inference are much simpler. As a result, our
proposed framework is much simpler, yet achieving significantly better performance (6% AP better
at a comparable speed); and our best model achieves 41.7% AP vs. YOLACT’s best 31.2% AP.

Dynamic convolutions. In traditional convolution layers, the learned convolution kernels stay fixed
and are independent on the input, i.e., the weights are the same for arbitrary image and any location
of the image. Some previous works explore the idea of bringing more flexibility into the traditional
convolutions. Spatial Transform Networks [16] predicts a global parametric transformation to warp
the feature map, allowing the network to adaptively transform feature maps conditioned on the input.
Dynamic filter [17] is proposed to actively predict the parameters of the convolution filters. It applies
dynamically generated filters to an image in a sample-specific way. Deformable Convolutional
Networks [8] dynamically learn the sampling locations by predicting the offsets for each image
location. Pixel-adaptive convolution [29] multiplies the weights of the filters and a spatially varying
kernel to make the standard convolution content-adaptive. Yang et al. [37] apply conditional batch
normalization to video object segmentation and AdaptIS [28] predicts the affine parameters, which
scale and shift the features conditioned on each instance. They both belong to the more general
scale-and-shift operation, which can roughly be seen as an attention mechanism on intermediate
feature maps. We bring the dynamic scheme into instance segmentation and enable learning instance
segmenters by locations. Note that the concurrent work in [30] also applies dynamic convolutions for
instance segmentation by extending the framework of BlendMask [4]. The dynamic scheme part is
somewhat similar, but the methodology is different. CondInst [30] relies on the relative position to
distinguish instances as in AdaptIS, while SOLOv2 uses absolute positions as in SOLO. It means that
it needs to encode the position information N times for N instances, while SOLOv2 performs it all
at once using the global coordinates, regardless how many instances there are.

Non-maximum suppression. NMS is widely adopted in many computer vision tasks and becomes
an essential component of object detection and instance segmentation systems. Some recent works [1,
26, 13, 3, 2] are proposed to improve the traditional NMS. They can be divided into two groups,
either for improving the accuracy or speeding up. Instead of applying the hard removal to duplicate
predictions according to a threshold, Soft-NMS [1] decreases the confidence scores of neighbors
according to their overlap with higher scored predictions. Adaptive NMS [26] applies dynamic
suppression threshold to each instance, which is tailored for pedestrian detection in a crowd. In [13],
the authors use KL-Divergence and reflected it in the refinement of coordinates in the NMS process.
To accelerate the inference, Fast NMS [2] enables deciding the predictions to be kept or discarded in
parallel. Note that it speeds up at the cost of performance deterioration. Different from the previous
methods, our Matrix NMS addresses the issues of hard removal and sequential operations at the same
time. As a result, the proposed Matrix NMS is able to process 500 masks in less than 1 ms in simple
python implementation, which is negligible compared with the time of network evaluation, and yields
0.4% AP better than Fast NMS.

2 Proposed Method: SOLOv2

An instance segmentation system should separate different instances at pixel level. To distinguish
instances, we follow the basic concept of ‘segmenting objects by locations’ [32]. The input image is
conceptually divided into S×S grids. If the center of an object falls into a grid cell, then the grid cell
corresponds to a binary mask for that object. As such, the system outputs S2 masks in total, denoted

as M ∈ R
H×W×S2

. The kth channel is responsible for segmenting instance at position (i, j), where
k = i · S + j (see Figure 2(a)).

3

I M: H × W × ��
FCN ��, ��

(a) SOLO

G: S × S × D

F: H × W × E

*

kernel branch
feature branch

I

FCN (��, ��)
(��, ��)

(b) SOLOv2

Figure 2 – SOLOv2 compared to SOLO. I is the input feature after FCN-backbone representation extraction.
Dashed arrows denote convolutions. k = i · S + j; and ‘⊛’ denotes the dynamic convolution operation.

Such paradigm could generate the instance segmentation results in an elegant way. However, there
are three main bottlenecks that limit its performance: a) inefficient mask representation and learning.
It takes a lot of memory and computation to predict the output tensor M , which has S2 channels.
Besides, as the S is different for different FPN level, the last layer of each level is learned separately
and not shared, which results in an inefficient training. b) inaccurate mask predictions. Finer
predictions require high-resolution masks to deal with the details at object boundaries. But large
resolutions will considerably increase the computational cost. c) slow mask NMS. Compared with
box NMS, mask NMS takes more time and leads to a larger overhead.

In this section, we show that these challenges can be effectively solved by our proposed dynamic
mask representation and Matrix NMS, and we introduce them in the sequel.

2.1 Dynamic Instance Segmentation

We first revisit the mask generation in SOLO [32]. To generate the instance mask of S2 channels
corresponding to S × S grids, the last layer takes one level of pyramid features F ∈ R

H×W×E as
input and at last applies a convolution layer with S2 output channels. The operation can be written as:

Mi,j = Gi,j ⊛ F, (1)

where Gi,j ∈ R
1×1×E is the convolution kernel, and Mi,j ∈ R

H×W is the final mask containing
only one instance whose center is at location (i, j).

In other words, we need two input F and G to generate the final mask M . Previous work explicitly
output the whole M for training and inference. Note that tensor M is very large, and to directly
predict M is memory and computational inefficient. In most cases the objects are located sparsely
in the image. M is redundant as only a small part of S2 kernels actually functions during a single
inference.

From another perspective, if we separately learn F and G, the final M could be directly generated
using the both components. In this way, we can simply pick the valid ones from predicted S2 kernels
and perform the convolution dynamically. The number of model parameters also decreases. What
is more, as the predicted kernel is generated dynamically conditioned on the input, it benefits from
the flexibility and adaptive nature. Additionally, each of S2 kernels is conditioned on the location.

4

It is in accordance with the core idea of segmenting objects by locations and goes a step further by
predicting the segmenters by locations.

2.1.1 Mask Kernel G

Given the backbone and FPN, we predict the mask kernel G at each pyramid level. We first resize
the input feature FI ∈ R

HI×WI×C into shape of S × S × C. Then 4×convs and a final 3× 3×D
conv are employed to generate the kernel G. We add the spatial functionality to FI by giving the first
convolution access to the normalized coordinates following CoordConv [23], i.e., concatenating two
additional input channels which contains pixel coordinates normalized to [−1, 1]. Weights for the
head are shared across different feature map levels.

For each grid, the kernel branch predicts the D-dimensional output to indicate predicted convolution
kernel weights, where D is the number of parameters. For generating the weights of a 1×1 convolution
with E input channels, D equals E. As for 3×3 convolution, D equals 9E. These generated weights
are conditioned on the locations, i.e., the grid cells. If we divide the input image into S×S grids, the
output space will be S×S×D, There is no activation function on the output.

2.1.2 Mask Feature F

Since the mask feature and mask kernel are decoupled and separately predicted, there are two ways
to construct the mask feature. We can put it into the head, along with the kernel branch. It means that
we predict the mask features for each FPN level. Or, to predict a unified mask feature representation
for all FPN levels. We have compared the two implementations in Section 3.1.2 by experiments.
Finally, we employ the latter one for its effectiveness and efficiency.

For learning a unified and high-resolution mask feature representation, we apply feature pyramid
fusion inspired by the semantic segmentation in [18]. After repeated stages of 3 × 3 conv, group
norm [34], ReLU and 2× bilinear upsampling, the FPN features P2 to P5 are merged into a single
output at 1/4 scale. The last layer after the element-wise summation consists of 1× 1 convolution,
group norm and ReLU. More details can be referred to supplementary material. It should be noted that
we feed normalized pixel coordinates to the deepest FPN level (at 1/32 scale), before the convolutions
and bilinear upsamplings. The provided accurate position information is important for enabling
position sensitivity and predicting instance-aware features.

2.1.3 Forming Instance Mask

For each grid cell at (i, j), we first obtain the mask kernel Gi,j,: ∈ R
D. Then Gi,j,: is convolved with

F to get the instance mask. In total, there will be at most S2 masks for each prediction level. Finally,
we use the proposed Matrix NMS to get the final instance segmentation results.

2.1.4 Learning and Inference

The training loss function is defined as follows:

L = Lcate + λLmask, (2)

where Lcate is the conventional Focal Loss [21] for semantic category classification, Lmask is the
Dice Loss for mask prediction. For more details, we refer readers to [32].

During the inference, we forward input image through the backbone network and FPN, and obtain the
category score pi,j at grid (i, j). We first use a confidence threshold of 0.1 to filter out predictions
with low confidence. The corresponding predicted mask kernels are then used to perform convolution
on the mask feature. After the sigmoid operation, we use a threshold of 0.5 to convert predicted soft
masks to binary masks. The last step is the Matrix NMS.

2.2 Matrix NMS

Motivation. Our Matrix NMS is motivated by Soft-NMS [1]. Soft-NMS decays the other detection
scores as a monotonic decreasing function f(iou) of their overlaps. By decaying the scores according
to IoUs recursively, higher IoU detections will be eliminated with a minimum score threshold.
However, such process is sequential like traditional Greedy NMS and could not be implemented in
parallel.

5

Table 1 – Instance segmentation mask AP (%) on COCO test-dev. All entries are single-model results.
Mask R-CNN∗ is our improved version with scale augmentation and longer training time (6×). ‘DCN’ means
deformable convolutions used.

backbone AP AP50 AP75 APS APM APL

box-based:
Mask R-CNN [12] Res-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4

Mask R-CNN∗ Res-101-FPN 37.8 59.8 40.7 20.5 40.4 49.3
MaskLab+ [5] Res-101-C4 37.3 59.8 39.6 16.9 39.9 53.5

TensorMask [6] Res-101-FPN 37.1 59.3 39.4 17.4 39.1 51.6
YOLACT [2] Res-101-FPN 31.2 50.6 32.8 12.1 33.3 47.1
MEInst [38] Res-101-FPN 33.9 56.2 35.4 19.8 36.1 42.3

CenterMask [33] Hourglass-104 34.5 56.1 36.3 16.3 37.4 48.4
BlendMask [4] Res-101-FPN 38.4 60.7 41.3 18.2 41.5 53.3

box-free:
PolarMask [35] Res-101-FPN 32.1 53.7 33.1 14.7 33.8 45.3

SOLO [32] Res-101-FPN 37.8 59.5 40.4 16.4 40.6 54.2
SOLOv2 Res-50-FPN 38.8 59.9 41.7 16.5 41.7 56.2
SOLOv2 Res-101-FPN 39.7 60.7 42.9 17.3 42.9 57.4
SOLOv2 Res-DCN-101-FPN 41.7 63.2 45.1 18.0 45.0 61.6

Matrix NMS views this process from another perspective by considering how a predicted mask mj

being suppressed. For mj , its decay factor is affected by: (a) The penalty of each prediction mi on mj

(si > sj), where si and sj are the confidence scores; and (b) the probability of mi being suppressed.
For (a), the penalty of each prediction mi on mj could be easily computed by f(ioui,j). For (b),
the probability of mi being suppressed is not so elegant to be computed. However, the probability
usually has positive correlation with the IoUs. So here we directly approximate the probability by the
most overlapped prediction on mi as

f(iou·,i) = min
∀sk>si

f(iouk,i). (3)

To this end, the final decay factor becomes

decayj = min
∀si>sj

f(ioui,j)

f(iou·,i)
, (4)

and the updated score is computed by sj = sj · decayj . We consider two most simple decremented

functions, denoted as linear f(ioui,j) = 1− ioui,j , and Gaussian f(ioui,j) = exp
(

−
iou

2

i,j

σ

)

.

Implementation. All the operations in Matrix NMS could be implemented in one shot without
recurrence. We first compute a N × N pairwise IoU matrix for the top N predictions sorted
descending by score. For binary masks, the IoU matrix could be efficiently implemented by matrix
operations. Then we get the most overlapping IoUs by column-wise max on the IoU matrix. Next, the
decay factors of all higher scoring predictions are computed, and the decay factor for each prediction
is selected as the most effect one by column-wise min (Eqn. (4)). Finally, the scores are updated by
the decay factors. For usage, we just need thresholding and selecting top-k scoring masks as the final
predictions.

The pseudo-code of Matrix NMS is provided in supplementary material. In our code base, Matrix
NMS is 9×faster than traditional NMS and being more accurate (Table 3(c)). We show that Matrix
NMS serves as a superior alternative of traditional NMS in both accuracy and speed, and can be
easily integrated into the state-of-the-art detection/segmentation systems.

3 Experiments

To evaluate the proposed method SOLOv2, we conduct experiments on three basic tasks, instance
segmentation, object detection, and panoptic segmentation on MS COCO [22]. We also present
experimental results on the recently proposed LVIS dataset [11], which has more than 1K categories
and thus is considerably more challenging.

6

Table 2 – Instance segmentation results on the LVISv0.5 validation dataset. ∗ means re-implementation.

backbone APr APc APf APS APM APL AP

Mask-RCNN [11] Res-50-FPN 14.5 24.3 28.4 - - - 24.4
Mask-RCNN∗-3× Res-50-FPN 12.1 25.8 28.1 18.7 31.2 38.2 24.6

SOLOv2 Res-50-FPN 13.4 26.6 28.9 15.9 34.6 44.9 25.5
SOLOv2 Res-101-FPN 16.3 27.6 30.1 16.8 35.8 47.0 26.8

Table 3 – Ablation experiments for SOLOv2. All models are trained on MS COCO train2017, test on
val2017 unless noted.

(a) Kernel shape. The perfor-

mance is stable when the shape

goes beyond 1× 1× 256.

Kernel shape AP AP50 AP75

3× 3× 64 37.4 58.0 39.9
1× 1× 64 37.4 58.1 40.1
1× 1× 128 37.4 58.1 40.2
1× 1× 256 37.8 58.5 40.4
1× 1× 512 37.7 58.3 40.4

(b) Explicit coordinates. Precise

coordinates input can considerably

improve the results.

Kernel Feature AP AP50 AP75

36.3 57.4 38.6
✓ 36.3 57.3 38.5

✓ 37.1 58.0 39.4
✓ ✓ 37.8 58.5 40.4

(c) Matrix NMS. Matrix NMS out-

performs other methods in both

speed and accuracy.

Method Iter? Time(ms) AP

Hard-NMS ✓ 9 36.3
Soft-NMS ✓ 22 36.5
Fast NMS ✗ < 1 36.2

Matrix NMS ✗ < 1 36.6

(d) Mask feature representation.

We compare the separate mask fea-

ture representation in parallel heads

and the unified representation.

Mask Feature AP AP50 AP75

Separate 37.3 58.2 40.0
Unified 37.8 58.5 40.4

(e) Training schedule. 1× means

12 epochs using single-scale train-

ing. 3× means 36 epochs with

multi-scale training.

Schedule AP AP50 AP75

1× 34.8 54.8 36.8
3× 37.8 58.5 40.4

(f) Real-time SOLOv2. The speed

is reported on a single V100 GPU

by averaging 5 runs (on COCO

test-dev).

Model AP AP50 AP75 fps

SOLOv2-448 34.0 54.0 36.1 46.5
SOLOv2-512 37.1 57.7 39.7 31.3

3.1 Instance Segmentation

For instance segmentation, we report lesion and sensitivity studies by evaluating on the COCO 5K
val2017 split. We also report COCO mask AP on the test-dev split, which is evaluated on the
evaluation server. SOLOv2 is trained with stochastic gradient descent (SGD). We use synchronized
SGD over 8 GPUs with a total of 16 images per mini-batch. Unless otherwise specified, all models
are trained for 36 epochs (i.e., 3×) with an initial learning rate of 0.01, which is then divided by 10 at
27th and again at 33th epoch. We use scale jitter where the shorter image side is randomly sampled
from 640 to 800 pixels.

3.1.1 Main Results

We compare SOLOv2 to the state-of-the-art methods in instance segmentation on MS COCO test-
dev in Table 1. SOLOv2 with ResNet-101 achieves a mask AP of 39.7%, which is much better than
other state-of-the-art instance segmentation methods. Our method shows its superiority especially on
large objects (e.g., +5.0 APL than Mask R-CNN).

We also provide the speed-accuracy trade-off on COCO to compare with some dominant instance
segmenters (Figure 1 (a)). We show our models with ResNet-50, ResNet-101, ResNet-DCN-101 and
two light-weight versions described in Section 3.1.2. The proposed SOLOv2 outperforms a range
of state-of-the-art algorithms, both in accuracy and speed. The running time is tested on our local
machine, with a single V100 GPU. We download code and pre-trained models to test inference time
for each model on the same machine. Further, as described in Figure 1 (b), SOLOv2 predicts much
finer masks than Mask R-CNN which performs on the local region.

Beside the MS COCO dataset, we also demonstrate the effectiveness of SOLOv2 on LVIS dataset.
Table 2 reports the performances on the rare (1∼10 images), common (11∼100), and frequent (> 100)
subsets, as well as the overall AP. Both the reported Mask R-CNN and SOLOv2 use data resampling
training strategy, following [11]. Our SOLOv2 outperforms the baseline method by about 1% AP.
For large-size objects (APL), our SOLOv2 achieves 6.7% AP improvement, which is consistent with
the results on the COCO dataset.

7

3.1.2 Ablation Experiments

We investigate and compare the following five aspects in our methods.

Kernel shape. We consider the kernel shape from two aspects: number of input channels and kernel
size. The comparisons are shown in Table 3(a). 1× 1 conv shows equivalent performance to 3× 3
conv. Changing the number of input channels from 128 to 256 attains 0.4% AP gains. When it grows
beyond 256, the performance becomes stable. In this work, we set the number of input channels to be
256 in all other experiments.

Effectiveness of coordinates. Since our method segments objects by locations, or specifically, learns
the object segmenters by locations, the position information is very important. For example, if the
mask kernel branch is unaware of the positions, the objects with the same appearance may have the
same predicted kernel, leading to the same output mask. On the other hand, if the mask feature branch
is unaware of the position information, it would not know how to assign the pixels to different feature
channels in the order that matches the mask kernel. As shown in Table 3(b), the model achieves
36.3% AP without explicit coordinates input. The results are reasonably good because that CNNs can
implicitly learn the absolute position information from the commonly used zero-padding operation,
as revealed in [15]. The pyramid zero-paddings in our mask feature branch should have contributed
considerably. However, the implicitly learned position information is coarse and inaccurate. When
making the convolution access to its own input coordinates through concatenating extra coordinate
channels, our method enjoys 1.5% absolute AP gains.

Unified mask feature representation. For mask feature learning, we have two options: to learn
the feature in the head separately for each FPN level or to construct a unified representation. For
the former one, we implement as SOLO and use seven 3 × 3 convolutions to predict the mask
features. For the latter one, we fuse the FPN’s features in a simple way and obtain the unified mask
representations. The detailed implementation is in supplementary material. We compare these two
modes in Table 3(d). As shown, the unified representation achieves better results, especially for the
medium and large objects. This is easy to understand: In separate way, the large-size objects are
assigned to high-level feature maps of low spatial resolutions, leading to coarse boundary prediction.

Matrix NMS. Our Matrix NMS can be implemented totally in parallel. Table 3(c) presents the
speed and accuracy comparison of Hard-NMS, Soft-NMS, Fast NMS and our Matrix NMS. Since
all methods need to compute the IoU matrix, we pre-compute the IoU matrix in advance for fair
comparison. The speed reported here is that of the NMS process alone, excluding computing IoU
matrices. Hard-NMS and Soft-NMS are widely used in current object detection and segmentation
models. Unfortunately, both methods are recursive and spend much time budget (e.g., 22 ms). Our
Matrix NMS only needs < 1 ms and is almost cost free! Here we also show the performance of Fast
NMS, which utilizes matrix operations but with performance penalty. To conclude, our Matrix NMS
shows its advantages on both speed and accuracy.

Real-time setting. We design two light-weight models for different purposes. 1) Speed priority,
the number of convolution layers in the prediction head is reduced to two and the input shorter side is
448. 2) Accuracy priority, the number of convolution layers in the prediction head is reduced to
three and the input shorter side is 512. Moreover, deformable convolution [8] is used in the backbone
and the last layer of prediction head. We train both models with the 3× schedule, with shorter side
randomly sampled from [352, 512]. Results are shown in Table 3(f). SOLOv2 can not only push
state-of-the-art, but has also been ready for real-time applications.

3.2 Extensions: Object Detection and Panoptic Segmentation

Although our instance segmentation solution removes the dependence of bounding box prediction,
we are able to produce the 4-D object bounding box from each instance mask. The best model of
ours achieve 44.9% AP on COCO test-dev. SOLOv2 beats most recent methods in both accuracy
and speed, as shown in Figure 3. Here we emphasize that our results are directly generated from the
off-the-shelf instance mask, without any box based supervised training or engineering.

Besides, we also demonstrate the effectiveness of SOLOv2 on the problem of panoptic segmentation.
The proposed SOLOv2 can be easily extended to panoptic segmentation by adding the semantic
segmentation branch, analogue to the mask feature branch. We use annotations of COCO 2018
panoptic segmentaiton task. All models are trained on train2017 subset and tested on val2017.

8

C
O

C
O

 B
o

x
 A

P

25 50 100 125

30

35

40

Inference time (ms)

150

SOLOv2

FCOS

CenterNet

RetinaNet

YOLOv3

RefineDet

Figure 3 – SOLOv2 for object detection. Speed-accuracy trade-off of bounding-box detection on the COCO
test-dev.

Table 4 – SOLOv2 for panoptic segmentation – results on COCO val2017. ∗ means re-implementation.

PQ PQTh PQSt

box-based:
AUNet [19] 39.6 49.1 25.2

UPSNet [36] 42.5 48.5 33.4
Panoptic-FPN [18] 39.0 45.9 28.7
Panoptic-FPN∗-1× 38.7 45.9 27.8
Panoptic-FPN∗-3× 40.8 48.3 29.4

box-free:
AdaptIS [28] 35.9 40.3 29.3

SSAP [10] 36.5 − −

Pano-DeepLab [7] 39.7 43.9 33.2
SOLOv2 42.1 49.6 30.7

We use the same strategy as in Panoptic-FPN to combine instance and semantic results. As shown in
Table 4, our method achieves state-of-the-art results and outperforms other recent box-free methods by
a large margin. All methods listed use the same backbone (ResNet50-FPN) except SSAP (ResNet101)
and Pano-DeepLab (Xception-71). Note that UPSNet has used deformable convolution [8] for better
performance.

4 Conclusion

In this paper, we proposed SOLOv2, a dynamic and fast instance segmentation solution with strong
performance. The method includes three key techniques. a) We proposed to learn dynamic convo-
lutional kernels for the mask prediction, conditioned on the location, which leads to a much more
compact yet more powerful head design, and achieving better results; b) We re-designed the object
mask generation in a simple and unified way, which yields more accurate boundaries; c) Moreover,
unlike box NMS as in object detection, for direct instance segmentation a bottleneck in inference
efficiency is the NMS of masks. We developed a simple and much faster NMS strategy, termed
Matrix NMS, for NMS processing of masks, without sacrificing mask AP.

Our experiments on the MS COCO and LVIS datasets demonstrate the superior performance in terms
of both accuracy and speed of the proposed SOLOv2. Being versatile for instance-level recognition
tasks, we show that without any modification to the framework, SOLOv2 performs competitively for
panoptic segmentation. Thanks to its simplicity (being proposal free, anchor free, FCN-like), strong
performance in both accuracy and speed, and potentially being capable of solving many instance-level
tasks, SOLOv2 can be a strong baseline approach to instance recognition and beyond.

9

Acknowledgement

Tao Kong and Chunhua Shen are the corresponding authors. Chunhua Shen and his employer received
no financial support for the research, authorship, and/or publication of this article. We would like to
thank Mingxuan Jing, Yuchen Mo, and Ruihang Chu for their valuable comments and suggestions.

Broader Impact

One of the primary goals of computer vision is understanding of visual scenes. Scene understanding
involves numerous tasks (e.g., recognition, detection, segmentation, etc.). Among them, instance
segmentation is probably one of the most challenging tasks, which requires to detect object instances
at the pixel level.

Albeit being challenging, instance segmentation is beneficial to a wide range of applications, including
autonomous driving, augmented reality, medical image analysis, and image/video editing. The
proposed accurate and fast instance segmentation solution benefits broader applications. Autonomous
driving becomes safer. Doctors could find the lesion part in medical images with less effort.

Moreover, we believe that our method can serve as a strong baseline for researchers and engineers
in the field. This new paradigm may encourage future work to deeply analyze and further enhance
research along this direction. Practitioners may develop interesting applications built upon our
approach.

References

[1] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry Davis. Soft-NMS: improving object detection
with one line of code. In Proc. IEEE Int. Conf. Comp. Vis., 2017.

[2] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. YOLACT: Real-time instance segmentation.
In Proc. IEEE Int. Conf. Comp. Vis., 2019.

[3] Lile Cai, Bin Zhao, Zhe Wang, Jie Lin, Chuan Sheng Foo, Mohamed M. Sabry Aly, and Vijay Chan-
drasekhar. Maxpoolnms: Getting rid of NMS bottlenecks in two-stage object detectors. In Proc. IEEE
Conf. Comp. Vis. Patt. Recogn., 2019.

[4] Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yongming Huang, and Youliang Yan. BlendMask:
Top-down meets bottom-up for instance segmentation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
2020.

[5] Liang-Chieh Chen, Alexander Hermans, George Papandreou, Florian Schroff, Peng Wang, and Hartwig
Adam. Masklab: Instance segmentation by refining object detection with semantic and direction features.
In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2018.

[6] Xinlei Chen, Ross Girshick, Kaiming He, and Piotr Dollar. TensorMask: A foundation for dense object
segmentation. In Proc. IEEE Int. Conf. Comp. Vis., 2019.

[7] Bowen Cheng, Maxwell Collins, Yukun Zhu, Ting Liu, Thomas Huang, Hartwig Adam, and Liang-Chieh
Chen. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. In Proc.
IEEE Conf. Comp. Vis. Patt. Recogn., 2020.

[8] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. In Proc. IEEE Int. Conf. Comp. Vis., 2017.

[9] Bert De Brabandere, Davy Neven, and Luc Van Gool. Semantic instance segmentation with a discriminative
loss function. arXiv:1708.02551, 2017.

[10] Naiyu Gao, Yanhu Shan, Yupei Wang, Xin Zhao, Yinan Yu, Ming Yang, and Kaiqi Huang. SSAP:
Single-shot instance segmentation with affinity pyramid. In Proc. IEEE Int. Conf. Comp. Vis., 2019.

[11] Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A dataset for large vocabulary instance segmentation.
In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2019.

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. In Proc. IEEE Int. Conf.
Comp. Vis., 2017.

10

[13] Yihui He, Chenchen Zhu, Jianren Wang, Marios Savvides, and Xiangyu Zhang. Bounding box regression
with uncertainty for accurate object detection. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2019.

[14] Zhaojin Huang, Lichao Huang, Yongchao Gong, Chang Huang, and Xinggang Wang. Mask scoring
R-CNN. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2019.

[15] Md Amirul Islam, Sen Jia, and Neil D. B. Bruce. How much position information do convolutional neural
networks encode? In Proc. Int. Conf. Learn. Representations, 2020.

[16] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer
networks. In Proc. Advances in Neural Inf. Process. Syst., 2015.

[17] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc Van Gool. Dynamic filter networks. In Proc.
Advances in Neural Inf. Process. Syst., 2016.

[18] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid networks. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2019.

[19] Yanwei Li, Xinze Chen, Zheng Zhu, Lingxi Xie, Guan Huang, Dalong Du, and Xingang Wang. Attention-
guided unified network for panoptic segmentation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2019.

[20] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei. Fully convolutional instance-aware semantic
segmentation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2017.

[21] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proc. IEEE Int. Conf. Comp. Vis., 2017.

[22] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In Proc. Eur. Conf. Comp. Vis.,
2014.

[23] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex Sergeev, and Jason
Yosinski. An intriguing failing of convolutional neural networks and the coordconv solution. In Proc.
Advances in Neural Inf. Process. Syst., 2018.

[24] Shu Liu, Jiaya Jia, Sanja Fidler, and Raquel Urtasun. Sequential grouping networks for instance segmenta-
tion. In Proc. IEEE Int. Conf. Comp. Vis., 2017.

[25] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation network for instance segmenta-
tion. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2018.

[26] Songtao Liu, Di Huang, and Yunhong Wang. Adaptive NMS: Refining pedestrian detection in a crowd. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2019.

[27] Alejandro Newell, Zhiao Huang, and Jia Deng. Associative embedding: End-to-end learning for joint
detection and grouping. In Proc. Advances in Neural Inf. Process. Syst., 2017.

[28] Konstantin Sofiiuk, Olga Barinova, and Anton Konushin. AdaptIS: Adaptive instance selection network.
In Proc. IEEE Int. Conf. Comp. Vis., 2019.

[29] Hang Su, Varun Jampani, Deqing Sun, Orazio Gallo, Erik G. Learned-Miller, and Jan Kautz. Pixel-adaptive
convolutional neural networks. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2019.

[30] Zhi Tian, Chunhua Shen, and Hao Chen. Conditional convolutions for instance segmentation. In Proc. Eur.
Conf. Comp. Vis., 2020.

[31] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: Fully convolutional one-stage object detection.
In Proc. IEEE Int. Conf. Comp. Vis., 2019.

[32] Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, and Lei Li. SOLO: Segmenting objects by
locations. In Proc. Eur. Conf. Comp. Vis., 2020.

[33] Yuqing Wang, Zhaoliang Xu, Hao Shen, Baoshan Cheng, and Lirong Yang. Centermask: single shot
instance segmentation with point representation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2020.

[34] Yuxin Wu and Kaiming He. Group normalization. In Proc. Eur. Conf. Comp. Vis., 2018.

[35] Enze Xie, Peize Sun, Xiaoge Song, Wenhai Wang, Xuebo Liu, Ding Liang, Chunhua Shen, and Ping Luo.
PolarMask: Single shot instance segmentation with polar representation. In Proc. IEEE Conf. Comp. Vis.
Patt. Recogn., 2020.

11

[36] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, and Raquel Urtasun.
UPSNet: A unified panoptic segmentation network. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2019.

[37] Linjie Yang, Yanran Wang, Xuehan Xiong, Jianchao Yang, and Aggelos K. Katsaggelos. Efficient video
object segmentation via network modulation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2018.

[38] Rufeng Zhang, Zhi Tian, Chunhua Shen, Mingyu You, and Youliang Yan. Mask encoding for single shot
instance segmentation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2020.

12

	Introduction
	Related Work

	Proposed Method: SOLOv2
	Dynamic Instance Segmentation
	Mask Kernel G
	Mask Feature F
	Forming Instance Mask
	Learning and Inference

	Matrix NMS

	Experiments
	Instance Segmentation
	Main Results
	Ablation Experiments

	Extensions: Object Detection and Panoptic Segmentation

	Conclusion

